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Abstract: Water quality monitoring plays a significant part in the transition towards intelligent and
smart agriculture and provides an easy transition to automated monitoring of crucial components
of human daily needs as new technologies are continuously developed and adopted in agricultural
and human daily life (water). For the monitoring and management of water quality, this effort,
however, requires reliable models with accurate and thorough datasets. Analyzing water quality
monitoring models by utilizing sensors that gather water properties during live experiments is
possible due to the necessity for precision in modeling. To convey numerous conclusions regarding
the concerns, issues, difficulties, and research gaps that have existed throughout the past five years
(2018-2022), this review article thoroughly examines the water quality literature. To find trustworthy
peer-reviewed publications, several digital databases were searched and examined, including IEEE
Xplore®, ScienceDirect, Scopus, and Web of Science. Only 50 articles out of the 946 papers obtained,
were used in the study of the water quality monitoring research area. There are more rules for article
inclusion in the second stage of the filtration process. Utilizing a real-time data acquisition system,
the criteria for inclusion for the second phase of filtration looked at the implementation of water
quality monitoring and characterization procedures. Reviews and experimental studies comprised
most of the articles, which were divided into three categories. To organize the literature into articles
with similar types of experimental conditions, a taxonomy of the three literature was created. Topics
for recommendations are also provided to facilitate and speed up the pace of advancement in this
field of study. By conducting a thorough analysis of the earlier suggested methodologies, research
gaps are made clear. The investigation largely pointed out the problems in the accuracy of the models,
the development of data-gathering systems, and the types of data used in the proposed frameworks.
Finally, by examining critical topics required for the development of this research area, research
directions toward smart water quality are presented.
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1. Introduction

Water is significant to all forms of life [1]. The implementation of urbanization and
industrialization plan has caused serious public concern on the growth of pollutants in
water resources [2,3]. Dumping solid wastes and littering by humans in rivers, lakes, and
oceans, air pollution equally contributes to the contamination of water bodies and affects
the food chain adversely [4]. In water distribution systems through pipes, water could trap
unwanted substances like rust and metals from the wall of old distribution pipes, silt and
mud from damaged pipes, and sediments during the pipe repairing process [5]. Therefore,
innovative means of monitoring and mitigating water pollution are required [6]. According
to the United States Geological Survey, water quality is “a measure of the acceptability
of water for a particular purpose based on specified physical, chemical, and biological
parameters” (USGS). As a result, it is a measurement of the state of the water for human
needs or purposes or even the needs of different kinds of land or aquatic animals [7,8].

In traditional water quality monitoring methods [9]; the farmer or healthy society
responsible for water quality will visit the fond or the specific areas to monitor and control
the water quality manually [10]. They take the water sample to the lab to know the values
of the water quality parameters and then employ appropriate controlling measures [11].
This entire process is tiresome, costly lengthy, and less efficient due to the many processes
involved in identifying the pollutants, pollution level, and the source of the pollutants [12].
The advent of the internet of things and wireless sensor networks that emerged simultane-
ously with the development of data acquisition has been utilizing the best part in water and
air quality monitoring systems [4]. The current trends in water quality monitoring systems
are focused on continuous sensing, multiple sensors, automated control, and wireless data
acquisition mechanism [5]. In addition, artificial intelligence, technologies like machine
learning [13], deep learning [14], and fuzzy logic [15], integrated with the IoT are emerging
technologies which is recognized as efficient ways to monitor water quality [16].

Although the term “Internet of Things” (IoT) is widely used in many different contexts,
we can define it as a global network of uniquely addressable networked items that are
based on established communication protocols [17]. The concept of IoT is helpful in a
variety of application scenarios, including healthcare and wellness, home and building
automation, increased energy efficiency [18], industrial automation, smart metering and
smart grid infrastructures, asset management, and logistics, vehicular automation and
smart transport, precision agriculture, smart shopping, aquaculture [19], and water quality
assessment [20]. Owing to the advancement in the Internet of Things [21], many modern
technologies are now utilising IoT [22] as a platform for monitoring and evaluating water
quality [23]. Conclusively, with the help of cutting-edge ICT technology; The water quality
has a significant impact on property values, and keeping the water quality in good condition
would please people as well as benefit the aquatic ecosystems [24,25].

Development of research on water quality management integrated with recent ad-
vances in IoT technology continuously is the pinnacle for this research as it aims to con-
duct a systematic literature review to examine the latest research trends on water quality
management. It provides valuable insights into technological environments and support
researchers by understanding the available options and gaps in this area of research. It
also aims to shed light on the researchers’ efforts in mapping the research landscape into a
coherent taxonomy and categorization, analyze this categorization providing discussion in-
cluding motivations, recommendations, issues, and challenges encountered by researchers
along with the proposed solutions for these challenges and issues.
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To expedite the advancement of this field of study, future research directions are of-
fered. As a result, the primary objectives of this study are to examine prior research,
summarize their conclusions on crucial criteria for determining water quality levels,
choose methods, estimate procedures, and offer taxonomic literature. This research fo-
cuses on experiments-based studies. The following inquiries are being addressed in this
review article:

This systematic Literature review is aimed to answer the current research questions:

1. What kinds of data acquisition system (DAS) are now employed to gather water
samples for testing and monitoring?

2. How are DAS evaluations in the literature made?

What kind of approach is employed to categorize water quality?

4. What are the characteristics used in earlier research studies to measure water quality?

W

The remaining of this paper is structured as follows: in Section 2, the systematic
literature review protocol is proposed, Section 3 illustrates the taxonomy and its analysis,
Section 4 bibliography, and lastly, Section 5 the conclusion.

2. Systematic Review Protocol

This study used a systematic literature review (SLR) to analyses the topic of water
quality monitoring and inspection in detail. An extensive, thorough review of the subjects
related to the research area is provided by this method. Strategies and guidelines in
the research plans are described along with key insights and points of understanding.
Additionally, SLR offers thorough interpretations and identifies problems and difficulties
that are widely discussed or given less consideration by researchers [26]. The SLR process
is an important one that is actively used in research methodologies. SLR should be used to
draw attention to research gaps and researcher effort [27,28].

2.1. Information Source

This study followed the literature review style recommended by the Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses. three digital databases, namely, Web of
Science (WoS), ScienceDirect (SD), and IEEE Xplore were selected. WoS is an extremely reliable
resource on social sciences, engineering, science, arts, humanities, and cross-disciplinary
studies. SD provides access to a highly reliable journal in the field of science and tech-
nology. IEEE Explore contains updated research papers in the field of computer science,
electronic engineering, and the applications of engineering and computer technology in
medical applications.

