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Abstract: A novel, simple numerical method to determine the pore and surface diffusivities in
adsorbents from a single experimental concentration decay curve obtained using the batch adsorption
technique was investigated in this study. The pore and surface diffusion coefficients were determined
based on the conventional parallel diffusion model in its dimensionless form using a theoretical
model correlation. The model assumed that the film mass transfer resistance was negligible, i.e., the
condition with a large Biot number, from the single concentration decay curve. The procedure for
determining the kinetic parameters was investigated, and the effectiveness of the proposed simple
method was validated by comparing the parameters with those reported previously. The single
decay curve of p-nitrophenol, obtained by the batch adsorption system using granular activated
carbon as an adsorbent, was used for validation. The diffusivities determined by the simple method
corresponded fairly well with the diffusivities reported previously.

Keywords: adsorption; diffusion; parallel diffusion model; completely mixed batch reactor

1. Introduction

Equilibrium and kinetic properties are essential for the design of adsorptive separation
and purification apparatus. In liquid-phase adsorption systems, the adsorption isotherms
are usually determined using the batch bottle technique. The Freundlich- or Langmuir-type
equations are frequently used to correlate equilibrium adsorption data that have been
obtained experimentally. Kinetic parameters such as the film resistance coefficient and
diffusion coefficient of adsorbents are obtained from the adsorption data, such as break-
through curves (BTC) in fixed-bed adsorbers, adsorption uptake curves in the shallow-bed
technique, and concentration decay curves in a completely mixed batch reactor (CMBR) [1].
During the design of adsorptive separation reactors, a methodological study to determine
the kinetic parameters is essential. The adsorption model is generally estimated by fitting
the model prediction with the experimentally obtained adsorption data, along with the
determination of the kinetic parameters. For example, when a Bangham plot of experimen-
tally collected adsorption data shows a linear correlation that obeys the Bangham equation,
the adsorption process is pore diffusion control. If not, fitting of the adsorption data by
other adsorption models, such as the surface diffusion model, homogeneous intraparticle
diffusion model, and multiple diffusion models, will be performed one-by-one to deter-
mine the adsorption mechanism and the kinetic parameters. Many studies determining
the adsorption model through the procedure mentioned above have been reported [2–7].
From an economic and temporal point of view, it would be desirable to determine the
reliable kinetic parameters using a simple method with a small number of experiments.
The engineering needs for simple, rapid, and cost-effective determination methods are
always high because of the complexity of determining multiple kinetic parameters and

Water 2022, 14, 3629. https://doi.org/10.3390/w14223629 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w14223629
https://doi.org/10.3390/w14223629
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-9359-3161
https://doi.org/10.3390/w14223629
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w14223629?type=check_update&version=2


Water 2022, 14, 3629 2 of 14

cost issues, especially in systems with multiple transfer modes. When the fixed-bed ad-
sorption technique is used for the determination of the kinetic parameters, axial diffusion,
channeling, and particle boundary film diffusion may occur. To eliminate these effects, a
shallow-bed method can be used. However, its demerit is the use of a large amount of
test fluid for each run (approximately 200 L, for instance), which causes environmental
pollution when discharged. In contrast, the advantage of the CMBR method is its simplicity
of data acquisition, with a smaller amount of test fluid for each run. Automation of the
experimental equipment and data acquisition is possible. However, the disadvantage of
using the CMBR method is predicting the reliable mass transfer resistance within the film
accurately. Mass transfer in the adsorption phase of the adsorbents is taken into considera-
tion for the mass transfer of adsorbates from fluid to granular activated carbon particles.
This is because surface diffusion, which occurs in the transfer on the solid phase of the
adsorbents, becomes dominant in the adsorption process of the adsorbents with an increase
in adsorption amount and mass transfer in the pore phase [8]. Several experimental results
must be analyzed separately based on quasi-linear equilibrium assumptions to determine
the pore and surface diffusivities in this type of adsorbent with binary mode mass transfer.

