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Abstract: Floods have been among the costliest hydrometeorological hazards across the globe for
decades, and are expected to become even more frequent and cause larger devastating impacts in
cities due to climate change. Digital twin technologies can provide decisionmakers with effective
tools to rapidly evaluate city resilience under projected floods. However, the development of city
digital twins for flood predictions is challenging due to the time-consuming, uncertain processes of
developing, calibrating, and coupling physics-based hydrologic and hydraulic models. In this study,
a flood prediction methodology (FPM) that integrates synchronization analysis and deep-learning is
developed to directly simulate the complex relationships between rainfall and flood characteristics,
bypassing the computationally expensive hydrologic-hydraulic models, with the City of Calgary
being used for demonstration. The developed FPM presents the core of data-driven digital twins that,
with real-time sensor data, can rapidly provide early warnings before flood realization, as well as
information about vulnerable areas—enabling city resilience planning considering different climate
change scenarios.

Keywords: convolutional neural network; digital twin; deep learning; flood prediction; flood risk;
long-short-term memory

1. Introduction

For the past five years, the World Economic Forum has been identifying extreme
weather events (e.g., floods, droughts, and fires) due to climate change as the top global risk
in terms of likelihood, among the top five global risks based on impacts [1], and recently
as the second top long-term threat to the world [2]. Among such events, floods have
been declared as the costliest disasters around the globe [3–5]. Floods impacting urban
centers (away from coasts) are typically classified into fluvial and pluvial, with the former
is attributed to riverbank overtopping, whereas the latter occurs when rainfall intensity
exceeds the infiltration rate beyond the riverbanks [6]. During a heavy rainfall event,
both fluvial and pluvial flooding conditions may develop simultaneously, often combined
with the inability of typical sewer/drainage systems to perform adequately under such
intense demands, leading to the exacerbation of flood consequences. In such cases, flood
water may propagate over large areas, causing significant human and economic losses [6].
Approximately 22% of the global economic losses due to natural disasters between 2000
and 2019 were directly attributed to floods [7,8]. This ratio increased to 50% by the end of
2020 [9]. In addition, more than 20 million people are forced to flee their homes annually
since 2008 due to weather-related events, and specifically floods [10]. In Europe, Africa,
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and Southeast Asia, flood events occurred over the past two decades resulted in human
fatalities and monetary losses of 2000 people and 72 billion euros [11], 15,000 people and
54 million dollars [12], and 1000 people and 46 billion dollars [13], respectively. In north
America over the past decade, cities have experienced several devastating flood events
that caused billions of dollars in economic losses [14–16]. For example, in 2013, the state of
Colorado in the United States was impacted by a flood disaster that caused nine fatalities
and more than 1.8 billion dollars in economic losses [17].

In Canada, the City of Calgary was exposed to a catastrophic flood event in 2013 that
caused more than 100,000 people to evacuate and an approximate damage of 5 billion
dollars [5,18]. Other devastating flood events continued to occur across the United States
and Canada since then such as that impacted Texas in 2015 and 2016, the midwestern
United States in 2019, Toronto in 2013, Quebec in 2017, and British Colombia in 2021 [17,18].
Similar events are expected to reoccur globally in the future with altered frequency and
intensity due to the ongoing climate change [5,19–22]. This highlights the fact that urban
centers around the globe, and particularly in north America, need to enhance their pre-
paredness and resilience under extreme weather events. Failure to combat the impacts of
such events can further instigate economic (debt crises, prolonged stagnation, and illicit
activities), environmental (natural resources crises, biodiversity loss, and climate change
enhancement), societal (involuntary migration, public infrastructure damage, employment
and livelihood crises, and social security collapse), and geopolitical (resource condensation
and geoeconomic confrontations) losses [2].

To examine city resilience under natural disasters due to climate change, a city digital
twin (CDT) needs to be developed to help mimic the actual performance of cities during
such catastrophes [23–27]. A CDT represents a real-time, continuously updated (through
sensors), virtual replica of the city infrastructure systems (e.g., buildings, power grid,
storm-, water-, wastewater-, and transit networks), the intra-dependencies within the same
system, the interdependencies between the different systems, and the hazards affecting
each system, all integrated in a single platform [26]. A CDT can thus provide a better
understanding of the direct and indirect effects of future disasters and help decision- and
policymakers to identify vulnerable elements and subsequently develop preparedness and
risk mitigation plans [24,28–30]. A CDT can also be used to develop and test resilience-
enhancement strategies based on future climate projections.

To develop a CDT, visualizations reflecting three-dimensional (3D) building data,
characteristics of city’s critical infrastructure systems, together with human behavior infor-
mation are required [30,31]. More importantly, advanced simulation models that enable
the CDT to mimic the hazard effects on humans and infrastructure systems within the city
are key for a functional CDT. Such simulation models must be both validated and linked
to each other such that the interdependence between different infrastructure systems is
considered. Building a complete CDT is thus a complex process that needs to be continually
refined to enable a real-time response. Several studies have recently proposed different
frameworks for the development of CDTs based on sensors, the Internet of Things, ma-
chine learning, and satellite and LiDAR data [32–35]. The application of such frameworks
enabled the real-time monitoring of wind impacts on human activities in Germany [36],
terroristic impacts in Singapore [37], disaster localization in the United States [38], energy
consumption in the University of Cambridge [28], and noise and air pollution, potential
solar activities, and urban development in Switzerland [23].

