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Abstract: High-colored wastewater generated during the cellulose bleaching process causes the
inhibition of biological activity when released into the environment. This study aimed to evaluate the
bacterium’s capacity, identified as RGM2262, to degrade a complex phenolic structure such as lignin,
which is found in high concentrations in the effluents generated during the production of cellulose,
raw material for the manufacture of paper. To determine the values of the experimental variables that
allow for a greater degradation of organic matter, an experimental model was carried out through
experimental design. Thus, the experimental matrix was obtained with the variables pH 7 (−1) to
9 (+1) and a treatment time of 1 day (−1) to 5 days (+1). The results show that, at pH 8 and pH 9,
both treatments—with bacteria in bio-films and without bio-films—were efficient. On the second day
of treatment, 100% of the color and the phenolic structure were removed, with a similar rate constant,
and at the same time, 80% COD and 70% of TOC, respectively.

Keywords: phenolic compounds; pulp and paper industry; pollution control; wastewater cleaning;
water sustainability

1. Introduction

The residual phenolic compounds in the pulp and paper process generate highly
colored wastewater, which causes biological activity inhibition when released into the
environment, producing harmful environmental effects [1]. Phenolic compounds detected
in sediments in a pulp industry effluent discharge zone have a direct relationship with the
hormonal changes in the species that inhabit the area due to the continued exposure to these
compounds [2]. The toxicity of cellulose effluent has several effects on the reproductive
system in aquatic flora and fauna, such as a reduction in the size of the gonads, a change in
the secondary sexual character, late maturity, and the suppression of the sex hormone in
fish [3]. Therefore, alternatives for reducing the organic matter before its discharge into
the environment, or for its reuse in the industrial process, are studied [4–11]. However,
these processes fail to transform the compounds into more bioavailable organic matter;
they only concentrate the organic matter that must be deposited in a landfill later, which
indicates that the contamination is not eliminated but rather only transferred from one
place to another. Lately, the use of microorganisms has been a promising alternative for
cleaning contaminated environments in the so-called bioremediation processes; thus, the
use of several and varied bacterial strains for degrading different pollutants has been
tested. Some researchers have isolated bacteria from contaminated effluents that have
the potential for use in bioremediation—for example, studied strains resistant to high
concentrations of phenol, which would be an excellent bacterium to treat wastewater
containing refractory organic matter [12,13]. The behavior of co-culture in the degradation
and decolorization of pulp mill wastewater was also studied to search the degradability of
kraft lignin—for example, the potential bacterial strains Bacillus subtilis (GU193980) and
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Klebsiella pneumoniae (GU193981) were isolated and used in the process to treat the pulp
and paper mill waste. The results show that the bacteria mixture was efficient in removing
80% of the color and reducing the other pollution parameters, such as COD by 73% and
BOD by 62% [14].

Other studies isolated 12 strains, of which the most abundant and promising genera
in degrading lignin were mesorhizobium, cellulosimicrobium, pandoraea, achromobacter,
and stenotrophomones, achieving an average of 30% removal [15]. Additionally, in studies
of the conglomerate of microorganisms in a sludge that contained 4-chlorophenol, with
genus pseudomonas being the more abundant strain, Proteobacteria and Firmicutes were
dominant in the chlorophenol degradation [16]. Different studies have referred to the
analysis of the degradation of toxic compounds using bacteria consortia, with two or three
strains and sometimes up to four [16–21]. The biodegradation of an industrial mixture of
PCBs was performed using bacterial consortia composed of four bacterial strains isolated
from the contaminated sediments. The consortium containing two strains showed a good
degradation of the highly chlorinated PCB. The consortium made up of three bacterial
strains showed a higher biodegradation, reaching 73% of the degradation of the organic
compound and reducing the toxicity in 7 days [22,23]. Co-cultures using microalgae have
also been used to degrade the effluents derived from the olive oil mill, effluents that contain
high concentrations of phenolic compounds that are difficult to degrade. The treatment
consisted of two parts: aerobic and anaerobic. It allows, on the one hand, for a reduction in
organic matter and the generation of hydrogen, but the biodegradation of organic matter
is not achieved since the inverse process requires a high concentration of oxygen [24].
Fermentation processes have also been carried out using native bacteria to treat organic
waste from the wine industry for hydrogen production [25].

The microorganisms are ecologically important in soil and water and are probably
responsible for the aerobic degradation of many soluble compounds derived from animal
and vegetable organic matter in decomposition. Thus, this study aimed to evaluate the
capacity of the native bacteria to degrade phenolic compounds present in the pulp and
paper industry wastewater, using the carbon of the molecules as a unique carbon source
to generate energy for its growth without adding other nutrients. The importance of
the use of microorganisms in the treatment of contaminated water is the need to reduce
contamination using methods that are friendlier to the environment, and the handling
of a single microorganism allows for the better management of its biomagnification in
the system.

