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Abstract: Leak detection techniques based on Machine Learning (ML) models can assist or even
replace manual work in leak detection operations in water distribution systems (WDSs). However,
studies on leakage detection based on on-site leak signals are limited compared to studies on lab-scale
leak detection. The on-site leak signals have stronger interference and randomness, while leak signals
in the laboratory are relatively simpler. To better assist on-site leak detection operations, the present
paper develops and compares three ML-based models. For this purpose, many on-site tests were
carried out, and tens of thousands of sets of on-site leak detection signals were collected. More than
6000 sets of these signals were marked and the signal features were extracted and analyzed from a
statistical point of view. It was found that features such as the main frequency, the spectral roll-off
rate, the spectral flatness, and one-dimensional (1-D) Mel Frequency Cepstrum Coefficient (MFCC)
could well distinguish the leakage signals from non-leakage signals. After training the decision tree
model, the performances of the random forest and Adaboost models were thoroughly compared. It
was found that the false positive rates of the three models were 9.80%, 8.27% and 7.35%, all lower
than 10%. In particular, the Adaboost model had the lowest false positive rate of 7.35%. The recall
rate of the random forest and Adaboost models were 100% and 99.52%.

Keywords: water distribution system; leak detection; machine learning; Adaboost model; random
forest model

1. Introduction

The water distribution system (WDS) plays a pivotal role in the municipal facilities in
modern cities. Acute leakage incidents in the WDS usually cause serious social panic and
economic losses [1,2]. A key issue in WDS maintenance is to detect and make up the leakage
in a timely and accurate manner [3]. The traditional leak detection operation mainly relies
on manual work, which needs to be carried out in a quiet environment, usually in the dead
of night. This working mode will damage the health of workers and affect the accuracy of
leak detection [4]. With the development of computer technology, using programs to assist
or even replace manual leak detection has received widespread attention [5]. Thus, the
present paper aims to use machine learning (ML) models for leak detection in the WDS.

Theoretically, intelligent leak detection is mainly based on the acoustic emission sig-
nals of the WDS leakage, which is the same as in manual work [6]. The wide adoption
of ML models greatly improves the accuracy of the WDS leakage detection. In the sup-
port vector machine (SVM) model, the feature set of standard deviation (SD), root mean
square (RMS), energy, and average frequency describe the signal characteristics well [7].
Qu et al. [6] developed a WDS leakage-warning system based on SVM. The system can
obtain vibration signals along the pipeline in real time, extract feature vectors of the signals
using the wavelet-based energy mode method, and classify signals with SVM to judge
whether leakage events occurred or not. The system achieved an accuracy of 90% in tests.
Samer et al. [8] proposed a method to improve the leak identification results with multiple
data analysis and classification techniques. In their study, the Fourier transform was used
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to analyze the leakage acoustic signals and to determine multiple frequency bandwidths.
Three models of naïve Bayes (NB), Deep Learning (DL), and Decision Tree (DT) algorithms
were developed to identify the leaks. The accuracy of these models ranged from 84% to
89%. It was shown that the ensemble method can increase the accuracy of leak detection
from 89% to 100%. It should be noted that small leak signals have features of unclear
characteristics and large background noise. Yu and Li [9] carried out experiments and
proposed a pattern recognition method for the radial basis function(RBF)-based SVM with
a maximum false alarm rate of 1.9%. Fan et al. [10] used the depth automatic decoder
to detect small leakages of 0.25 L/s under laboratory conditions when there was a lack
of on-site leakage data. They achieved an accuracy of 97.2%. Xiao et al. [11] presented
an adaptive optimization method based on the entropic value. The method used three
features to determine the leak state and non-leak state with an accuracy of 99.4% and
used five features to classify the leaks of different severities with an accuracy of 95.6%.
Quy and Kim [12] used a Hanning window to segment the acoustic emission signals and
to maintain the characteristic stability of the original acoustic signals. Then, in their study, a
Korean New Network (KNN) classifier was trained with a combination feature of RMS, SD,
and average frequency to identify whether leaks occurred or not. Quy and Kim achieved
an accuracy of 93%. Banjara et al. [13] compared the classification effects of SVM and
the relevance vector machine (RVM) in WDS leakage detection. They indicated that the
SVM algorithm can be extended for a multiple classification with better accuracy, while
the RVM algorithm can only be used for binary classification. Rahimi et al. [14] applied
fast Fourier transform (FFT) to convert the signal into a one-dimensional image and then
into a one-dimensional chaotic neural network(CNN). They showed that this method can
run in real-time and achieve a recognition accuracy of 85%. Song and Li [15] carried out
an experimental study on leak detection of the WDS with failed joints. They established
a classifier based on the artificial neural network (ANN). In the network, the feature set
of peak, average, and peak frequency achieved an accuracy of 97.2%, and the feature set
of average and peak frequency achieved an accuracy of 96.9%. Kampelopoulos et al. [16]
emphasized that the role of the recall rate rather than accuracy is an important issue in
evaluating the results of ML models in practical applications. In Tariq’s research [17], the
AdaBoost model was used to classify the leakage of metal and non-metal pipes, and the
overall accuracy for metal pipes was 100%, and that of non-metal pipes was 94.93%.