The surface diffusion of adsorbents has been observed in many adsorbent
systems [9–12]. Medved et al. reviewed the surface diffusion models of various ad-
sorbents [13]. In a continuous flow column separation system following an ideal single
adsorption diffusion model, the BTC of the system shows a symmetrical S-shaped sig-
moidal curve. The tailing of BTCs is often observed in adsorbents with large adsorption
capacities and multiple diffusion mechanisms. However, the conventional pore diffusion
model, the primary single adsorption diffusion model, is unable to predict BTCs with tail-
ing [14]. Hence, a parallel diffusion model is a representative candidate for the successful
prediction of BTCs in this case. The parallel diffusion model deals with intraparticle pore
diffusion and surface diffusion processes in adsorbents. The tailing of the BTCs in the
packed-bed reactors and the decay curves in the CMBR system can be predicted using
the model. Although the determination of the multiple kinetic parameters in the model is
time-consuming and requires much adsorption data in practice, the tailing of the adsorption
curves can be predicted well using the model with binary mode transfer mechanisms.

Several methods have been developed to determine the kinetic parameters of ad-
sorption models using multiple transfer modes. One of the methods is the independent
determination of the kinetic parameters using correlation equations available in the litera-
ture and theoretical models, independent of the adsorption experiment. Another method is
the model-fitting approach, in which the kinetic parameters are determined by fitting the
decay curves or BTCs calculated using diffusion models to the experimentally obtained
curves. The former approach is useful for confirming the trends of the adsorption data
simply and rapidly. However, the calculated kinetic parameters deviate significantly from
the experimental adsorption data; thus, further adjustment of the kinetic parameters is
required. The latter method requires cumbersome numerical calculations and trial-and-
error data fitting to determine the kinetic parameters. It is also necessary to collect multiple
experimental data under various conditions, such as the initial adsorbate concentration
and agitation/flow rates, to determine multiple parameters [15–17].

Souza et al. [18,19] and Valderrama et al. [20] reported a method for determining the
kinetic parameters in a parallel diffusion model in a continuous stirred tank reactor (CSTR).
First, the boundary film resistance coefficient (kf) was determined from the initial slope of
the decay curves in the CSTR, since the intraparticle diffusion influence is minimal at this
stage. The pore diffusion coefficient (Dp) was independently calculated from the molecular
diffusion coefficient obtained from Wilke and Chang’s equation [21] and the tortuosity
factor of the adsorbent. Subsequently, they determined the surface diffusion coefficient (Ds)
by curve fitting of the decay curve simulated using the determined kf and Dp values.

Liu et al. studied a parallel diffusion model for a column separation system of levulinic
acid [22,23]. They determined the kf using the Wilson–Geankoplis correlation equation.
The Ds and Dp, were determined from batch adsorption experiments. The concentration
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decay curves obtained by the batch adsorption experiments were fitted and compared with
the model predictions using the single pore diffusion, single surface diffusion, and parallel
diffusion models. The influence of the diffusion coefficient towards the concentration decay
curves in the models was observed. The parallel diffusion model simulated the column
separation of levulinic acid efficiently using the kinetic parameters determined from batch
adsorption experiments.

Yao et al. studied a simple method to determine the kf and Ds without calculating the
diffusion equations in a batch adsorption system [24]. The kf was determined by fitting the
early-stage concentration decay curve obtained from a batch adsorption experiment with
an early-stage kinetic equation. The Ds was then determined by fitting the late-stage decay
curve with an approximate equation for the analytical solution of the diffusion equation.
The obtained kinetic parameters were applied to other adsorption systems to validate the
accuracy of the method.

Chung et al. examined a method for determining the kinetic parameters in a parallel
diffusion model in a column adsorption system using frontal analysis [25]. The Dp was
first determined using frontal analysis. BTC prediction was performed using the parallel
diffusion model with Dp obtained from frontal analysis. The Ds was calculated using the
best fitting obtained from the model predictions to the experimental BTC data.