For flood risk forecasting, hydrologic and hydraulic models should represent the
core of CDT to quantify hazard characteristics (i.e., extent and inundation depth). In this
respect, various physics-based hydrological (e.g., SWAT, HEC-HMS, Mike-SHE, Lisflood)
and hydraulic (e.g., HEC-RAS, Mike-11, Lisflood-FP) modelling software, with a range
of sophistication levels, have been developed and employed around the world [39–42].
Constructing, calibrating, and testing hydrologic and hydraulic models are highly uncertain
and time-consuming processes that are typically accompanied by exorbitant simulation
computational cost. Even though the hydrologic-hydraulic model may be calibrated, the
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model estimates are still limited by the uncertainty attributed to the model structure, inputs,
and parameters [43,44]. As such, integrating typical flood prediction software with a CDT
further amplifies the computation demands and limits their utility. A fast and reliable
estimation of the flood hazard characteristics is thus key to enable the CDT to provide
rapid early warnings such that contingency plans can be deployed to minimize devastating
consequences. In this respect, researchers have attempted to replace physics-based software
with surrogate models to decrease the computational cost [43–46]. However, the complexity
and nonlinearity of the relationships between rainfall and flood hazard characteristics have
been posing serious challenges to the progress of efforts on that front.

Recently, with the increasing amount of collected rainfall data (e.g., from weather
stations, satellites, Lidar, the Internet of Things), machine learning techniques have been
extensively used to complement or completely replace physics-based hydrologic and
hydraulic models. For example, artificial neural network has been used to enhance the
ability of hydrologic models to predict flow rates in incoming days based on information
from past days [47,48]. The long-short term memory (LSTM) network has also been
used to predict river stage and flow under future climate projections [45,49,50]. Due to
the advancement in computational resources, the field of deep learning (DL) has grown,
leading to the development of more complex modelling techniques such as convolutional
neural networks (CNNs) [50–52]. CNNs have been used for flood prediction in various
ways such as identifying the flood extent based on satellite images [52–54], predicting
the runoff volume at the catchment outlet [55,56], and estimating the flood extent and
inundation depth using upstream flow measurements [50,57,58]. Recently, other studies
showed that a hybrid CNN-LSTM model can outperform other machine learning and
physics-based models used for rainfall-runoff or runoff-inundation modelling [55,59]. The
efficiency of such hybrid model is attributed to the ability of CNNs to capture the main
features contributing to flooding together with the superiority of LSTM networks to provide
the proper concurrence of rainfall-flood events [55,59]. These examples, in addition to
others not discussed here, show that DL techniques (e.g., CNN and LSTM networks)
can be used efficiently in lieu of physics-based hydrologic and hydraulic models. Such
techniques can therefore be employed within a CDT depending on the availability of
the data needed for model development and testing. Such data can be made available
through a continuous monitoring program or be generated using a calibrated physics-based
hydrologic-hydraulic model.

In this respect, the present study discusses the development of a data-driven flood
prediction methodology (FPM) for the accurate prediction of flood hazard characteristics,
impacts, vulnerability, and risk as well as the effective early warning of flood events. The
FPM consists of synchronization, DL, averaging and testing, and prediction modules that
are applied in such sequence to facilitate (1) exploring the lag between peak rainfall and
flood events and subsequently providing early warnings prior to flood realization; and
(2) estimating the hazard characteristics, impacts, vulnerability, and risk under expected
(i.e., due to climate change) and synthetic (i.e., considering beyond-design-basis) scenarios.
Unlike existing hydrologic-hydraulic, machine learning, and DL models used for flood haz-
ard prediction, the developed FPM enables, for the first time, the direct estimation of flood
hazard characteristics (i.e., extent and inundation depth) based on rainfall records. As such
models developed based on the FPM represent more efficient alternatives in terms of the
required computational resources (due to the intrinsic nature of DL techniques employed)
and input data (as rainfall timeseries are the only input required for the development of
such models). To demonstrate its utility, the developed FPM was used to simulate the
relationship between rainfall intensity and induced fluvial flood characteristics in the City
of Calgary as one of the most flood vulnerable cities in Canada. The FPM developed in
this study can be embedded within a CDT (i.e., with real-time sensor data), formulating
a computationally rapid data-driven CDT to replace time consuming, uncertain physics-
based CDT. This novel FPM-CDT can guide hydrologists, urban planners, decision-, and
policymakers to rapidly devise and test effective preparedness plans, flood mitigation
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strategies, and resilience-enhancement methodologies under future flood events due to
climate change.

2. Materials and Methods

The FPM shown in Figure 1 consists of four modules: (1) a synchronization module,
where the lagged interdependence between rainfall (i.e., input) and inundation depth (i.e.,
output) is quantified and the corresponding input-output pairs are identified; (2) a DL
module, in which a set of candidate models with similar or different architectures are trained
and validated based on the input-output pairs identified in the previous module; (3) an
averaging and testing module, where candidate models are combined into a single one that
is subsequently tested using an independent (i.e., new) dataset; and (4) a prediction module,
in which the integrated model developed in the previous module is used for estimating
temporal maps of flood extent, inundation depth, and flood risk under climate change
projections and for different what-if scenarios. Detailed descriptions of these four modules
are provided in the following sections.
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2.1. Synchronization Module