Even though great progress has been made in the WDS leakage detection with the ML
models in theory and in the laboratory, there are still some obstacles in practical applications
as follows: (1) The causes of leakage are complex and changeable, and the leakage acoustic
emission signals are strongly random. In the lack of on-site data, the single working
condition simulated in the laboratory cannot make the identification algorithm universal.
(2) At present, the performance of the models is generally evaluated by the indicator of
accuracy, which cannot meet the requirements of accuracy and cost in actual operations.

In the present study, an experiment was carried out to analyze the small leak detection
in the WDS caused by a loose joint. The study starts with the feature extraction and
analysis of leak signals. An SVM classifier is established to judge whether there is a leak
or not. It will be shown that the SVM model based on kernel functions can achieve a
classification accuracy of up to 98%. Note that the Kullback–Leibler (KL) kernel function’s
result is the best. In the present paper, tens of thousands of groups of on-site data were
collected, and more than 6000 groups of them were marked. With a feature set of dominant
frequency, spectral flatness, spectral roll-off rate, and 1-D MFCC, the classifiers based on
ML models such as decision tree, random forest, and boosting were developed. These
classifiers achieved a recall rate of up to 100% and a negative–positive rate as low as 7.35%.
The major contributions of the present study are to have 6000 groups of marked on-site
data to train the models for leakage detection and to jointly use the recall rate and the false
positive rate to evaluate the classifier in the balance of the needs for accuracy and cost in
practical operations.
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2. Methodology

The main aspects of this paper based on ML models for leakage detection include data
collection, feature extraction, machine models’ training, and validation and evaluation. The
exploration procedure of this study is shown in Figure 1.
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Figure 1. The procedure of leak data analysis.

2.1. Data Collection

It should be noted that there is a lack of on-site data in the field of leak detection of
the WDS. Thus, in the present study, tens of thousands of sets of first-hand on-site leak
detection signals were collected. These data are more adequate than ever for training the
ML models for leak detection. From 2019 to 2021, the leak signals of cast iron pipes, copper
pipes, and steel pipes were accumulated by various leak detection equipment such as
DNR-18, LXP1500, and online leak tester. These pipes were used in WDS leak detection
tests, residential main pipes, residential branch pipes, urban water supply main pipelines,
and fire hydrants in parks with various diameters including 20, 80, and 300 mm. The
collection was carried out in Hangzhou, Shaoxing, Shanghai, and many other cities and
regions in Jiangsu, Zhejiang, and Shanghai. In addition to collecting the leakage detection
signals along the pipeline, various typical background noise signals, such as the sounds
of the pump room, the electric drill, vehicles passing, the whistle, and the air conditioner,
were collected. Some field measurements are shown in Figure 2.
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2.2. Feature Set

Analyzing the characteristics of the collected signals showed that the main frequency,
the spectral flatness, the spectral roll-off rate, and 1-D MFCC can statistically well distin-
guish the leakage and non-leakage signals from the metal tubes. Thus, the present paper
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adopts the feature set of dominant frequency, spectral flatness, spectral roll-off rate, and
1-D MFCC as the input data for the ML models.

2.2.1. Dominant Frequency

The leak detection signal of the WDS can be regarded as a random signal with “weak
periodicity”, which can be recorded as X(t). In addition, its autocorrelation function
is as [18]:

R(τ) = E|X(t + τ)X(t)|,

where E|·| is the mathematical expectation operator and τ is the time step.The power spec-
tral density function can accurately describe the statistical characteristics of the stationary
random signals in the frequency domain, and can be defined as the Fourier transform of
the autocorrelation function of a signal as:

S(ω) =
1

2π

∫ ∞

−∞
R(τ)e−jωτdτ,

where R(τ) is the autocorrelation of the signal and ω is the frequency. Since the leak
detection signal has the “weak periodicity”, a peak can be found on the power spectrum
estimate plot. The frequency of the peak is the dominant frequency.

2.2.2. Spectral Flatness

Spectral flatness measurement (SFM) is the ratio of the geometric mean (GM) of the
spectrum to its arithmetic mean (AM). It is utilized to quantify the flatness of the spectrum
with a unit of dB. An SFM closer to zero indicates that the signal is highly similar to the
sinusoidal curve or that there is a meaningful signal. An SFM closer to one implies that
the higher the SFM is, the lower the correlation of the signal becomes. An SFM equal to
one denotes a white noise, no meaningful signal, or a meaningful signal submerged by the
higher intensity of the white noise. The below formula calculates the spectral flatness [19]:

SFM = 10lg
(

GM
AM

)
= 10lg


(

∏N
n=1|X(n)|

) 1
N

1
N ΣN

n=1|X(n)|


where X(n) is the signal and N is the length.