Danica et al. applied the high-order frequency response function obtained by nonlinear
frequency response analysis to pore diffusion analysis [26]. They successfully applied the
pioneering research of the frequency response analysis performed by Petkovska et al. [27]
to separately estimate the pore and surface diffusion coefficients.

When a shallow bed or CMBR is used, experimental conditions with negligible film
mass transfer resistance are available, as mentioned above. It is easy to obtain the pore
diffusion and surface diffusion coefficients simultaneously from the concentration decay
curves under film-resistance-free conditions. In this study, we focused on the parallel
diffusion model and a simple determination method for the multiple kinetic parameters
of the model using the CMBR method. The simple method to determine the pore and
surface diffusivities of adsorbents under negligible film resistance conditions was investi-
gated based on a theoretical model analysis of a non-dimensional parallel diffusion model
using a theoretical model correlation. The time ratio of the concentration decay curves
(T0.2/T0.8 = T (C/C0 = 0.2)/T (C/C0 = 0.8)) and the diffusivity ratio between pore and sur-
face diffusion (RD) were successfully correlated based on the parallel diffusion model. The
time ratio characterizes the decay curve as a single parameter. This correlation was used to
determine the diffusivities from the single concentration decay curve. The effectiveness of
the method was confirmed using the adsorption data of a p-nitrophenol/activated carbon
system obtained by the CMBR method. The adsorbate/adsorbent system is known to be
surface-diffusion-dominant, with large Freundlich n values [28,29].

2. Parallel Diffusion Model in Dimensionless Form

This study assumes the diffusive adsorption of organic adsorbates in highly affinitive
spherical porous adsorbents. The adsorption model assumes that mass transfer in the
adsorbent is the rate-limiting step of the adsorption rate. Adsorbents with Freundlich-
type adsorption isotherms were considered in this study because the Freundlich type is
often observed in adsorbents with surface diffusion transfer. However, the simple method
developed in this study is applicable to different types of adsorption isotherms. In a
liquid-phase adsorption separation system, the mass transfer process in the film at the
fluid-to-solid interface and inside the adsorbents controls the adsorption rate, rather than
the adsorption equilibrium at the adsorption sites in the adsorbents. The intraparticle
transport of adsorbates via pore and surface diffusion in the adsorbents is considered in
the ordinary parallel diffusion model. In a system with surface diffusion, the adsorbates
are distributed in the adsorption phase rather than in the pore phase. This assumption
corresponds to the Freundlich-type adsorption isotherm, q = kc1/n, with high k and n values.
Assuming that the porosity and packed density of the adsorbents are ε and ρs, respectively,
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the amount of adsorbate in the pores and the solid in a certain volume of the adsorbent V
are denoted by εVc and Vρskc1/n, respectively. The ratio of the amounts of adsorbates in
the solid to the pores is expressed by ρskc1/n−1/ε. Figure 1 shows the ratio as a function of
n and c. The value of ρsk/ε is not small but more than ten in general; thus, the ratio is very
large in the adsorbents with n values greater than unity, indicating the small contribution
of pore diffusion transfer.
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Figure 1. Distribution ratio of adsorbate.

For the CMBR method, the fundamental single-mode mass transfer system equations
in the dimensional form are as follows.

Intraparticle diffusion: here, qm and Ds are the amount of adsorption at radius r in the
adsorbent and the surface diffusion coefficient, respectively.(

∂qm

∂t

)
=

(
Ds

r2

)
∂

∂r

(
r2 ∂qm

∂r

)
(1)

Fluid-to-solid film transport:

ρs

(
∂qt

∂t

)
= k f ap(ct − cs) (2)

where kf, ap, ct and cs are the film mass transfer coefficient, surface area, concentration in
the vessel and fluid concentration at r = rp, respectively.