2.2. Search Strategy

The search was initiated in the advanced search boxes of the previously mentioned
scientific databases on. Boolean operators (i.e., AND and OR) were used for the search and
two groups of keywords (i.e., queries) were utilized in the process, as shown in Figure 1
as follows:

(“Water Quality” OR “Water Management”) AND (IoT OR “internet of things”)

The previous process was performed to retrieve the most related articles. In searching
and filtration, content based on various types of publication articles (reviews and research
articles) was chosen. This option was deemed efficient for covering the latest and most
relevant publications in the designated topic of this review.
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Query
("Water Quality" OR " Water Management ") AND (“Internet of Things” OR ToT)
Records were identified by searching three databases WOS, IEEE, SD
(Total = 946)

IEEEXplore |
610 125 139

Total: 874

Inclusion Criteria
e The Articles is are in English language,
® Science Direct papers are articles, reviews articles or short surveys.
s ILLE Xplore papers, journals, magazines or early access articles.
o The Web of science and Scopus articles are only article journals

o The main focus is water quality monitoring, water monitoring (-

b = === == e = =

cluding different sites like fish farm, pond, lakes), using different elec-|

Full Text Read ing
874

— 740
designing DAS for Monitoring  for water mouitoring and used); i }‘ 134

tronic  monitoring systems (including a result of implementation of

IoT technology  in water monitoring) on the basis of all of them like

either one or more of the following aspecis: i

f
i

1- Review or survey i
- [

2- Development of a framework or technigue for water quality moni-

toring adfor management, ;
3-  Empirical or experimental studies to study of water quality Re-'

guriless of Whether it is management or model analysis based o i

external data or data collected by authors themseloes,
Exclusion criteria

o The articles are non-English and a conference

» [he focus is on loT application in general sensing environment and,

Hardware connections rather tha water monitoring as a vodel i
i

i
[}
empirical and experimeital studies. 1 Y

food manufacturing, and hardware technology perspectives ratheri 4 and final included set

than mentioning the water quality monitoring and acquiring dataset, 50

to be modetled with comprehensive analysis.

o The articles that discussed the control, system faults identification,) Second full reading

Figure 1. Systematic review protocol.
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2.3. Study Selection

The three steps that in this research procedure were article gathering, title and abstract
scanning, and full-text reading. In the first step, using Endnote software, papers published
between 2018 and 2022 (5 years) were collected and duplicate articles from all the databases
were discarded, the articles with the initial number n = 946 were collected from the chosen
databases. The second step involved searching through the abstracts, titles, and keywords
of papers to find those that were relevant. By carefully examining the titles and abstracts of
each retrieved article, it was determined whether it satisfied the inclusion requirements. An
article was included in the final round when it matched. The final step involved reading
the entire manuscript. A total of 50 related papers were found. This final set of articles that
met the inclusion criteria defined in this study underwent full-text reading, and usable and
important information (i.e., data extraction) was extracted. 50 papers made up the final set
of articles that were reviewed. The systematic review protocol is depicted in Figure 1.

2.4. Inclusion and Exclusion Criteria
2.4.1. Inclusion Criteria

The articles are in English language and the papers are based in Science Direct which
are articles, reviews articles or short surveys. IEEEXplore papers, journals, magazines, or
early access articles. The Web of science articles are filtered to article journals merely. The
main focus in the inclusion criteria is water quality monitoring, data collection from water
sites (including different sites like fish farm, pond, lakes, etc.), using different electronic
monitoring systems (including a result of implementation of IoT technology in marine
monitoring topics) on the basis of all including all the components of DAS designing
and implementation for monitoring water quality) and used; in either one or more of the
following aspects:

1- Review or survey

2- Development of a framework or technique for water quality monitoring and/or
management,

3- Empirical or experimental studies to study of water quality regardless of Whether it is
management or model analysis based on external data or data collected by authors
themselves. However, the articles with no clear data collection procedure (no DAS)
and comprehensive analysis are neglected in the three proposed tables of analysis.

2.4.2. Exclusion Criteria

The articles are non-English written and are conference papers. Also, other articles
excluded due to its focus is on IoT application in general sensing environment and hard-
ware connections rather than water monitoring as a framework/model in empirical and
experimental studies. Other publications, particularly those that focused on hardware
control, system optimization, identifying system defects, and big data analysis without an
IoT hardware perspective, were excluded in favor of those that examined water quality
and collected datasets for detailed analysis.

3. Taxonomy

In this section, the taxonomy of the study is drawn and explained. Drawing the
taxonomy assists in understanding the various works accomplished in the respected area
from the authors’ points of view by grouping the related articles into sections and sub-
sections. Figure 2 demonstrates the taxonomy of the study. This taxonomy contains two
main categories; Al-based methods articles and non-Al-based methods articles.
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10T-based Water Quality Monitoring
Solutions

\
! l

Review Real-time solutions

‘ Non Al-based }»
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# Al-based Methods
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g Deep Learning Water Analytics <
] Fuzzy Logic System Design [
{ Machine Learning I ’ Energy Efficiency }«
| GiM ‘ | WiN ‘ ‘ Wii-Fi ‘

Figure 2. The taxonomy of the study.
3.1. Al-Based Methods

In this section, nine (n = 9) articles utilized different Al-based methods to develop a
real-time system to monitor and analyze water along with IoT solutions. The Al-based
methods section consists of three sub-categories; machine learning methods, fuzzy logic
methods, and deep learning methods.

3.1.1. Machine Learning Methods

This sub-category includes all the articles that utilized machine learning algorithms
to develop systems and methods to provide a real-time IoT-based system to monitor and
analyze water. Five (n = 5) articles are included in this sub-sub category. In the first article,
an unsupervised machine learning algorithm, namely, K means was utilized to monitor the
quality of water and detect any abnormality by processing instantly the data collected from
Turbidity, Conductivity, and pH sensors implemented in IoT devices [29]. In the second
article, an IoT-based fish farming and tracking control system equipped with a pH sensor,
water electrical conductivity sensor, water turbidity sensor, dissolved oxygen sensor, and
temperature sensor was developed [7]. In this system, a forecasting method was introduced
by using a local outlier factor algorithm to enable automatic water quality management
along with tracking the fish breeding and fish sale. The system utilized the Random Forest
algorithm, a supervised machine learning algorithm, and fuzzy dynamic to build and
merge a tree of decisions and, hence, to provide an accurate water quality result. In the
fourth article, a real-time water quality and groundwater level monitoring system of the
entire area is developed based on IoT devices that are equipped with pH, TDS, ultrasonic
water level, and salinity sensors [13]. A linear regression model was implemented to predict
the level of groundwater in the future based on the current consumption. In the last article,
an IoT-based water quality evaluation model for Black Tiger Prawn farming was developed
utilizing a decision tree algorithm to reach the optimum water quality [30].

3.1.2. Fuzzy Logic Methods

In this sub-category, all the articles that utilized fuzzy logic algorithms to develop
systems and methods to provide a real-time IoT-based system to monitor and analyze
water are included. One (n = 1) article is included in this sub-category. In the article, an
IoT-based water quality monitoring system was proposed using wireless sensor networks
equipped with water quality sensors, namely, turbidity, conductivity, temperature, pH, and
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oxidation-reduction potential sensors [31]. Fuzzy logic was implemented in the system to
predict at the local level the water contamination risk in the water distribution pipelines.

3.1.3. Deep Learning Methods

This sub-category includes all the articles that utilized deep learning algorithms to
develop systems and methods to provide a real-time IoT-based system to monitor and
analyze water. Three (n = 3) articles are included in this sub-category. In the first article, an
IoT-based smart water quality monitoring system was developed with the assessment of
big data and long short-term memory (LSTM) deep neural networks to utilize time-series
prediction in predicting the quality of drinking water [32]. In the second article, the LSTM
algorithm was utilized to monitor and predict the quality of water in aquaculture and
fisheries for an IoT-based real-time water quality system using salinity, dissolved oxygen,
temperature, and pH sensors [14]. In the third article, a water demand forecasting method
was developed using the LSTM algorithm for a real-time IoT-based water distribution
monitoring system, and based on the results, a water distribution network system was
designed for the development of a smart water distribution system [33].