2. Materials and Methods

Pure water-soluble lignin with a molecular weight between 5000 and 28,000 g mol−1

was used to prepare the 100 ppm solutions. The samples were incubated with the bacterial
inoculum RGM2262 [24] at 30 ◦C for 5 days, which was prepared in Peptone Soybean
Casein Agar (Merck). The viable cell counting method was used to determine bacterial
growth. The residual Lignin was determined through a calibration curve at 280 nm and
the residual color at 460 nm using a UV-1601 Shimadzu spectrophotometer. A 1 L reactor
capacity to a flow of 200 mL h−1 was used to carry out the degradation. The bacteria
in biofilms were formed on a 21.5 × 2.0 cm polyethylene layer, whereby the inoculated
bacteria remained in contact with the polyethylene for 24 h before it was used in the
degradation treatment.

2.1. Chemical Oxygen Demand (COD)

The chemical oxygen demand (COD mg O2L−1) was determined using the Merck
Spectroquant kit with a measured range of 25 to 1500 mg O2 L−1, according to the standard
methods 5220 D and ISO 15705. Before analysis, the samples were refluxed for 2 h in a
thermoreactor Spectroquant TR620 (Merck KGaA, Darmstadt, Germany).
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2.2. Total Organic Carbon (TOC)

The Merck Spectroquant kit from 50 to 800 mg C L−1 was used to determine the TOC.
The samples were refluxed for 2 h in a thermal reactor Spectroquant TR620, and the TOC
was analyzed using a Spectroquant® NOVA 60 (Merck KGaA, Darmstadt, Germany). The
TOC was expressed in mg of C L−1 according to the standard method: ISO 84661-1 and
DIN38402 A51.

2.3. Bacterial Growth

Bacterial growth was determined using the serial dilution method in agar, which was
standardized with the McFarland standard. The bacterial inoculum was incubated for 24 h
at 30 ◦C. Viable bacterial colonies were counted every 24 h for a total of 120 h, recording
the number of colony-forming units (CFUs).

2.4. Multivariate Analysis

The experimental design was used to evaluate the optimal response of the bacteria to
the degradation of the phenolic compounds. The design was constructed with the MODE
7.0 program with two experimental variables—a pH between 7 (−1) and 9 (+1) and a
treatment time in days between 1 (−1) and 5 (+1). A matrix with 12 experiments was given
by the quadratic model, with a factorial design 2n, as shown in Table 1. The design runs
with nine combinations between the variables, of which four correspond to the minimum
and maximum, and three correspond to the central points and replicas. The observed
response was the value obtained experimentally, and the predicted response was the value
given by the design according to the value of the variable used. Both responses are given
as a removal percentage of phenolic compounds.

Table 1. Experimental Matrix Full Fac (three levels). It shows the experimental name, the order in
which the experiments were run, and the values of the variables studied.

Experimental Name Run Order pH Coded
(Uncoded Value)

Time (Days) Coded
(Uncoded Value)

N1 6 7 (−1) 1 (−1)

N2 10 9 (+1) 1 (−1)

N3 8 7 (−1) 5 (+1)

N4 1 9 (+1) 5 (+1)

N5 2 8 (0) 3 (0)

N6 4 8 (0) 3 (0)

N7 9 8 (0) 3 (0)

N8 3 8 (0) 3 (0)

N9 12 8 (0) 1 (−1)

N10 5 7 (−1) 3 (0)

N11 11 9 (+1) 3 (0)

N12 7 8 (0) 5 (+1)

3. Results and Discussion

Figure 1 shows the response surface for the optimization of the bioremediation process,
without the bacteria forming biofilms. As can be seen, a higher pH increases the efficiency in
the degradation of the effluent; this is beneficial because cellulose effluents are characterized
by a high pH, which would avoid the addition of more chemicals to neutralize the effluents
before treating them with bacteria.
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Figure 1. Response surface for the bioremediation process optimization in the function of the vari-
ables pH and treatment time with the bacteria without biofilms (the values on the figure indicate 
the removal achieved in terms of a percentage). 

Figure 2 shows the observed versus predicted values of the response. The regression 
line indicates a good model, and the experimentally observed response of R2 = 0.997 and 
the predicted response given by the experimental design of Q2 = 0.995 present a good re-
gression, indicating that the model is reliable, with 95% confidence and a p-value of p < 
0.0001. 