Interface transport: (
∂qt

∂t

)
= −apDs

(
∂qm

∂r

)
r=rp

(3)

Mass balance within vessel:(
∂qt

∂t

)
= −

(
V
m

)(
∂ct

∂t

)
(4)

at t = 0, qt = 0 and ct = c0.
Average amount adsorbed:

qt =

∫ rp
0 4πqmr2dr(

4
3

)
πr3

p

(5)

qt is the amount of adsorbate in the adsorbent.
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Adsorption equilibrium:

qs = kc
1
n
t (6)

In the case of the parallel diffusion model, which is free from film diffusion resistance,
the fundamental equations are as follows.

Intraparticle diffusion:

ρs

(
∂qm

∂t

)
= ρs

(
Ds

r2

)
∂

∂r

(
r2 ∂qm

∂r

)
+

(
Dp

r2

)
∂

∂r

(
r2 ∂cm

∂r

)
(7)

with initial and boundary conditions qm = 0 at t = 0 and qm = f (ct) at r = rp.
The accumulation term on the left-hand side of Equation (7) considers only the adsorp-

tion phase because of the small distribution of adsorbates in the pores. The first and second
terms on the right-hand side of the equation are the fluxes due to surface diffusion and pore
diffusion, respectively. The average amount adsorbed and the equilibrium relationship are
the same as in Equations (5) and (6).

As the equations contain many constants and variables, they were converted to di-
mensionless variables using dimensionless variables, as shown below.

Dimensionless variables:

T =

(
Ds

r2
p

)
t, R =

(
R
rp

)
, Ct =

(
ct

c0

)
, Cs =

(
cs

c0

)
, Qt =

(
qt

q0

)
, Qm =

(
qm

q0

)
For the CMBR method, the dimensionless equations are shown as follows.
Intraparticle diffusion: (

∂Qm

∂T

)
=

(
1

R2

)
∂

∂R

(
R2 ∂Qm

∂R

)
(8)

−
(

∂Qm

∂R

)
R=1

= Bi(Ct − Cs) (9)

where Bi =
k f rp

Ds βρs (
∂Q
∂T

)
=

1
R2

∂

∂R

(
R2 ∂Qm

∂R

)
+ RD

(
1

R2

)
∂

∂R

(
R2 ∂Cm

∂R

)
(10)

where RD =
Dp

Ds βρs
, and the initial and boundary conditions are Qm = 0 at T = 0.

RD denotes the ratio of diffusion resistance owing to surface diffusion and pore
diffusion, and V/mβ is the dimensionless fluid-to-solid ratio.

Mass balance within the vessel:(
∂Qt

∂T

)
= −

(
V

mβ

)(
∂Ct

∂T

)
(11)

Average amount adsorbed:

Qt = 3
∫ 1

0
QmR2dR (12)

Equilibrium relationship:

Qs = C
1
n
t (13)

The series of equations in non-dimensional form was solved numerically using
the finite difference method. The details of the numerical calculations are reported by
Fujiki et al. [30].
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3. Results and Discussion
3.1. RD Dependence of Adsorption Profiles and Decay Curves

The model simulation of the parallel diffusion model has been reported in the literature,
but no study has been reported on the mass distribution in the adsorbents in relation to the
contribution of the diffusion mode, despite the importance of using separation properties
to understand the adsorbents. The distributions in the spherical adsorbent are shown
in Figure 2a–d for some specific cases with different diffusion modes. The intraparticle
distributions of the adsorbate in the pore (Cm) and the solid (Qm) differ significantly
depending on the RD value. As seen in these figures, the adsorption profiles changed
significantly from a gentle to a sharp distribution with a steep adsorption front depending
on the RD value. This is attributed to the difference in transfer resistance between the
pores and the adsorbent surface. In the large RD system, adsorption profiles with a steep
adsorption front appear because of the large surface diffusion resistance, as shown in
Figure 2b,d. In contrast, the small RD system results in an adsorption profile penetrating
deep inside the adsorbent because of the faster surface diffusion.
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Figure 2. Distribution of adsorbate in the adsorbent particles. (a) Cm, n = 3, (b) Qm, n = 3, (c) Cm,
n = 5, (d) Qm, n = 5. The bold lines indicate the distribution in the case of RD = 0.01 at T = 4 × 10−3,
4 × 10−2 and 1 × 10−1, respectively. The dotted lines indicate the distribution in the case of RD = 10
at T = 4 × 10−4, 4 × 10−3 and 1 × 10−2.