3.2. Non-AI-Based Methods

In this section, all the IoT-based water monitoring designs, and solutions without
utilizing artificial intelligent methods are included. This section consists of forty (n = 40)
articles, and it includes four sub-sections; efficiency optimization, water analytics, system
design, and system development.

3.2.1. Energy Efficiency

This sub-section discusses the optimization methods or framework of energy efficiency
consumption using loT devices, and this sub-section includes two (1 = 2) articles. In the first
article, an approach was developed to the allocation of resources in an IoT sensor network
for optimal and sustainable use of resources to monitor the quality of water by developing
a successive wireless power sensor network system embedded with a scheduling algorithm
and operating as a non-orthogonal multiple access system [34]. In the other study, different
energy-efficient solutions are presented for wireless sensor systems to assist in reducing the
energy consumption and energy scarcity of real-time water quality monitoring systems [18].

3.2.2. Water Analytics

This sub-section discusses the articles that concentrate on water analytics with the use
of data analytics platforms or big data analytics. In this sub-section, three (1 = 3) articles
are included. In the first article, the data of IoT sensors were acquired in real-time for
water management in cities to monitor water quality and alert water leaks [35]. Due to
the huge data acquired at the same time, big data analytics is utilized with the use of the
Supervisory controller and data acquirement approach. In the second article, a cloud-based
analytical platform was developed for an IoT-based real-time water quality system using
big data analysis technology [36]. In this platform, the data for water quality monitoring are
collected, cleaned, and analyzed automatically. In the third article, water quality monitoring
was developed using the IoT-based ThingSpeak platform using MATLAB programming
software [37]. This platform provides analytic tools and visualization to test water samples
using turbidity and TDS sensors.

3.2.3. System Design

In this sub-section, articles that designed a system but were not implemented fully are
discussed. This sub-section includes seven (n = 7) articles. In the first article, a real-time
IoT-based smart river monitoring system was designed with the use of unmanned aerial
vehicles (UAVs) or drones and lower power wide area communication technology [16].
In the second article, a real-time IoT-based drinking water quality monitoring system
was designed using ZigBee and pH, turbidity, temperature, broken-down oxygen, and
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conductivity sensors [38]. Another study utilized ZigBee with Wasp mote to design a
real-time IoT-based continuous water monitoring and water quality controlling system
using pH, temperature, turbidity, dissolved oxygen, Calcium, and Chloride sensors [39]. In
the next study, an integration between amphibious UAV and hovercraft was designed and
a prototype was developed for an IoT-based monitor water quality system in a large area
utilizing pH, DO, electrical conductivity, and turbidity sensors [40]. In this study, real-time
IoT-based water quality monitoring was proposed for fish pond owners to maintain normal
water levels in fish tanks using pH and ultrasonic sensors [41]. In this study, a remote real-
time water and soil quality monitoring system was designed using pH, turbidity, electrical
conductivity, and moisture sensors [42]. In the last study, an IoT-based portable drinking
water quality monitoring system was proposed [43]. This prototype system consists of
various types of parameters to analyze the taste, odor, color, Nitrate, Floride, Lead, Arsenic,
and Chromium.

3.2.4. System Development

This sub-section discusses the articles that developed IoT-based water monitoring
systems. In this sub-section, twenty-eight (n = 28) are included and the articles are divided
into three categories based on the way of transferring the data, and these categories are
GSM, wireless sensor node (WSN), and Wi-Fi.

GSM: Three articles (n = 3) are included in this category. In the first article, a real-
time IoT-based water quality monitoring system was developed using temperature, pH,
turbidity, ultrasonic, and flow sensors [44]. In this system, Data are sent to a cloud via
GSM installed in the Arduino in a text-based notification. In the second article, integration
between a Supervisory Control and Data Acquisition system and the IoT was proposed
for real-time water quality monitoring to identify contaminated water and water leakage
in pipelines [45]. In this system, temperature, pH, flow, and color sensors were utilized
and data were sent using the GSM module. In a study, a real-time IoT-based portable
water quality monitoring and notification system were developed using pH, temperature,
conductivity, TDS, turbidity, dissolved oxygen, and salinity sensors [46]. In the system, the
data are transferred to a cloud server “thingspeak” via GSM.

WSN: In this category, thirteen (1 = 13) are included. In the literature, different studies
integrated WSN with IoT to transfer the collected data from pH, temperature, turbidity
and dissolved oxygen sensors to monitor the quality of water in real time [47-52]. In
some articles, IoT-based real-time water quality monitoring systems were designed and
developed using the Zigbee module to transmit the data via WSN [2,4,19,53-55]. Also,
blockchain technology was integrated with IoT, WSN, and GIS technologies for real-time
water pollution source tracing [56].

Wi-Fi: In this category, twelve (n = 12) are included. In the literature, various studies
developed water quality monitoring systems based on IoT attached with sensors such as
pH, temperature, and dissolved oxygen and send the readings of these data via Wi-Fi in
real-time to ensure the quality of water is maintained and early detect any changes in the
water [17,57-65]. A study has developed a real-time automated IoT-based system for water
quality monitoring using pH, temperature, ammonia, and nitrate level of water sensors,
and the data are transferred with the help of Wi-Fi for aquaponics farmers [66]. In another
study, a real-time web-based water turbidity monitoring system was developed based on
IoT to measure the water’s cloudiness in pipes and the data were transferred via WiFi [5].

3.3. Review and Survey Articles

This section presents the article(s) that was proposed to investigate the literature
on water quality monitoring. Authors in [18] reviewed the energy-efficient solutions for
WSN for water quality monitoring systems. Only one article is presented in this section,
indicating a research gap covering this important research area.



Water 2022, 14, 3621

90f29

4. Discussion

In this section, included articles are analyzed and discussed. In this section, challenges,
and recommendations are presented.

4.1. Challenges

In IoT-based water monitoring solutions, various challenges occur. This section dis-
cusses the main challenges found in IoT-based water monitoring solutions. Five main
challenges are discovered in the literature related to water pollution, water management,
farm management, traditional monitoring methods, limited water sources, and increasing
population. Figure 3 demonstrates the main challenges of the study.

Challenges of loT-based water monitoring systems

ITrad itional Water Monitoring
Methods

Limited Water Sources and
3 A Farms Management
Population Increasing

‘ Water Management ‘

’ Water Pollution }

Figure 3. Main challenges.
4.1.1. Water Pollution

Water pollution is one of the main challenges globally. It is one of the major threats
to sustainability. Currently, the water resources (i.e., rivers, lakes, seawater) are contami-
nated due to the rapid growth of human beings and the industrial companies that dump
their wastes in the water [4,13,29,34,45,48,49,51,55,64,65]. However, water pollution con-
tributes to various disasters despite the reduction of the available sources of drinking
water. Heavy metal contamination that resulted from the illegal discharge of wastewater
via irrigation channels is threatening agricultural production, public health, and the envi-
ronment severely [56]. For instance, the pollution of water leads to an imbalance of the
ecosystem and, hence, a threat to life [16]. Also, due to continuous water contamination,
the quality of water is reduced [16,17,46,50]. Further, cleaning up the pollution will cost
very high [16]. Moreover, the scarcity of the drinking water will result in the increase of
water tariffs cost [16]. Contaminated drinking water is the main medium of transmitting
serious diseases (e.g., diarrhea, typhoid, polio, cholera, and dysentery), which may cause
serious health issues [31,44,48,50]. Also, the quality of aquaculture farms’ production is
affected large scale by the different water pollutions such as leakages in the sea and coastal
discharges, and therefore, consumers’ health is jeopardized [67]. Further, consumption of
drinking water from water resources using complex buried pipe networks to commercial
and residential areas may put the quality of water at risk being contaminated [5].