2.2.3. Spectral Roll-Off Rate

The spectral roll-off (SR) rate is the rate at which the spectrum falls physically. It is
generally believed that the sound signal of a ship in operation decreases at a rate of 6 dB in
the high-frequency range, and the actual spectral roll-off rates are different for different
sound sources. The main reason for the different roll-off rates of the acoustic signals is the
different degrees of fluid cavitation. For example, commercial ships sailing on the surface
and submarines sailing underwater have obvious differences in the spectral roll-off rate.
The spectral roll-off rate formula is [20]:

SR = PF − P(1−n)F,

where F is the local domain frequency; n is the frequency step; and P is the decibel.

2.2.4. One-D MFCC

The Mel-Frequency Cepstrum Coefficient (MFCC) is representative of a sound’s short-
term power spectrum. This coefficient is obtained by taking the logarithm of the power spec-
trum on the nonlinear Mel frequency scale and then performing discrete cosine changes [21].
The analysis process of the MFCC is as follows: First, the square value of the amplitude
of the acoustic signal is obtained, and the Mel filter is used to filter the acoustic signal.
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Second, the logarithm operation is performed on the output signal of the first step. Third,
the discrete cosine transform is performed on the result to obtain the feature matrix of the
MFCC. Note that, in the present paper, the 1-D MFCC is used with other features.

2.3. ML Models
2.3.1. Data Balance

Since the balanced class principle is the basis of most of the ML models, unbalanced
input data are usually challenging because they cause the ML models to ignore fewer
classes [21]. Note that, in the leak detection operation, the leakage signals are far fewer
than the non-leakage signals. Thus, the present paper analyzed the proportion of leakage
and non-leakage signals in the training set. The models were trained and evaluated with
ratios of leakage to non-leakage signals of 1:3, 1:2, 1:1, 4:3, 3:2, and 2:1. The evaluation
results are shown in Figures 3 and 4.
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Both Figures 3 and 4 show that the indicators of ML model evaluation have a similar
trend with respect to the variation of the data proportion. In the proportion range of 1–4/3,
the variations of the evaluation indicators begin to slow down. When the proportion of
the leakage and non-leakage signals is less than one, the evaluation indicators of the recall
rate and the F1 value decrease rapidly as the proportion decreases, and the classification
effect of the ML models deteriorates rapidly. When the proportion is greater than 4/3,
the evaluation indicators do not have a significant improvement as the ratio increases.
However, the collection of more leakage data will increase the cost of the data acquisition.
Thus, the present paper sets the proportion of the input data to one in the training process
of the ML models.
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2.3.2. Decision Tree

The decision tree model is one of the most widely used ML models and has good
interpretability. Its basic judgment process is based on concise and clear logical strategies
and is the same as the decision-making process of the human brain. However, decision tree
models are prone to overfitting [8]. In the present paper, the parameters are set as follows:
Criterion = gain ration; maximal depth = 20; apply pruning = Y; confidence = 0.05; minimal
gain = 0.05; minimal leaf size = 3; and minimal size for split = 5.

Random forest is composed of many decision trees, and there is no relationship
between the different decision trees. When the classification task is executed, each decision
tree in the random forest runs judgment and classification separately, and each one obtains
its own classification result. The voting method is used to determine the result. In the
present paper, the model depth and the number of decision trees are set to 60 and 300.

Unlike random forests, Adaboost does not treat the underlying model consistently.
It picks out good models, gives them more weight, and aggregates to obtain the result.
In the process, an additive model is used to linearly combine the base models. At each
round of training, the weights of the base models with lower error rates are boosted, while
those with higher error rates are reduced. Eventually, the model will obtain a result with
better accuracy.

3. Performance of the ML Models

In the present paper, a data ratio of 60/20/20 is used in the training, validation and
test of the model. The number of input datasets is 6375, from which 3110 are for leakage
signals. After the models have been trained, the performances will be evaluated with the
indicators shown in Table 1.

Table 1. Index meanings in model performance evaluation.