Coupled dynamic processes typically exhibit temporal correlation that reflects the
interdependence between underlying systems [60]. This temporal correlation is known as
synchronization [61], and can be quantified using linear and nonlinear metrics (e.g., cross-
correlation, phase synchronization, coherence function, mutual information, event syn-
chrony, and stochastic event synchrony) [62]. Some of these metrics (i.e., cross-correlation,
phase synchronization, coherence function) are deterministic by nature; therefore, they most
often fail to describe the synchronization between dynamic processes that are stochastic in
nature (e.g., rainfall-flood, climate change-rainfall pattern). Probabilistic synchronization
measures (e.g., mutual information, stochastic event synchrony) have thus been devel-
oped to overcome the limitations of their deterministic counterparts. The synchronization
module (Figure 2) of the FPM employs the stochastic event synchronization (SES) ap-
proach to evaluate the lagged interdependence between rainfall and inundation depth, and
subsequently develop a dataset of associated rainfall-depth pairs.
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Assuming that Rj(t) ∈ RNt×Nj and di(t) ∈ RNt×Ni are the rainfall at weather station
j at time t and inundation depth at location I at the same time, respectively, where Nt is
the size of the set [t1:∆t:T], t1 is the initial recording time, ∆t is the time step at which
both rainfall and inundation depth are recorded, T is the maximum recording time, Nj
is the number of weather stations employed, and Ni is the number of locations where
inundation depth observations are available. Rj(t) and di(t) represent lagged, yet related,
metrics characterizing the flood events under consideration. As such, for fluvial flooding
conditions, di(t) records assume that urban drainage systems do not exist (or completely
malfunction) in the study area. In contrast, the capacity and operability of drainage systems
and other flood control measures are inherently present within di(t) records under pluvial
or combined fluvial-pluvial flooding conditions. It should be noted that di(t) records can
be acquired from a flood monitoring station at location i or can represent the output of
a well-calibrated hydraulic or hydrologic-hydraulic model at such location. It should
be also noted that when the timeseries of rainfall and inundation depth do not have the
same ∆t, a data imputation method should be applied. The application of SES starts
with selecting peak rainfall [Rj(tR)] and inundation depth [di(td)] events from Rj(t) and
di(t), respectively, with tR and td being the peak times of rainfall and inundation depth,
respectively. It should be noted that other events may be selected (e.g., minimum or specific
quantile values) depending on the study objective [63]. For instance, zero rainfall events
may be employed to associate dry periods to drought occurrence, whereas a specified
percentile of inundated areas may be related to poor dam operation conditions. Events
selected from the two series (i.e., [Rj(tR)] and [di(td)]) are subsequently aligned such that a
rainfall event at time tR is associated with a depth event between tR − δ and tR + δ, where
δ is a pre-defined time window [62]. In contrast to the event synchronization approach
developed by Quiroga et al., 2002 [62] that evaluates the synchronization between two
timeseries based on reliability only, the SES quantifies both the reliability and precision
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aspects of synchronization [64]. Within the SES approach, the synchronization reliability
is quantified through the coincidence ratio (ρ[di,Rj]) that indicates the fraction of events
paired at a specific time lag ts.

As the collection of paired events may not be exactly lagged by ts, an average time
lag [L(di,Rj)] is selected as the optimal lag and an average time jitter [τ(di,Rj)] is utilized
to reflect the synchronization precision (i.e., the average deviation between ts and L).
Rainfall amounts at station j is thus synchronized with inundation depths at location
i at L(di,Rj) when ρ(di,Rj) is sufficiently high and τ(di,Rj) is notably low. It should be
emphasized that the fact of causality between rainfall and flooding leads the rainfall
events to always precedes inundation depth events. As such, negative L(di,Rj) values
indicates that while j and i may be within the same hydrological system, the two locations
are hydraulically disconnected and therefore rainfall-depth synchronization cannot be
confirmed even for high values of ρ[di,Rj]. It should be also noted that while higher ρ(di,Rj)
values reveal the synchronization between rainfall and depth processes at locations i and
j, such synchronization should be physically confirmed as locations i and j may not be
hydraulically connected in nature.

Once the synchronization is confirmed between Rj(tR) and di(td) pairs, an integrated database

of lagged rainfall records Rj

(
td
lag

)
∈ RNL×NW , inundation depth values di

(
td
lag

)
∈ RNL×Ni , and

flooding status Ii

(
td
lag

)
∈ RNL×Ni is prepared as shown in Figure 2, where

td
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[
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highlighted that both of di

(
tR
lag

)
and Ii

(
tR
lag

)
represent the output of the deep learning

model whereas Rj

(
td
lag

)
is used as the model input. It should also be emphasized that

the synchronization analysis module of the FPM can be used on its own as an early flood
warning system as L(di,Rj) can reflect the time at which a peak inundation depth occurs
at location i shortly after observing a peak rainfall event at weather station j, given that
locations i and j are within the same hydraulic system. However, when synchronization
is mathematically confirmed between rainfall and inundation depth at locations i and
j that are within the same hydrologic system but are hydraulically disconnected, a ho-
mogenous rainfall regime can be suggested within the system (i.e., rainfall patterns, rather
that intensities, are nearly the same over the watershed). Such information can guide the
decisionmakers to devise prompt preparedness, mitigation, and evacuation plans prior to
the occurrence of a flood event, which can boost community resilience under such type of
hazard. It should be noted that the synchronization module described herein is considered
a preprocessing step within the FPM through which the number of rainfall days required
to estimate the flood characteristics is determined.