4.1.2. Limited Water Sources and Increasing Population

With the restricted natural water assets, providing resources for drinking water is
getting challenging [17,38]. Over the earth, 71% is covered with water. However, only
2.5% of this water is freshwater [2]. In many regions of the world, water demand has
exceeded supply and more regions are expected to face the same soon [13]. Finding natural
drinking water resources is becoming harder over time due to the increasing population
of the world, which results in increased water consumption [13,39]. Infact, the major
sources of water are depleting rapidly [13]. Further, climate change and global warming
has impacted the water resources significantly[13,14,39,49]. Due to the effects of water
resources by climate changes, aquaculture and agricultural farmers suffered from economic
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losses due to the impacts of climate changes on production alongside with the costs of
recovering from the damage [14].

4.1.3. Water Management

Managing and distributing drinking water and water supplies properly in urban areas
is an extremely challenging task. The current distribution of water systems contribute
to reducing the quality of drinking water due to pipes’ erosion, pipes’ breakdown, and
interaction with pipe materials [33,49]. The procedure of distributing drinking water
and water supply in urban areas is causing water supply tainting; whether incidental or
intentional, which contributes to being a medium of transmitting microbes and bacteria
and may cause serious health problems [44]. Also, with this procedure, drinking water is
lavished in various ways such as wasteful use and poor water distribution [36]. Further,
poor water management makes it challenging to keep up a water consumption record [36].
Moreover, the current irrigation process causes a large amount of water to be wasted due to
the automated schedule of irrigation at a certain time, which is not considering the moisture
in the soil and irrespective of the weather condition [35].

4.1.4. Farms Management

Managing fish farms and aquaculture production is an extremely challenging task due
to the sensitivity and vulnerability of these creations to the quality of water. A few factors
in a controlled cultivation environment could affect the quality of aquaculture lives such as
human interventions, agricultural wastes, and pollution [53]. Poor management of farm
management may cause viral diseases in fish and lead to significant losses to aquaculture
and the death of fish [7,19,52,53,57]. In most aquaculture farms, agricultural managers have
no enough media and techniques to forecast environmental factors, which is making risk
management an impossible task [14]. Managing the quality of water in aquaculture farms
manually is a complex task due to the need for a systematic approach to be alleviated [52].

4.1.5. Traditional Monitoring Methods

The existing water monitoring systems and devices suffer from various shortages.
Current traditional systems are big and costly to keep up in monitoring [15]. Traditional
monitoring systems require a lot of human effort in water quality monitoring, which
consumes a lot of time and labor costs [17,37,40,50,57,65,66,68]. In the traditional water
quality prediction model, some factors cannot be considered such as biology, chemistry,
physics, hydraulics, and meteorology factors [32]. Some traditional monitoring systems lack
analysis and processing of the collected data [7]. Also, existing water quality monitoring
systems are dismissing data analysis and the water quality data resource attributes and
focus on water quality data monitoring [36]. Due to transmission failures and power
failures sometimes, some data loss and dirty data may occur, which affects the quality of
data monitoring and analysis [36,57].

The existing communication technologies (e.g., 3G, Bluetooth, WiFi, and Zigbee) suffer
from short communication ranges and high power consumption [16,18]. Transferring
the data between the sensors and core network using satellite-based communication is
considered slow and very costly [45]. Currently, water quality parameters are collected
using fixed location sensors, which reduces the accuracy of the measured data [16,45].
Usually, measuring the water quality is accomplished based on a single spot with no spatial
coverage [2,50]. Besides that, the manual lab-based water quality monitoring approach
suffers from low sampling frequency [2,47]. Some sensor nodes utilize radio frequency
identification (RFID), which makes it challenging to main and cannot be used in applications
with restricted access [47]. For the water distribution network, the wireless sensor networks
have a limited number of sampled locations at a certain time and the equipment operating
is costly [31]. The use of radio frequency energy harvesting in monitoring systems is
insufficient due to the nondeterministic and uncontrollable, which makes these systems
difficult to be reliable [34]. Employing the model of a simultaneous wireless information
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power transfer is practically costly and the interference may suffer from problems [34].
Water quality sensor nodes in water quality monitoring systems include various resource
constraints such as limited processing capabilities, limited energy, limited data storage
memory, lack of communication capabilities, and energy limitation [18]. With the lack of
real-time values, the accuracy of data is reduced due to the continuous change of water
parameters, and hence, farmers are unable to be warned of the changes in water parameters,
which makes them fail to make any preventive actions [30,50-53,65].

4.2. Recommendations

This section demonstrates the main recommendations of the previous studies to
improve the field of IoT-based water monitoring solutions. This section includes three
main categories as presented in Figure 4, namely, sensors-related, technology-related, and
factors related.

Recommendations for loT-based Water Monitoring

Related to Factors/

Related to Sensors Related to Technology Frameworks

Figure 4. Main recommendations.

4.2.1. Sensor Related

To solve difficulties in the primary sector of the economy, additional research using
cutting-edge remote sensing technologies and IoT-based solutions can be resorted [54].
Authors in [36] suggested that the water quality monitoring indicator database can be
enlarged in the following step by increasing the number of water quality monitoring sensors
to detect provide a comprehensive water quality indication. Authors in [44] discussed the
future aspect of their implementation for future models by using flow sensors that could
accurately measure up to 60 milliliters of water in place of the current model, which can
only measure up to 30 milliliters of water. Authors in [58] mentioned their future steps by
removing GSM hardware. Then authors can test to see if the system can receive emergency
warnings from a cloud server over the internet to a mobile phone. Authors in [56] discussed
that additional sensors established at appropriate upstream channels within the irrigation
unit should be included in future studies using their blockchain tracing process to address
any concerns caused by a lack of upstream water monitoring station data. Authors in [51]
recommended that more sensors should be used in the future to collect more data that can
be used for modeling.

4.2.2. Technology Related

In [6], the creation of intelligent water quality solutions utilizing cutting-edge technol-
ogy that provide real-time data access is essential for the management of water resources.
Designing structures that are adaptable, modular, scalable, and simple for the user to install
is essential. Better real-time monitoring tools that combine notifications and social media
alerts are likely to be the subject of future research. Additionally, it is advised to use a
mobile application to scan the water’s colorization and monitor red tides using image
processing [54]. Authors in [33] proposed a system that may be expanded in the future to
include the creation of a software agent-based model for underground pipe health moni-
toring and consumption monitoring utilizing intelligent agents that will alert the SCADA
engineer for prompt control action and supply restoration. This intelligent agent would in-
troduce automation of control during crucial periods as a safeguard. The authors proposed
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to concentrate on [57] evaluating and improving measuring procedures to increase the
lifespan of sensor probes. Authors in [13] suggested that a Machine Learning technique can
be expanded in the future to investigate the various physical characteristics of the water
and forecast the location of a source of water experiencing an abrupt abnormal change
in water quality, which can be useful in identifying and preventing contaminants from
seeping into or being deposited into a source of water. The authors in [16] proposed to
focus on a study in the future regarding the optimization of UAVs for sample WQ in rivers
based on flying limits, power consumption, load, and river size in the usage of UAVs with
LPWA communication technology. Miniature smart multi-parameter sensors for WQ will
elevate the interest of study due to the load which plays a significant role.