Name Meaning

TN Non-leakage both in reality and in prediction
FP Non-leakage in reality but leakage in prediction
FN Leakage in reality but non-leakage in prediction
TP Leakage both in reality and in prediction

Precision
TP

TP+FP

Training accuracy
TP+TN

TP+TN+FP+FN in training

Validation accuracy
TP+TN

TP+TN+FP+FN in validation

Recall rate
TP

TP+FN

F1_score
2TP

2TP+FP+FN
False Positive Rate FP

FP+TN

The confusion matrix in the validation of the decision tree model is shown in Figure 5.
The evaluation indicators of the ML model are as follows: Precision = 90.2%; Training
accuracy = 99.96%; Validation accuracy = 90.91%; Recall rate = 94.69%; F1_score = 0.9239;
and False Positive Rate = 9.8%. Overall, the decision tree model can achieve a good
classification performance. The recall rate represents the ability of the model to pick out
the leakage signals, while the false positive rate refers to the degree to which non-leakage
signals are misjudged as leakage signals. When the non-leakage signal is misjudged, it is
likely to bring about unnecessary excavation expenses and manpower losses. Therefore,
in view of the leak detection operations of the WDS, the recall rate is more suitable for
measuring the accuracy of leak detection. Meanwhile, the false positive rate is more suitable
for measuring the loss caused by the misjudgment of the model. A high recall rate and a
low false positive rate are required.
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Figure 6 shows the confusion matrix in the validation of the random forest model. The
obtained evaluation indicators are: Precision = 92.01%; Training accuracy = 99.82%; Validation
accuracy = 95.27%; Recall rate = 100%; F1_score = 0.9584; and False Positive Rate = 8.27%. In
general, the random forest has a higher precision of 92.01% than the decision tree model,
implying that the overall classification accuracy of the random forest is better. An F1_score
closer to one shows a higher robustness, which illustrates a better ML model. The most
important feature is that the random forest model has a high recall rate of 100% and a low
false positive rate of 8.27%.
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Table 2. Comparison of the three ML models for leak detection of the WDS.

Training
Accuracy

Validation
Accuracy Precision Recall

Rate
False Positive

Rate F1_Score

Decision Tree 99.96% 90.91% 90.20% 94.69% 9.80% 0.9239
Random
Forest 99.82% 95.27% 92.01% 100% 8.27% 0.9584

Adaboost 99.96% 95.80% 92.80% 99.52% 7.35% 0.9604

The ROC curves of the three ML models are illustrated in Figure 8. As shown, all of
the areas enclosed by the ROC curves of the three models are 0.93. It is clear that all three
of the classifiers are very good.

Water 2022, 14, x FOR PEER REVIEW 9 of 11 
 

 

 Non-leakage 
prediction 

Leakage 
prediction 

Non-leakage 
in reality 

605 (TN) 48 (FP) 

Leakage in 
reality 

3 (FN) 619 (TP) 

Figure 7. The confusion matrix of the Adaboost model. 

The evaluation indicators of the three ML models are compared in Table 2. 

Table 2. Comparison of the three ML models for leak detection of the WDS. 

 
Training 
Accuracy  

Validation 
Accuracy Precision Recall Rate 

False  
Positive 

Rate 
F1_Score 

Decision 
Tree 

99.96% 90.91% 90.20% 94.69% 9.80% 0.9239 

Random 
Forest 99.82% 95.27% 92.01% 100% 8.27% 0.9584 

Adaboost 99.96% 95.80% 92.80% 99.52% 7.35% 0.9604 

The ROC curves of the three ML models are illustrated in Figure 8. As shown, all of 
the areas enclosed by the ROC curves of the three models are 0.93. It is clear that all three 
of the classifiers are very good. 

 
Figure 8. The ROC curves of the three ML models. 

4. Conclusions 

Figure 8. The ROC curves of the three ML models.

4. Conclusions

An intelligent identification method is developed for the WDS leakage detection based
on ML models such as the decision tree, the random forest, and the Adaboost. During the
process, on-site acoustic emission signals in Hangzhou, Shaoxing, Shanghai, and many
other cities and regions in Jiangsu, Zhejiang, and Shanghai were used to extract feature sets.
Extensive on-site work was carried out, and tens of thousands of detection signals were
collected. More than 6000 groups of these data were marked. In this paper, 3110 sets of
leakage signals and 3270 sets of non-leakage signals were used in the model training. Based
on a statistical analysis of the signal characteristics, features such as the dominant frequency,
the spectral flatness, the spectral roll-off rate, and 1-D MFCC are considered to be able to
effectively discriminate between leakage and non-leakage signals. After careful analysis
of the leak detection requirements, the indicators of the recall rate and false positive rate
were selected to evaluate the performance of the models. A higher recall rate and a lower
false positive rate are always required. These rates imply that the most leak signals were
picked out, and the fewest non-leak signals were misjudged. Overall, the performances of
the random forest and the Adaboost models are better than the decision tree. The recall
rates of the random forest and the Adaboost models are 100% and 99.52%, which are higher
than the recall rate of the decision tree model of 94.69%. The false positive rates of the three
models are all lower than 10%, while the Adaboost model has the lowest false positive rate
of 7.35%. Based on the results of this paper, all three models can assist and even replace
manual work in leak detection operations, among which the Adaboost model has the
best performance.
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