Figure 1. Response surface for the bioremediation process optimization in the function of the
variables pH and treatment time with the bacteria without biofilms (the values on the figure indicate
the removal achieved in terms of a percentage).

Figure 2 shows the observed versus predicted values of the response. The regression
line indicates a good model, and the experimentally observed response of R2 = 0.997 and
the predicted response given by the experimental design of Q2 = 0.995 present a good
regression, indicating that the model is reliable, with 95% confidence and a p-value of
p < 0.0001.
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Figure 3 shows the response surface for the optimization of the bioremediation process
with the bacteria forming biofilms. It was observed that the degradation efficiency increased
with the pH and the time; a linear relationship was observed between the variables with
an efficient removal throughout the studied pH range. In both models studied, it was
observed that the greatest removal was achieved at a pH between 8 and 9, the percentages
being higher with the bacteria forming biofilms. This may be because the bacteria remain
immobile, so they do not spend the energy needed to mobilize, occupying it only to
consume the organic matter carbon and achieve its degradation. The linear regression for
the experimental design using the bacteria forming biofilms is observed in Figure 4. In this
optimization process, the values of the observed and predicted response present a good
regression too, indicating that the model is reliable, with a 95% confidence and a p-value of
p < 0.0001.
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Figure 3. Response surface for the bioremediation process optimization in the function of the
variables pH and treatment time with the bacteria forming biofilms (the values on the figure indicate
the removal achieved in terms of a percentage).

As is observed for both models, a high degradation was obtained in the entire pH range
studied, so to corroborate the response given by the experimental design, the degradation
was followed in time to corroborate that the response obtained by the experimental design
is correct. Figure 5 shows that, at pH 7, the Lignin removal was slower when the bacteria
were in biofilms compared to bacteria without biofilm. However, both treatments were
effective in removing lignin, achieving 80% on the first day of the treatment with the
bacteria without biofilms and reaching 90% by the fifth day in both cases. At pH 8, the
bacteria forming biofilms removed the lignin with greater efficiency during the first day of
treatment, achieving 80%. Nonetheless, by the fifth day, it was possible to remove 100%
of the lignin in both cases. At pH 9, the same behavior for both treatments was observed,
with the maximum removal of lignin achieved on the fourth day.
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Several authors have studied the efficiency of different bacteria in removing color and
lignin from pulp and paper mill wastewater by studying a group of bacteria in a nutrient-
enriched medium. They have determined that the bacterium Acinetobacter calcoaceticus
achieves 51% and the bacterium Klebsiella pneumoniae achieves 29% of lignin removal [26].
Others have isolated a group of bacteria from sludge in a pulp and paper industry and
identified them as Paenibacillus sp., Aneurinibacillus aneurinilyticus, and Bacillus sp., which
were also used for the degradation of lignin [27,28]. The bacteria were incubated in an
enriched medium with glucose and peptone at pH 7.6 for 6 days, Bacillus sp. achieving 37%
of degradation, making this bacterium the most efficient in lignin removal. Comparing
the results obtained in this research with those found in the literature, the efficiency of this
system in degrading high concentrations of phenolic compounds in reduced treatment
times can be recognized.

The color removed is shown in Figure 6, where a similar behavior to the lignin removal
at the different pHs studied can be observed. As seen at pH 7.0, color removal is slower
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than that for the other two pHs. The highest discoloration is achieved at pH 8.0 and pH 9.0,
reaching 100% on the second day of treatment, which corroborates what was shown by the
experimental design. At the same time, the kinetics of lignin degradation and discoloration
are corroborated by the rate constants shown in Table 2, where a good correlation between
the rate constants and the degradation achieved in each treatment is observed.
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Table 2. Rate constants for the different treatments with bacterial strain RGM2262.

Lignin Removed (%) pH
With Biofilm Without Biofilm

Kv/day R2 Kv/day R2

90.0 7.0 11.0 0.60 17.0 0.99
100.0 8.0 12.4 0.90 12.4 0.86
100.0 9.0 32.4 0.94 32.4 0.92

Color Removed (%)
90.0 7.0 9.60 0.89 9.60 0.67
100.0 8.0 12.0 0.60 14.9 0.74
100.0 9.0 12.0 0.60 14.9 0.74

In other works, an effluent was treated anaerobically for 7 days and was further
treated by aerobic microorganisms, achieving a maximum reduction of lignin of 25% and
a reduction of COD of 47%. Also using a ligninolytic bacterium at pH 7.6, the lignin and
color removal of the effluent was enhanced by adding carbon and nitrogen as additional
nutrients [29,30].