2.2. Deep Learning Module

CNNs are supervised feed-forward DL tools that were originally developed to solve
image classification and computer vision problems [58,65], and their application has re-
cently been extended to hydrological and hydraulic modelling [52,54,57,58], autonomous
driving [66,67], and diagnosing chronic diseases [68,69]. A typical CNN consists of an
input layer of 2D images with multiple channels, one or more convolution kernels that
utilize a number of filters (Nf) to convert the input images into feature maps with reduced
dimensions, nonlinear function (e.g., sigmoid function or rectified linear unit) to constraint
the pixel values within the feature maps to a specific range, sub-sampling (i.e., pooling)
layer to spatially integrate distinct pixels of each feature map, and an output layer [65].
The convolution kernel and nonlinear function together with the subsampling layer are
referred to as the convolution layer (CL). A convolution block (CB) of multiple CLs con-
nected in series, as shown in Figure 3, introduce more trainable parameters to the network
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to effectively explore complex input-output relationships [65]. However, the training of
CNNs with several connected CBs may be computationally expensive [65], most often
results in only locally optimized trainable parameters [70], and increases the likelihood
of overfitting [71,72]. Enhanced performance can be achieved through employing a batch
normalization directly after applying the convolution kernels and/or a dropout layer fol-
lowing the subsampling layer [53,73]. It should be highlighted that CNNs can integrate
the spatial information within individual 2D images that are temporally related without
capturing the time-interdependence between them.
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The LSTM network is a class of recurrent neural networks that can store, update, and
modify information from interrelated consecutive sequences of temporally varying features
through memory blocks [74]. Such information is subsequently combined to identify the
relationship between the network inputs and outputs. LSTM networks employ a set of
hidden units, each has a forget (F), candidate (G), input (In), and output (O) gate. The
input of each hidden unit at a certain time step, u(t), is combined with its output from
the previous one, h(t − 1), and are together fed to each of the four gates, as shown in
Figure 4. Subsequently, the forget gate determines the amount of information to be omitted,
the candidate gate identifies the important information to be memorized, the input gate
introduces updating information to the hidden unit, and the output gate is utilized to
combine u(t) and h(t − 1) with the long-term memory stored in the cell (i.e., cell state). The
cell state is subsequently updated based on that stored previously after integration with
the outputs from the forget, candidate, and input gates.
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Due to the ability of CNN to integrate the spatial information within 2D datasets
into meaningful features and the efficiency of LSTM network to capture the long-term
temporal interdependence within a sequence, this module of the FPM combines both
techniques. Accordingly, Rj

(
td
lag

)
is reformulated as a number of NL 2D images, each

with entries x(t) ∈ RNi× Nw
Ni , and are subsequently used to train a M + 1 set of parallelly

connected DL models (of which M are regression models used for inundation depth
estimation and a single classification model utilized for flood extent prediction). Such
reformulation implies that the DL models are used to estimate the flood extent and the
spatial distribution of inundation depth at a specified time t due to a rainfall sequence
within the time interval

[
min

{
L
(
di, Rj

)}
, max

{
L
(
di, Rj

)}]
. In addition, estimating the

flood extent is conceptualized as a classification problem, where locations are labelled as
flooded/unflooded. Each of the DL models within this module consists of a number of CBs
connected in series, followed by a LSTM network with Nh hidden unites. As the typical
output from a CB is a 2D image, a flatten layer is added between the last CB and the LSTM
network to collapse the spatial dimension of such images (i.e., converting 2D datasets into
vectors). Finally, a fully connected network is used to map the output from the LSTM
network into the output of interest (i.e., inundation depth or flooding status). Figure 5
shows a schematic of the DL module of the FPM. It should be noted that model parameters
of such coupled CNN-LSTM architecture include values within each convolution kernel,
weights and biases associated with inputs of each cell within the LSTM block, and neuron’s
weights and biases in the fully connected network. Such parameters are typically obtained
following a feedforward backpropagation optimization procedure (e.g., stochastic gradient
descent [75] or adaptive moment estimation [76] approaches).
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2.3. Averaging and Testing Module

The development of data-driven models, particularly those based on DL, necessitates
using a massive number of input-output pairs to uncover complex relationships [77,78].
There is also a consensus that the model accuracy can be boosted significantly through
increasing the size of the training dataset [79]. However, obtaining a large amount of data is
challenging as only finite resources typically exist, and therefore the model parameters may
not be optimized globally [80]. Several deterministic (e.g., simple model averaging, Granger–
Ramanathan averaging, and artificial neural network) and probabilistic (i.e., Bayesian model
averaging) multi-model ensemble approaches have therefore been suggested to combine
forecasts from different models into more reliable predictions [81–83]. Of such approaches,
the performance of the Bayesian model averaging (BMA) has been employed within different
fields of the earth and planetary science including climatology [84–86], hydrology [87–89],
and hydrogeology [90–92]. Therefore, the first step in this module of the FPM is to employ
the BMA technique to combine the M spatiotemporal flood inundation predictions obtained
from the DL module into a single estimate at each time t.