The usage of multi-criteria network-aware service composition algorithms and some
pertinent access control systems can be used in the interim to ensure access control and
boost service quality [36]. Additionally, utilizing deep learning, neural networks, and other
artificial intelligence technology can be tried to create a smart data analysis scheme to
evaluate and forecast water quality [36]. Authors in [60] discussed the implementation
of a prediction algorithm, that might be utilized to use the analytical data to predict the
sources of pollution in the water. More data should be gathered in the future to improve
the Al prediction model they have created [7]. Additionally, more detection tools like NO2
and heavy metals, which are the main contaminants that harm consumers and fish farms
should be included [7].

Additionally, authors in [18] anticipated that their research can improve the devel-
opment of wireless sensor network-based water quality monitoring within the context of
environmentally friendly network operations. Also, they stated that proper discovery and
exploitation of wireless energy transfer and optimization will enable sensors in a network
used to monitor water quality to remain operational for an extended period. Authors in [64]
elaborated that their research can be expanded to an automatic farm programmed in the
future using the big data collected from the sensors, and we will use artificial intelligence
to determine the best conditions for eels to grow. Additionally, it’s crucial to safeguard
wireless sensor data communication from interference [45].

4.2.3. Factors/Framework Related

Authors in [17] suggested that the analysis of additional characteristics such as elec-
trical conductivity, free residual chlorine, nitrates, and dissolved oxygen in the water is
also advised as part of their proposed system reliability check. Authors in [30] used an
IoT device and decision tree algorithm to construct a water quality evaluation system
specifically for the aquaculture of Penaeus monodon. However, the system can still be
improvised by including an evaluation of other aquaculture to provide more assistance to
fish farmers. The creation of a mobile application as the primary graphical user interface
for the user is also advised for future researchers to make the system more direct and
user-friendly than having users access it through a web browser.

Authors in [38] proposed that their designed system might be used to check the water
quality for an entire town or city, depending on where the water supply is coming from, as
well as for individual households. The appropriate period for cleaning the city water tank
can be determined using this framework. Sooner rather than later, a cross-city or cross-town
quality monitoring framework can be developed using a combination of different sensors.
The researcher in [54] suggests changing the method to track how many heavy metals are
added, removed, and reduced in the soil and water studies.

Authors in [63] proposed that future water quality estimate methods will take into
account on the factors such as conductivity, hardness, chloride, smelling salts, press, flu-
oride, and others. These factors are used to assess the water’s cleanliness for uses like
drinking water and daily needs. Authors in [53] clarified that their future work will focus
on the framework’s applicability to pond areas between 2 and 5 acres in size as well as
its deployment in the western Godavari region. Additionally, efforts are being made to
create new ergonomic and cost-effective designs with the assistance of the industry in
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preparation for the product’s commercialization for use by aquaculture farmers. Authors
in [31] discussed the concentration of model optimization by merging the various water
quality characteristics, to increase the model’s accuracy by using multi-dimensional input
datasets to forecast the target values.

5. Bibliography Analysis

In this section of the study, the researchers concentrated on compiling statistics for
previous studies regarding the author’s country, as shown in Figure 5, and it provides
statistical information about the years of publication for the selected articles as shown
in Figure 6.

Distribution by author country
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Thailand
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Spain

South Africa
Republic of Korea
Philipines
Malaysia
Korea

Italy
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Indonesia
India

China
Canada

0123 456 7 8 9 1011121314 15 16 17 18 19 20
Figure 5. Distribution by country of author.

Figure 5 shows the corresponding author’s country or the first author’s country if the
corresponding author was not clarified, for each study included in this review. There are
16 countries overall. Geographical distribution of the selected articles in terms of numbers
and percentages reveal that India, with 20 study cases, is the country that contributes to
the most, followed by China with five studies, Malaysia with four, Vietnam and Iraq with
three, Indonesia, the Philippines, South Africa, and the United Kingdom with two each,
Canada, Italy, Korea, the Republic of Korea, Spain, and Thailand with one study case each.

Distribution by year of publication

22018 = 2019 = 2020 = 2021

Figure 6. Distribution by year of publication.

Figure 6 illustrates the distribution of the selected articles over the selected period.
There is a total of 50 articles, the highest year of publication was the year of 2020 with
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20 articles, followed by the year of 2019 with 18 articles, then, the year of 2018 with
11 studies, and lastly the year of 2021 with only one article published in that year.

6. Future Research Directions
6.1. Technology

This section presents the analysis aspect of the Data Acquisition Systems (DAS) that
were used to monitor and collect data on water quality in real-time experiments. The three
columns in the fourth are used to measure the suitability of DAS, starting with identifying
the types of hardware components, i.e., electronic boards, sensors, communication medium,
and the technology of data transition to achieve IoT-based implementation. Accordingly,
several evaluation criteria are proposed to evaluate the DASs proposed in the literature
in terms of cost, complexity, and other criteria [69]. The Evaluation criteria are used
with subjective evaluation values to reflect the general aspect of DASs performance and
characteristics including physical and software computational based.

This section presents articles that used DAS to collect water quality data. Table 1
lists articles with corresponding evaluation values by the assessment criteria. Design
and implementation procedures are examined and reviewed subjectively to analyze the
cost-effectiveness of currently available DAS in the literature using the following criteria.
(1) Design and Programming: These procedures should be performed when sophisticated
devices are integrated into the DAS design. Notably, adding more electronic boards/sensors
to a DAS system requires more time to program/interface these devices, i.e., not plug and
play. (2) Operation and Maintenance: Routine procedures should be performed on a large
DAS to ensure that sophisticated sensors/board components are working properly; if they
fail, then replacing them is not economical. (3) Equipment Reliability: If the electronic
components of DAS are expensive/sophisticated, then the DAS is mostly reliable; otherwise,
using unreliable components is not cost-efficient, i.e., off-the-shelf components have low
reliability compared with sophisticated ones. (4) Implementation Cost: This criterion
refers to the cost of wiring/adjustment and modification performed on a site location to
house DAS components. These modifications increase implementation costs, and DAS
which requires a low level of maintenance on the location site must be designed. In the
end, cost-efficiency is evaluated subjectively depending on the DAS design layout and
provided features. (5) Total Equipment cost: This criterion indicates/describes the level of
cost-efficiency of the currently proposed/implemented DAS. For example, if DAS consists
of NB-IoT, Wi-Fi, and UAV with 15 or 20 sensors, then the system exhibits a very high cost.
All the assessment criteria are subjectively evaluated in five scales (very low, low, medium,
high, and very high). (6) DAS Size: This criterion describes the size of the architecture of the
proposed DAS in the literature. The assessment value considers the number of electronic
elements of DAS. (7) Power Consumption: This criterion estimates the power level required
by DAS to fully operate. (8) Latency: This criterion is the time between cause and effect,
i.e., the time that elapses when DAS starts measuring the environment until the outcome is
delivered to the user. (9) Information Size: This criterion represents the amount of raw data
that DAS can collect. (10) Information Diversity: This criterion represents the variety of
raw data that DAS can collect. (11) Computational Complexity: This criterion represents
the difficulty in processing the amount of collected raw data, i.e., the higher number of
boards and sensors can cause this criterion to go high. (12) DAS Complexity Level: This
criterion assesses the overall level of complication in the current proposed/implemented
DAS in the literature based on the preceding criteria. For example, if the DAS system
consists of an Intel board MCU (FPGA), hardware-based computational algorithm, a high
number of sensors, and more than one MCU, then the complexity level is very high. DAS
complexity increases as the number of components increases. The power consumption of
DAS increases following the sophistication of electronic devices and the medium of data
transmission. A LoRa technology consumes less power than Wi-Fi, NB-IoT, and ZigBee.
NB-IoT consumes very high power compared to Wi-Fi, ZigBee, and LoRa. However, the
bit rate of LoRa is limited compared to NB-IoT, ZigBee, and Wi-Fi technologies. Moreover,
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DAS size affects the power consumption level because increasing the number of layouts and
connection cables increases the power consumption level. The power Standalone criterion
represents DAS’s capability to be powered using solar panels or thermoelectricity sources.