In this study, the COD removal by the bacteria achieved 80%, indicating that the
bacteria were efficient in degrading phenolic compounds derived from the pulp and paper
industry. It is evident that, at higher pH values, the removal increases, as lignin is more
soluble at a more basic pH, making it easier for the bacteria to incorporate the lignin as
food into their enzymatic system and degrade it. A previous study on the capacity of three
native bacterial strains used to degrade pulp and paper mill effluents, again using the
bacteria in the consortium in the treatment, showed that they were able to reduce the COD
by 76% within 10 h. However, when the bacterial cultures were used separately, the results
were not promising [31]. It should be noted that, in this study, no additional nutrients were
added for bacterial growth. Bacteria can reproduce by consuming only the carbon present
in organic matter, as shown in Figure 7.

Other authors have reported specific microbial species with the capability to degrade
organic compounds present in pulp and paper industry wastewater. Different species
of Micrococcus and Staphylococcus, Kurthia zopfii, Alcaligenes faecalis, and Pseudomonas
aeruginosa, were used individually or in a consortium and reduced a low percentage of
organic matter, achieving only 30% of COD removal in 6 months of treatment [32,33].
Additionally, immobilized bacteria showed the removal of lignin, color, and COD from
the effluent by 74%, 81%, and 85%, respectively, after 60 h of treatment at pH 7.6. A high
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variety of works using microorganisms with different strains isolated from contaminated
sites to treat wastewater from the pulp and paper mills have been reported, presenting
low-efficiency results in long treatment times [34–37].
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The efficiency of the bioremediation process carried out by the bacterial strain RGM2262
can also be shown by means of the mineralization of the organic matter measured through
the TOC, which reached 70%, indicating that the organic matter was consumed by the
bacteria for its growth and that Lignin was biotransformed, mineralizing into H2O and
CO2. At the same time that the lignin is removed, the bacteria multiply, demonstrating that
the bacteria strain can use the carbon of the lignin structure as the only source of nutrients,
making it efficient in its degradation in the first 24 h of incubation. Studies about using the
pulp and paper mill effluent as a carbon source showed that the bacterial growth reached a
good number of CFU/mL, coinciding with the COD and TOC removal [38–41].

Figure 8 shows the correlation at the different pHs studied to determine the grade
of the organic structure removal. As was observed, at a higher bacterial growth, both
the lignin and color were removed by 100%, reducing the chemical oxygen demand and
the total organic carbon. At the same time, an increase in the bioavailability of organic
matter is observed. The initial TOC/COD ratio was 0.39, changing to 0.75 after treatment,
which indicates that, during the process, the bioavailability of organic material increases
considerably, indicating that the degradation products will be more easily consumed by
microorganisms in the environment if the wastewater is discharged after treatment. In
Figure 8A, the synergism between the expected responses can be observed, that is, as
the bacteria grow, the removal of lignin and color increases, while the chemical oxygen
demand decreases. This is highly promising, since it is shown that bacteria can grow and
degrade high concentrations of phenolic organic matter. In Figure 8B, it is also observed
that, with the high chemical oxygen demand removal, the bioavailability of organic matter
increases considerably. This is highly promising in the treatment of highly colored industrial
wastewater with a high concentration of non-bioavailable organic matter.

Figure 9 shows a theoretical scheme of how the degradation process of the complex
organic structure of lignin could be carried out through the consumption of organic carbon
by bacteria, which is reflected in the TOC decreasing and the bioavailability of organic
matter increasing. Studies show the production of rhamnolipids by different bacteria
through glycerol consumption as a carbon source, so it can be expected that the mechanism
of lignin degradation may also occur in this way [42,43].
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4. Conclusions

Bacteria RGM2262 was able to degrade a high concentration of lignin from a pulp
and paper mill, using the carbon of its structure as the only energy source for its growth.
The bacteria in both cases—forming biofilm and free—were effective in degrading organic
matter, resulting in their complete removal at a more basic pH after 24 h of treatment. This
result is relevant, since the effluents generated in the pulp and paper mill are characterized
by a high pH, which eliminates a previous treatment such as the neutralization of the
effluent. On the other hand, the higher basicity improved lignin solubility, facilitating
their passage through the layer of exopolysaccharides in the biofilms. The results show
that the bacteria can be used in the bioremediation of wastewater that contains high con-
centrations of phenolic organic matter, transforming the compounds to less hazardous or
non-hazardous forms without having to add additional chemicals to the effluent. Addition-
ally, the experimental design carried out for the optimization of the wastewater treatment
using bacteria showed a good correlation between the variables studied and the response
obtained. The observed R and Q values close to one indicate an accurate representation of
these relationships.
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