The application of the BMA relies on assigning a weight (Wm) to each candidate model
m based on the corresponding contribution to the ensemble posterior distribution [93]. A
normality assumption is typically employed, where estimates from each model m should
follow a Gaussian distribution. Such assumption is most often violated, and thus model
estimates should be transformed into Gaussian latent variables [83,94]. An expectation-
maximization (EM) algorithm is subsequently applied with the objective of maximizing
the following likelihood function:

θ(Wm, σm) = log

[
M

∑
m=1

Wm × g
(

y, y
∣∣∣m, σ2

m

)]
(1)

where θ is the likelihood function with parameters Wm and σm, y|m is the estimates from
model m after mapping into Gaussian space, and g

(
y, y

∣∣m, σ2
m
)

is the normal probability
density of y using a mean value of y|m and a standard deviation of σm. In the context of
this study, the BMA is applied to the M regression DL models only in order to produce
highly reliable inundation depth maps at time t. Inundation depth estimates from the
M regression models, d̂m

i (t), are therefore combined into dBMA
i (t) using the Wm values

obtained through the application of the EM algorithm to Equation (1), as follows:

dBMA
i (t) =

M

∑
m=1

Wm × d̂m
i (t) (2)
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The last step of this module is to test the performance of the regression and clas-
sification DL models using an independent set of rainfall sequences (i.e., different than
those used for model training) such that their generalizability can be supported. The
Nash-Sutcliffe efficiency (NSE) coefficient [95] is thus used to evaluate the performance
of the BMA-based DL model, whereas the precision, recall, and F-score are used to assess
that of the classification model [58]. The NSE coefficient is a model performance criterion
that is typically less than or equal to 1.0 with values larger than 0.8 reflect higher model
predictability and smaller prediction errors [96–99], and is quantified as:

NSE(t) = 1− ∑Ni
i=1

[
dBMA

i (t)− di(t)
]2

∑Ni
i=1

[
di(t)− di(t)

]2 (3)

where di(t) is the mean inundation depth across all Ni locations at time t. On the other hand,
for classification models, the precision is defined as the fraction of accurately classified
instances among the total estimates of a specific class (i.e., flooded/unflooded) [58]. The
recall, in contrast, is the fraction of accurately classified instances among the total observa-
tions of a specific class. The precision and recall thus reflect the ability of a classification
model to accurately predict the different classes, albeit from different perspectives [58].
Therefore, there is a consensus to combine both metrics harmonically into a F-score, where
higher values indicate the significant predictability of the classification model (i.e., the
model’s ability to estimate the flood extent for a sequence of rainfall events, in the context
of the present study). It should be reminded that a single prediction of the classification and
BMA-based DL models indicates the flood extent and the spatial distribution of inundation
depth, respectively, at a specific instance of time t.

2.4. Prediction Module

The last module of the FPM provides hydrologists and decisionmakers with the ability
to investigate the system response under expected (i.e., climate change projections) and
hypothesized (i.e., what-if) flood scenarios. The results of this module’s analyses are
flood extent, inundation depth, vulnerability, and risk maps. Such maps can guide future
development and urban expansion plans, as well as flood mitigation and climate adaptation
strategies. This can ultimately contribute to enhancing community resilience under extreme
weather events, and specifically floods.

3. Study Area and Data Description

Calgary is among the largest three cities in Canada, with a population size and annual
population increase of approximately 1.37 million and 0.66%, respectively (https://www.
alberta.ca/ (accessed on 11 October 2022)). The City of Calgary locates within the Bow and
Elbow catchment in the southwestern part of the province of Alberta, and is bounded by
the Rocky Mountain Foothills to the west and the Canadian Prairies to the east (Figure 6).
Both Bow and Elbow rivers enter the city from its western boundary and merge at the
downtown area. Calgary has an average high temperature of 17 ◦C in summer and average
low temperature of −10 ◦C in winter, and is known for its seasonal flooding conditions
from May to September with an average peak precipitation of approximately 100 mm/day.
Although a large body of Calgary’s economy (i.e., cooperates and governmental agencies)
locates within the flood vulnerably downtown area, there is no permanent mitigation plans.
As such, the city has experienced a devastating flood event in 2013, which resulted in
monetary losses of approximately 5 billion dollars and caused around 100,000 of people
to flee their homes. A flood risk prediction tool is therefore key for the City of Calgary to
estimate, be prepared to, and minimize expected flood-induced damages, and subsequently
boosting the city resilience under future flood events.

As illustrated before in Figure 6, the City of Calgary is exposed to both the Bow and
Elbow catchments that have a collective area of about 11,000 km2. Bow River contributes a
higher flow compared to that of Elbow River as it has larger tributaries that covey more