DAS latency criterion represents the entire latency of the DAS system to acquire real-
time data from the field of experiment. DAS latency is also related to the technology of
data transmission from the experimental site, the number of sensors connected to the MCU
board, the number of MCU boards, and cloud-based or gateway-based IoT architecture.
Also, using different technologies in one architecture increases the DAS latency, i.e., if Zig-
Bee, NB-IoT, and UAV are in one IoT structure, hence the DAS poses a considerable amount
of latency. Hence, the complexity of DAS is related somehow to the DAS latency. Also, the
information size of collected raw data increases DAS complexity because additional time is
required to process the received amount of data. Information diversity also indicates that
DAS needs varied processing/analysis tools to produce raw data.

It can be seen from Table 1 that different electronic boards have been proposed in the
literature. The off-the-shelf components (Arduino, Raspberry Pi) were the most used ones
in experimental studies. A few other boards from Intel and other manufactured companies
are also used. However, these boards are required to be programmed before usage, not like
off-the-shelf components. Also, the technology most widely adopted in communication is
Wi-Fi, which connects the MCU board to the internet via a wireless connection. This, in
turn, needs to be supplied with a power resource and it’s a problem for remote locations.
LoRa and ZigBee communication technologies are also used with low power consumption.
However, Zigbee is used for short-range communication (10-100) m while LoRa is used for
WAN to cover (1-5) km in the city and 15 km in the open area. It can be pointed out from
this Table that developers did not use Nb-IoT technology in their implementation. This
raises a concern about its suitability for IoT applications as it might be related to power
consumption, cost, and DAS complexity since this technology requires special operation
and maintenance. Wi-Fi technology is also used in connecting the main controller board to
the internet gateway. However, this technology consumes a lot of power and only works
for a short range despite its availability and cost efficiency. Hence, this technology is not
suitable to be deployed in a long-range or wide area.

For the sensor part, the PH sensor is the most used in the literature, followed by
turbidity, conductivity, temperature, and O, sensors. The chemical characteristics sensors
are less used in real-time experiments like Nitrite, Fluoride, Chloride, and Sodium sensors.
Some IoT solutions proposed in the literature focus on constructing a cost-efficient archi-
tecture, neglecting the reliability and scalability of these architectures. Le., it’s not feasible
to connect 15 sensors to a single off-the-shelf MCU board since the data collected needs
larger memory to preprocess the collected fetched raw data. Moreover, providing power to
the off-the-shelf boards is challenging in its nature since these boards are limited in their
hardware and software capabilities. Moreover, no solution offered a data fusion technique
to provide a reliable dataset. The literature lacks solutions that provide algorithms that
preprocess collected raw data and use manual data cleaning and wrangling, which are
time-consuming when it comes to providing reliable and authenticated datasets since the
synchronization of these sensors is an issue.

The sensors’ types might be chosen according to the current sensors’ capability to
record and sense entities in real-time traffic conditions. The used sensors must assess
the quality of water (Ph, temp, Oxygen, etc.), and the status of the monitoring system
(active, idle, or sleepy) ensuring a reliable communication architecture. Such metrics might
offer a whole picture regarding the pattern of water quality and identifying the critical
water quality conditions. Moreover, an approach to selecting a combination of adequate
sensors was required to detect and record all features/factors. As a result, more research is
required to evaluate the efficiency of sensors in determining water quality. To determine
which equipment, whether it be a sensor or a DAS in various circumstances and at various
times, best captures water characteristics, a generic framework to define the procedure of
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selection and benchmarking is required. A trade-off between complexity, cost-efficiency,
and scalability criteria should be considered by the framework.

6.2. AI Models

It can be seen from Table 2 that different types of articles proposed in the literature
attempt to implement artificial intelligence in the design and process of water quality
monitoring. However, these attempts are limited to a total number of proposed models.
Different machine learning algorithms were adopted to predict the quality of water with
no clear or valid procedure to select the most suitable one.

Since the evaluation of missing data, specifically looking at its impact on the accuracy
of data labeling and classification, has not yet been conducted, the treatment technique
for missing data is not clear within the literature. There is only one article considered the
missing data effect on classification accuracy, others either removed the missing points
or did not mention the way of treatment in Table 2 which shows that authors could not
discuss the issue of unbalanced data, insufficient data, or data bias as they are well-known
issues for classification algorithms. Multi-class categorization is a problematic, widely used
approach. The issues with multi-class classifications that are most frequently mentioned are
class separability, class overlaps, and imbalances between and within classes. Multi-class
categorization might become severely complex as a result of nonlinear patterns that are not
visible in the dataset [70,71].

There is also disagreement about how many machine learning algorithms should be
used for water quality modeling. Table 2 shows that the majority of the writers either used
data collection systems (DAS), or specially created equipment to get their data, proving
that there is no freely available, easily usable data.

Data labeling is the process of giving each collected piece of information a name
that accurately describes its category. A data pre-processing method for identifying the
good quality of water is labeling. In the literature, there have been two basic approaches
suggested for labeling datasets. Specifically, manual testing. This method involves doing a
normal experiment to gather data on normal water quality patterns by employing manual
procedures for data labeling by applying thresholds and rules. The second approach is
automated data labeling which can be done using unsupervised machine learning.

Without human intervention, the data is automatically labeled in automated labeling;
however, the labeling process is carried out using rules and equations that have been
developed for other case scenarios in a separate field with a different objective. Also
possible are biases or errors in the expert labeling. However, there is no agreement on the
best method to use most effective method (expert labeling or questionnaire, automated,
unsupervised machine learning-based, etc.). The right way to label something is also a
topic of disagreement. The labeling method has not yet taken unsupervised learning into
account. To efficiently label data, it is advised to study the effectiveness of unsupervised
learning algorithms. K nearest neighbors is a popular machine learning strategy for this
work, although careful tuning is advised, especially when picking the K number.