https://www.alberta.ca/
https://www.alberta.ca/
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surface runoff volume. Two flow gauges, 05BH005 and 05BJ004, locate at the city entrance
on Bow and Elbow Rivers, respectively, as shown in Figure 6a. Such gauges provide flow
measurements between March and October only when the river is not frozen. Flow records
from 2010 to 2015 and from 2018 to 2020 at 05BH005 and 05BJ004 are obtained from the City
of Calgary’s Open Data Portal (https://data.calgary.ca/ (accessed on 25 April 2022)). It is
also noteworthy that flow records in 2016 and 2017 are not available at 05BH005 and 05BJ004
due to gauge maintenance. Available flow records are employed within the calibrated
HEC-RAS model developed by Ghaith et al. [24] for the same study area to estimate
actual flood extent and inundation depth maps during the aforementioned time intervals
(referred to as observations hereafter). In contrast to the 1D/2D modelling approach that
rely on representing the main rivers as 1D channels divided into multiple reaches with
cross sections defined at different locations over the reaches, the 2D/3D hydraulic model
developed by Ghaith et al. [24] adopts a 2D grid with 250 m square cells to overlay the
study area (similar to that shown in Figure 6b). Such grid was subsequently partitioned
into two regions, with the corresponding Manning’s roughness coefficients being calibrated
based on the inundation depth measured at stations 05BM015, 05BJ001, and 05BH004
(Figure 6a) in 2013 as well as the maximum flood extent. Upstream boundary conditions
were represented by flow measurements at stations 05BH001, 05BJ004, and 05BK001,
whereas a normal depth based on the ground slope was assumed as the downstream
boundary condition at station 05BM002 (Figure 6a). While HEC-RAS models do not
intrinsically consider the interactions between fluvial and pluvial flood conditions as well
as the capacity and operability of man-made flood control measures (e.g., basement spaces,
drainage systems, flood protection structures), model calibration based on locations within
both the river and overland flow areas enables capturing such interactions. Thus, fluvial
flooding conditions are only assumed in this demonstration as all stations used by Ghaith
et al. [24] for model calibration (i.e., 05BM015, 05BJ001, and 05BH004) locate within the
rivers as shown in Figure 6a. It should be noted that actual flood extent and depths can
be alternatively acquired through either spatially interpolating observations from a dense
flood monitoring network or processing satellite images for the study area over time.
However, such approaches are not applied in this FPM demonstration study due to data
limitations. As the application of the FPM requires rainfall records and corresponding flood
extent and inundation depths, four weather stations (Banff, Bow Valley, and Kananaskis
stations on Bow River, and Elbow Ranger Station on Elbow River) are selected as shown
in Figure 6a. These stations contain daily rainfall records which are acquired from the
open portal of the province of Alberta (https://www.alberta.ca/ (accessed on 25 April
2022)). A study area is selected within the City of Calgary to demonstrate the utility of
the FPM, and is subsequently divided into a mesh of 500 m × 500 m grid cells. Rainfall
records at the four weather stations and corresponding flood hazard (i.e., extent and depth)
maps over the selected study area are divided into training (from 2010 to 2015) and testing
(from 2018 to 2020) subsets. Rainfall-flood characteristics pairs in the training interval were
used within the first two modules of the FPM for input-output preparation and DL model
development, whereas those in the testing interval were used for model testing within the
third module. It should be highlighted that while a smaller cell size (i.e., 250 m × 250 m)
was used within the hydraulic model developed by Ghaith et al. [24], larger grid cells are
used when the FPM is applied for demonstration purposes only. It should be also noted that
finer grids can be utilized to capture the flood characteristics at higher spatial resolutions
(e.g., at the building scale); however, this could be associated with exorbitant computational
costs. Thus, when the FPM is applied based on outputs from a hydrodynamic model, a
sensitivity analysis should be carried out during the model development stage to evaluate
the impact of cell size on the stability of numerical simulations as well as its suitability
for flood resilience assessment and mapping purposes. Alternatively, when the FPM is
applied using ground-truth observations from a flood monitoring network with sufficient
control locations, spatial interpolation techniques can be used to calculate corresponding
observations at the required resolution. It should be also noted that the Bow and Elbow

https://data.calgary.ca/
https://www.alberta.ca/
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rivers are distinct hydraulic systems that are supplied by different tributaries. However,
the two rivers are joined near the City of Calgary’s downtown, forming a single flow route
beyond their confluence. As a result, rainfall recorded at weather stations on the Bow river’s
tributaries (i.e., Banff, Bow Valley, and Kananaskis) do not contribute to the discharge in
the Elbow River at locations upstream the confluence of the two rivers. Similarly, weather
stations on the Elbow river’s tributaries (i.e., Elbow Ranger Station) are not hydraulically
connected to locations on the Bow River upstream the confluence of the two rivers.
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4. Results and Discussion
4.1. Synchronization Analysis Results

Figure 7 shows the results of the synchronization module in terms of the coincidence
ratio ρ[di,Rj] and the optimal time lag L[di,Rj] using the rainfall records from the weather
stations shown in Figure 6a and inundation depth values observed at the center of grid cells
shown in Figure 6b between 2010 and 2015. The high ρ[di,Rj] values at the majority of cells,
as shown in Figure 7a–d, highlight the synchronization between the rainfall records and
inundation depth at the different grid cells at the corresponding optimal lags (Figure 7e–h).
Even though some of the employed weather stations are not connected hydraulically to
grid cells within different parts of the system as described earlier, the synchronization
analysis results presented in Figure 7 support that respective rainfall observations and
inundation depth estimates can still be related mathematically rather than physically. The
L[di,Rj] values range between 3 to 16 days and are consistently smaller within the Bow
River compared to those within the Elbow River, highlighting the higher water velocity in
the former. In addition, the nearly constant L[di,Rj] values within both river basins suggest
the lower routing effect and the consistent strength of propagating flood waves in both
basins. These results support the utility of the synchronization analysis module of the FPM
as a stand-alone flood warning system that can be used to estimate the lead time between
peak rainfall occurrence and flood realization.