Although deep learning approaches may need a large number of datasets, they are still
recommended. To evaluate whether they can improve recognition models, augmentation
pre-processes and other data maximization techniques can be looked at. In addition, more
research is needed to determine how imbalanced datasets affect the labeling process and
model accuracy. Future research is advised to address missing data handling in the pre-
processing stage. It is suggested that an investigation to be conducted on how missing data
affects the labeling process and classification accuracy. The optimum machine learning to
input the missing data should be chosen using a framework. Finding the sample size is
another aspect of future directions. It is necessary to go into further detail on the sample
sizes needed for real-time experimental experiments. For small-scale, financially-effective,
in-the-moment investigations, knowing the number of observations is a huge advantage.
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6.3. Geographical of Real-Time Experiments

It can be seen from Table 3 that the location of experiments is 3 river sites, 2 lake sites,
and other sites. 3 sites were used to conduct experiments for water quality monitoring
for fish farming. 2 other sites were used to monitor wastewater quality levels. Hence, it
can be pointed out that there is no agreement on the site location of the experiment. Each
experiment was customized to be fitted within the environment of sense. The result of
experimenting is reflecting the living conditions of living species according to the quality
level of water, i.e., experimenting with aqua water is different that river, lake, and farming
water. Also, the number of sites is different from one experiment to another. Hence, there
is no agreement on the number of sites and each DAS used to measure the water quality
was customized only to be employed within these sites. No general framework is provided
to compare DASs and no generalized design model or architecture that is flexible enough
to be deployed in any place. Even though the time of experiments was conducted in a
brief period, the experiments were deployed to provide a concept of implementation not
only for continuous monitoring which is in the span of 1 or 2 years of monitoring. As this
long period can test the real performance of DAS, and collect data in different weather
conditions, not just in normal conditions.

Hence, there is no generalized model that can always reflect the quality level of water,
in all locations.

6.4. Dataset Issues

The lack of the necessary acceptable experiential data for investigating the charac-
teristics of water quality, which forced researchers to create only experimental models,
was one of the unique difficulties they faced. As a result, the slow growth of this field of
research remains problematic. Insufficient style representations are produced by outdated
data and brief, incomplete periods. The accuracy of the adjustment procedure is impacted
by incomplete datasets. It is difficult to develop an exact model to evaluate water quality.
Unrecognized characteristics influence water quality. Real-time monitoring has several
flaws, and data on water quality aspects have not been sufficiently varied to accurately
reflect the pattern of quality water. Biased datasets may be produced when fields are
used in water quality investigations. Future studies on water quality monitoring might
consider developments in measurement technology and undertake tests in remote locations.
Additionally, smartphone sensor apps may offer important opportunities for determining
the quality of the water. Future research should also explore how missing data affects how
water quality monitoring and testing is categorized and recognized. To gain additional
knowledge about evaluating water quality, a full framework that conducts real-time tests
in various places, at various times of day, and in various weather situations is suggested.

7. Comparing This Work to Previous Work

This study presents a comprehensive review conducted on various but related research
topics concerning water quality monitoring. As far as we know, no survey articles or
reviews cover the model regarding water testing and monitoring from the perspective
of data sources or provide a thorough analysis related to data collection with the use
of electronic devices in real-time fields. The existing literature does not offer extensive
knowledge to evaluate the presently suggested/used classification/regression model’s
performance. In addition, the number of researchers exploring the classification model’s
functionality, cost efficiency, and complexity are lacking. Choosing the optimum cost-
effective/practical DAS was complicated because of the lack of clear criteria concerning
performance evaluation. Therefore, this work aims to analyze the literature associated with
water quality monitoring models, types of data, and systematically searched related articles.
Table 4 shows the differences between the presented study and previous ones.
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Table 1. Technology Analysis of Water Quality Monitoring.
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Table 2. Al Experimental Analysis.
. cp g Labeling Method Feature Extraction Data Source . . Number Metrics
Ref L yn?;hlge m RClaI?SIf;ca;fl:)(le/I(;;‘, (Manual Method (Manual, (Collected by Number of Features Data Size Dat?T]i);ra)hon RP re-I;:o;ss(s;?I\gn Used in
€a § Name egressio : Automatic) automated) Authors or Not e equireds Evaluation
[29] K means clustering auto NA NA NA NA NA NA NA
R e s pH, temperature, electrical
[7] LOF classﬁmahgn and auto Auto Authors conductivity, turbidity, and S (instantaneous) Instantaneous Y Mea_n and
-model tree regression . correlation, MAE
dissolved oxygen
. . L Accuracy, MSE,
[30] RF + Fuzzy Logic Regression Manual Manual Authors Turbidity, flow rate, and pH M NA NA RMSE
Temperature, pH, DO Y
[33] LSTM deep Regression Manual Auto Authors conductivity, Turbidity, B 1January 2016-30 linear imputation MSE
neural network June 2018 model (missing
CODMn, NH3-N,
data treatment)
Turbidity, Oxidation
[32] Fuzzy logic Classification Manual NA Authors TReductlon Potential, S instantaneous Instantaneous NA NA
emperature, pH, and
Electrical Conductivity.
. - Root mean
[14] LSTM deep Regression Manual Auto Other Authors salm1ty,}temperature, PH, and B NA Y (remove missing squared error
neural network dissolved oxygen value)
(RMSE)
[13] Linear Regression Regression Manual Manual Authors PH, conductivity, Salinity, S NA NA recharge rate and
Algorithm water level consumption rate.
. MAPE,
[34] LSTM deep Regression Auto Algorithm Other Authors 1-3 Training Hidden Layers B 1January 2010 till No ACC,
neural network 31 March 2018 MASE
. Decision Tree PR 02, pH, Temp, Ammonia Correlation, (R)
[31] Algorithm Classification Manual Manual Authors NHS3, Salinity S NA NA Mean, MAE
MAPE: Mean Absolute Perception Error, MASE: Mean Absolute Scaled Error.
Table 3. Location Analysis of Real-Time Experiments.
. . . . Experiment Condition Experiment Purpose (Online
Ref. Slt]“ea"ll"(}ép;a(ﬁ;v%rt,cs)ea, Nugr;lt:)eesr of Exl()le)r;m;r;t Bme (Normal, Hazardous Duration of Experiment (Min) Monitoring (Continuous Feed, Comments
! T v, N1g Weather) Off-Line Data Collection)
[16] River 5 sites day normal 10 min with Drones Data collection
[29] Rural Areas Data collection and analysis No experiment
from 16 September 2018, to 15 October 2018,
[7] Fish Farms 2 nodes Day and night were acquired daily at time points of 6:00, 9:00, 16:00, Analysis and forecasting

and 22:00.
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Table 3. Cont.

Experiment Condition

Experiment Purpose (Online

Ref. SltLe {yp; (FI:IV?Z S)ea, Nulstzt)er of Exlzle)nm;nit El)me (Normal, Hazardous Duration of Experiment (Min) Monitoring (Continuous Feed, Comments
ake, tarm, Lic. es ay, Mg Weather) Off-Line Data Collection)
. . At a fixed time daily from 1 January 2016 to 30 June . .
[33] River 3 locations 2018 with a total of 917 sets Analysis and forecasting
Secondary data used
[36] -
for analysis
) . . Secondary data used
[14] Forecasting water quality for analysis
Secondary data used
[37] -
for analysis
[54] River 1 location No info (pilot test)
[61] Lake 16 sites Afternoon Normal 5 min for each site Data acquisition
- . 4 nodes, 2 . -
[55] Fishpond locations 24-30 January 2019. With a 6 feet depth Data acquisition
[49] Send data every 5 s Continuous feeding No proper info
[50] No info (no full paper
- to check)
8 devices in 4 2 daily readings during March 2019 and eight
[51] Wastewater sites samples were compared on the following days 1, 4, 8, Data acquisition
12,14, 18, 20, and 22.
[57] Wastewater Industry 14 stations April 2018 Data acquisition and analysis
sampled 10 times in the period I
[19] Crab Pond of approximately 10.30 am on the 26 June 2019 Data acquisition
[47] Lake No info
[46] Water Pumping Station Send data every 5 s Report generation
[17] 10 samples No further info
[52] Water Station 5 stations 24 h for 10 days. stored in the database every 10 min. Continuous monitoring
[65] Aqua Tanks No info
[34] Forecasting water demand Secondary data used
[66] River No proper info
[2] Bristol Floating Harbour 3 sites 6 cm deep and Data transfer every 15 min Continuous monitoring
[5] Water Tank No info
[53] Fish Pond 2 nodes Every 1 min (proof of concept

testing only)
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Table 4. Comparing Review Articles.

DAS and
Ref Year Topics Architecture Taxonomy Al Modgls Sensors DAS.
Analysis . Evaluation
Analysis
Energy
[18] 2018 Efficiency for WSN WSN only No No No No
Energy; An
This Review 2022 Sensor and ny Yes Yes Yes Yes
. . Architecture
DAS integration

7.1. DAS Awvailability

Real-time data are important for advancement in this field of study. Modelling and
understanding can benefit from additional data. The lack of scalable, affordable, and reliable
data collection technology is the biggest obstacle to the availability of datasets. Particularly
for long-term experiments or short-term research involving large sites and numerous
data-gathering nodes, the creation and construction of DAS are pricy. Consequently,
providing a low-cost, dependable, accurate, and easy-to-implement solution is a significant
advancement in the research. Water quality prediction methods using online sensors in
real-time circumstances are needed to give better water quality evaluation strategies.

Additionally, sensor manufacturers and system designers ought to think about cre-
ating more adaptable systems that can quickly integrate a variety of sensors without the
requirement for soft interfacing techniques between the sensor and the main board of the
data-gathering system. This process can make DAS less difficult and make the researcher
more inclined to use electronic equipment for more real-time investigations. Addition-
ally, designers and producers should take into account the level of dependability of the
data-gathering system, as having a cost-effective system does not always entail integrating
cheap and unreliable sensors. For instance, as they offer greater protection and system
dependability, power protection circuits and reverse polarity protection circuits can be
incorporated into the design of a low-cost microcontroller board [71].

7.2. Selecting the Best Machine Learning Technique

In terms of evaluation, benchmarking, and choosing the best machine learning-based
model, this section discusses the difficulties and issues with those models. Benchmarking is
the process of contrasting a recently created model with current models using comparable
circumstances and traits. One of the techniques used in the evaluation and benchmarking
is to look at how well water quality assessment models perform concerning actual water
parameters. When creating new machine learning-based models, several aspects must be
taken into consideration, including a low error rate, high reliability, minimal complexity,
and high accuracy. However, actual performance will be affected if one of these require-
ments is met but not the others. These elements need to be carefully examined to highlight
performance in real-world applications. Future research should look into any conflicts or
trade-offs between these criteria or measurements, and a clear, dependable mechanism
should be devised to address this potential conflict. The following evaluation criteria for
machine learning-based models must be considered during the benchmarking and testing
processes to test and compare the effectiveness of the developed machine learning-based
water quality assessment models: accuracy, precision, true positive rate, false-positive
rate, true-negative rate, F-measure, training time, area under the curve, and error rate.
The primary question to be answered by the research is whether the developed machine
learning-based water assessment models include all of the benchmarking and evaluation
criteria during development. Also worth investigating is how developed models manage
benchmarking and assessment [69,70].
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7.3. Assessment Method of DAS

To address the difficulties of the present and potential solutions in further research,
this section presents some highlights on specific areas. Future study needs to take into
consideration the choice of the best DAS that can be incorporated into a certain design.
To make considerable progress in this area of research, it is critical to take the cost and
complexity of DAS into account. However, choosing a DAS should not be based solely on
one design factor and disregarding other ones. Table 1 lists the subjective evaluation scores
for the characteristics that, in the eyes of researchers, best represent the DAS as a system.
The evaluation criteria conflict with one another and must be traded off, it can be said.
Whether the research is conducted at a small site (within a 1-km radius) or on a big scale,
this trade-off has an impact on both (more than a 1 km radius). All assessment criteria
should be considered during the DAS evaluation process for a more accurate and thorough
DAS assessment. The criteria can be assigned a significant value using various weighting
techniques to include a degree of precision in the assessment process. To gain a better
understanding of the advantages and disadvantages of any suggested DAS, it is useful
to compare (benchmark) several DAS. The selection process can be viewed as a complex
challenge that incorporates numerous qualities and various DAS that are documented in
the literature to choose the best available DAS [69,70]. There is no clear and valid method
for selecting this type of assessment procedure. Hence, providing a systematic procedure
for DAS selection would be a huge leap for research and industrial communities [74].

8. Limitations

Although the database sources used for the presented investigation were extensive
and trustworthy, identification was nevertheless challenging. Additionally, the increased
development in this area had an adverse effect on the review’s timing. Studies conducted
at particular period on such a crucial topic does not always accurately reflect the influence
or application. However, the data only reflects the reaction of the research community to
the subject.

9. Conclusions

This article conducted a comprehensive evaluation of the prior research on techniques
for evaluating the quality of water in real-time experiments. To simplify the analysis of the
articles and glean important insights, a taxonomy for the literature was used to organize
the articles according to similarities and potential trends. The investigation of the factors
that sustain scholars” interest in this field of study led to several significant discoveries
and key findings that were presented. Other elements, such as difficulties and issues, were
also emphasized and shown. Additionally, ideas for recommendations were discussed
for various entities to further advance this research area. To provide key insights, two
sorts of analyses—methodological and substantive—are given. The reviewers looked
over the development articles they had surveyed and conducted further analyses. The
analysis of prior literature about development articles was real-time based experiments,
which are more accurate but necessitate specialized electronic designs and a significant
expense that cannot be dismissed which hampers advancement in this research area.
The research is still sparse when it comes to model representation employing real-time,
on-site datasets and intelligent (machine learning) techniques. To effectively duplicate
the pattern style and unique electronic design features, this approach needs a sizable
dataset. Additionally, artificial intelligence-based algorithms have overfitting issues and
need specialized hardware/tools to analyze the datasets. The type of deployed DAS and
the dataset’s availability, dependability, and completeness have the biggest impacts on the
accuracy of water assessment models.

It is important to consider the multiple attributes of the problem of choosing a DAS
that meets the needed design. There is a lack of generalized DAS frameworks in the
literature that can always measure water quality and under many circumstances. The topics
mentioned for future research paths on intelligent automation of water quality assessment
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contain useful information. This thorough assessment of the literature concludes that there
is no single model at this juncture that can accurately measure the features of water over a
range of locations, periods, and types of sites. The review summarises a literature study
and identifies research gaps, providing crucial information for researchers.
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