4.2. Deep Learning Model Development and Performance Evaluation

The optimal time lags (i.e., L[di,Rj]) shown in Figure 7 are subsequently employed for
the preparation of the DL model inputs and outputs in the training and testing intervals as
described in the DL module section (i.e., rainfall events in days t − 16 through t − 3 are
used to estimate flood characteristics in day t). Rainfall records at the Banff, Bow Valley,
Elbow Ranger, and Kananaskis stations between 2010 and 2015 (1362 instances) were used
for model training, whereas corresponding records between 2018 and 2020 (681 instances)
were used for model testing. Such records were reformulated as described in the Materials
and Methods Section and classification- and BMA-based DL models are subsequently
developed. Both models could efficiently replicate the flood extent (Table 1) and inundation
depth (Figure 8) observations at most of the time instances in both the training and testing
intervals. For the classification model, the overall precision, recall, and F-score were higher
than 95% during approximately 99% and 96% of the time instances in the training and
testing intervals, respectively. Grid cells overlaying the river (shown in Figure 6b) were
falsely classified as flooded/unflooded less than 6% and 10% during the training and testing
intervals, respectively, whereas those within overland flow areas were falsely classified
around 9% and 5% within the training and testing intervals, respectively. In addition,
F-score was consistently higher for locations within the river boundaries during both the
training and testing intervals as shown in Table 1. This highlights the ability of the FPM to
accurately allocate flooded and unflooded cells, and therefore inferring the flood extent. For
the BMA-based model, 240 candidate DL models were trained and subsequently weighted
using the BMA technique as described earlier. All of the candidate models efficiently
reproduced the flood depth observations with average NSE values ranging between 0.84
and 0.97 and between 0.61 and 0.88 for the training and testing intervals, respectively. Such
average NSE values were calculated based on all grid cells and all time instances within
the training and testing intervals. More specifically, the DL models replicated the flood
depth estimates across all grid cells with a NSE value that is larger than 0.8 for more than
98% of the time instances within the training interval. Within the testing interval and based
on all of the 240 DL models, the NSE values were larger than 0.8 for approximately 74%
to 92% of the time instances. On the other hand, within the ensemble BMA model, only
25% of the candidate DL models (i.e., 60 models) have relatively higher BMA weights
that range between 0.0041 and 0.15. In addition, the NSE values were higher than 0.8 for
approximately 99% and 92% of the time instances in the training and testing intervals,
respectively, with most of the errors are less than 1.0 m (approximately 99% of the training
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errors and 94% of the testing errors are within ±0.5 m) as shown in Figure 9. For grid
cells overlaying the river, the 95th percentile of depth prediction errors was 0.07 m and
0.61 m for the training and testing intervals, respectively. The same measure was 0.05 m
and 0.41 m in overland flow areas during the training and testing intervals, respectively.
Such results support the capability of the FPM to accurately predict the spatial distribution
of inundation depth due to fluvial floods at different instances of time within both the
training and testing intervals. It should be emphasized that the use of the FPM to predict
the flood extent and inundation depth over a single year is 200 times faster than using a
corresponding HEC-RAS model (i.e., computational time of using the FPM is 0.5% less that
of using HEC-RAS).
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Table 1. Ranges of the precision, recall and F-score for the training and testing intervals for the overall
study area, grid cells overlaying the river, and overland flow areas.

Time Interval Precision Recall F-Score

Overall
Training [0.94–1.0] [0.90–1.0] [0.92–1.0]
Testing [0.91–1.0] [0.94–1.0] [0.93–1.0]

River
Training [0.86–1.0] [0.92–1.0] [0.91–1.0]
Testing [0.92–1.0] [0.85–1.0] [0.90–1.0]

Overland flow areas
Training [0.90–1.0] [0.79–1.0] [0.86–1.0]
Testing [0.80–1.0] [0.87–1.0] [0.88–1.0]
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4.3. Example of Model Predictions

To further support the utility of using the FPM for flood hazard prediction in the
City of Calgary, Figures 10 and 11 show, respectively, the flood extent and inundation
depth (and associated prediction errors) on 3 July 2020 (i.e., within the testing interval).
The classification-based DL model efficiently reproduced the actual flood extent with F-
score of 95.2%, reflecting a misclassification error of less than 5%. As shown in Figure 10,
misclassified cells are within the overland flow areas where flooding occurs less frequently
(i.e., lower water depths are recorded at such locations as shown in Figure 11a). For the
inundation depth, the BMA-based DL model replicated the corresponding observations
with a NSE value of 0.9 and a maximum error of less than 0.8 m. Small prediction errors
are observed in both the Bow and Elbow rivers upstream their confluence (within both
the river boundaries and overland flow areas), and are associated with shallower water
depths. In contrast, large errors are encountered within the river boundaries downstream
the confluence of the two rivers where water depths are large. It should be also highlighted
that errors in inundation depth predictions shown in Figures 9 and 11 are estimated as the
difference between dBMA

i and the HECRAS-predicted depths at the same instance of time
t. Therefore, positive- and negative error values indicate that the FPM overestimates and
underestimates the inundation depth, respectively.
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5. Insights for City Digital Twin Development and Climate Resilience Planning

The FPM developed in this study represents a computationally efficient and accurate
flood hazard prediction tool that can be easily integrated with models simulating other
physical phenomena in a CDT to provide early estimation of the extreme weather impacts
on buildings and infrastructures. For example, as shown in Figure 12a, the FPM can provide
the CDT (fed by rainfall sensor data and containing 3D building and infrastructure informa-
tion) with the inundation maps, enabling the visual evaluation of fluvial flood impacts on
existing as well as planned city physical systems. Flood impacts can be also evaluated for
individual elements as shown in Figure 12b,c, given that the grid employed during the FPM
application is properly sized for flood hazard mapping and climate resilience planning.
Additional information (e.g., name, height, water depth at a specific time, and flood depth
timeseries) can be accordingly obtained and investigated. A CDT can also be immediately
provided with flood risk maps estimated using the FPM as well as the expected down time
and damage cost due to a design or hypothesized flood event for resilience quantification
purposes. It should be noted that while the applicability of the FPM may be restricted to
the range of rainfall and inundation depths used for model training, future developments
causing a drastic change in land use, infrastructures, man-made flood control structures,
and land cover can be accommodated within the FPM through a retraining process. This
is nonetheless considerably faster and more reliable than developing new hydrologic and
hydraulic models that are typically calibrated separately. However, it should be empha-
sized that while physics-based hydrologic and hydraulic models can be used within a CDT,
the use of the FPM is proposed in this study to accelerate the computational procedures
(from hours/days when using the hydrologic and hydraulic models to seconds/minutes
when using the FPM). Decision- and policymakers can thus promptly devise action plans,
mitigation and adaptation strategies, and resilience-enhancement methodologies to combat
the flood impacts and other ongoing and expected climate change consequences.

Water 2022, 14, x FOR PEER REVIEW 17 of 22 
 

 

evaluated for individual elements as shown in Figure 12b,c, given that the grid employed 
during the FPM application is properly sized for flood hazard mapping and climate resil-
ience planning. Additional information (e.g., name, height, water depth at a specific time, 
and flood depth timeseries) can be accordingly obtained and investigated. A CDT can also 
be immediately provided with flood risk maps estimated using the FPM as well as the 
expected down time and damage cost due to a design or hypothesized flood event for 
resilience quantification purposes. It should be noted that while the applicability of the 
FPM may be restricted to the range of rainfall and inundation depths used for model train-
ing, future developments causing a drastic change in land use, infrastructures, man-made 
flood control structures, and land cover can be accommodated within the FPM through a 
retraining process. This is nonetheless considerably faster and more reliable than devel-
oping new hydrologic and hydraulic models that are typically calibrated separately. How-
ever, it should be emphasized that while physics-based hydrologic and hydraulic models 
can be used within a CDT, the use of the FPM is proposed in this study to accelerate the 
computational procedures (from hours/days when using the hydrologic and hydraulic 
models to seconds/minutes when using the FPM). Decision- and policymakers can thus 
promptly devise action plans, mitigation and adaptation strategies, and resilience-en-
hancement methodologies to combat the flood impacts and other ongoing and expected 
climate change consequences. 

 
Figure 12. City Digital Twin simulation results: (a) The City of Calgary downtown area during 3 
July 2020 flood event; (b) Sheration Suites Calagry Eau Claire building information; (c) historical 
and future prediction water depth timeseries at Sheration Suites Calagry Eau Claire building. 

6. Conclusions 
In this study, a rapid data-driven early flood prediction methodology (FFM) is de-

veloped to replace the computationally expensive hydrological-hydraulic modelling pro-
cesses typically used for flood hazard quantification. The FPM encompasses synchroniza-
tion, deep learning (DL), averaging and testing, and prediction modules. The four mod-
ules are structured to facilitate the association between highly interdependent input-out-
put pairs and boosting the prediction accuracy without the burden of the underlying com-
plex physical processes. In the first module, the stochastic event synchronization approach 
is applied to evaluate the optimal time lag between peak rainfall and peak inundation 
depth events (reflecting fluvial, pluvial, or combined flooding conditions), and subse-
quently identify associated input-output pairs of rainfall sequences and flood 

Figure 12. City Digital Twin simulation results: (a) The City of Calgary downtown area during 3
July 2020 flood event; (b) Sheration Suites Calagry Eau Claire building information; (c) historical and
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6. Conclusions

In this study, a rapid data-driven early flood prediction methodology (FFM) is devel-
oped to replace the computationally expensive hydrological-hydraulic modelling processes
typically used for flood hazard quantification. The FPM encompasses synchronization,
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deep learning (DL), averaging and testing, and prediction modules. The four modules
are structured to facilitate the association between highly interdependent input-output
pairs and boosting the prediction accuracy without the burden of the underlying complex
physical processes. In the first module, the stochastic event synchronization approach is
applied to evaluate the optimal time lag between peak rainfall and peak inundation depth
events (reflecting fluvial, pluvial, or combined flooding conditions), and subsequently
identify associated input-output pairs of rainfall sequences and flood characteristic (i.e.,
extent and depth). In the second module, a convolutional neural network (CNN) and
long-short-term memory (LSTM) network are integrated in a feed-forward DL model to ex-
plore the complex, nonlinear relationship between the rainfall sequence and corresponding
flood extent and inundation depth maps. As DL models may experience the phenomenon
of overfitting and may not converge to a global optimal solution when the number of
training instances is significantly small, the third module in the FPM consists of two parts:
(1) applying a Bayesian model averaging (BMA) approach to combine estimates from
different CNN-LSTM models such that the prediction errors are reduced and uncertainties
in the model parameters are considered; and, (2) testing the ability of the BMA-based DL
model to predict new output sets. The last module in the FPM aims at using the developed
model to estimate flood hazard for an expected (i.e., climate change projection) or synthetic
(i.e., what-if) scenario. To demonstrate its utility, the FPM was employed to simulate the
rainfall-flooding process in the City of Calgary, Canada, considering only fluvial flooding
conditions. In this respect, DL models were trained within the FPM using rainfall and
inundation depth records from 2010 to 2015. After applying the BMA technique, the ability
of the average model to predict the flood extent and inundation depth maps over 2018
to 2020 was evaluated. The FPM efficiently reproduced the flood hazard characteristics
(with an efficiency of more than 95% for flood extent and more than 80% for inundation
depth) estimated using a previously calibrated hydraulic (i.e., HEC-RAS) model for both
the training and testing intervals. In addition, the application of the FPM requires less than
0.5% of the computation time required by the corresponding HEC-RAS model. The FPM is
thus computationally superior, accurate, and ready-to-use tool—facilitating its integration
as the computation core of a data-driven city digital twin (CDT). Such CDT can provide
current and future insights for hydrologists, urban planners, decision- and policymakers,
and land developers such that reliable early warning, preparedness, mitigation, and climate
resilience strategies and plans can be promptly devised and tested.
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