Figure 3 shows some examples of the concentration decay curves in the CMBR in the
cases of RD = 0.01 (n = 3, 5) and 10 (n = 3, 5). Faster transport through pore diffusion in
the case of a large RD results in a rapid concentration decay. A smaller RD system results
in a slow concentration decay with long tailing. The total adsorbate flux in the adsorbent
decreases with an increase in the n value due to the increase in adsorption and slow surface
diffusion, and thus the decay becomes slow with the increase in the n value.
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1 
 

 Figure 3. The concentration decay curves simulated by the model under study.

3.2. Determination of the Time Ratio T0.2/T0.8 from Concentration Decay Curves

The pore and surface diffusivities in the parallel diffusion model were determined
from a single concentration decay curve using the following procedure, in principle, with
the simultaneous determination of the intraparticle diffusivity and fluid-to-solid mass
transfer coefficient. First, dimensionless concentration decay curves were obtained from
the model simulation. The concentration decay curve Ct vs. T graph was plotted, as shown
in Figure 4a. Then, the vertical axis of the concentration decay curve was transformed into
a new normalized variable, (Ct – Ce)/(C0 – Ce). Irrespective of the experimental conditions,
the values of the numerical concentration decay curve (NCDC) can be expressed between
zero and unity by transforming the data (Figure 4b). The values of T0.8 and T0.2 are defined
by reading the decay curve at (Ct – Ce)/(C0 – Ce) = 0.8 and 0.2, respectively, as shown
in Figure 4b.
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Figure 4. Typical numerical concentration decay curve. (a) Dimensionless concentration decay curve
simulated based on parallel diffusion model, (b) reduced dimensionless concentration decay curve.

3.3. Relationship between T0.2/T0.8 and RD

From the values of T0.8 and T0.2, which were used as an index of the concentration
variation range of the NCDC, the T0.2/T0.8 value was determined. Thus, concentration
decay curves were characterized using the dimensionless time ratio T0.2/T0.8. The NCDCs
under various RD values were calculated for the series of n and c0, and the relationship
curve between T0.2/T0.8 and RD values was obtained (Figure 5). The RD value was obtained
using the relationship shown in Figure 5 by comparing the numerical calculation results
with the T0.2/T0.8 value determined experimentally by the CMBR method. This relationship
also means that the value of T0.2/T0.8 depends on the diffusion coefficient in the phase with
a larger adsorbate distribution. It can be seen from Figure 5 that the smaller the value of Ce,
the more accurate the diffusion coefficient. For a more accurate determination of the pore
and surface diffusivities, the RD = Dp/Dsβρs values should be between 0.1 and 10. The
procedure for using the experimental values is described as follows.
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3.4. Determination Procedure with Experimental Data

Step 1. Determination of T0.2/T0.8
The experimental CMBR data obtained using p-nitrophenol as the adsorbate and

granular activated carbon as the adsorbent were examined with a simple approach to
determining the kinetic parameters in the parallel diffusion model from a single concen-
tration decay curve. Experimental method details for the CMBR method are provided
elsewhere [8]. Some details of the experimental conditions of the CMBR method are shown
inside the squares in Figures 6 and 7. The concentration decay data of the adsorption
system (c0 = 1447 mg/L, n = 6.2, V = 1 L, m = 1 g, mβ/V = 1.0) under negligible film mass
transfer resistance conditions, which are reproducible and reliable from an experimental
point of view, were used in this study. The experimentally obtained concentration decay
curve is shown in Figure 6a, and the dimensional equilibrium concentration ce was deter-
mined from the decay curve. The dimensionless equilibrium concentration in the CMBR
vessel was obtained as ce/c0 = 0.188 for the system under study. Figure 6b shows a plot of
(Ct – Ce)/(C0 – Ce) as the vertical axis. The values of T0.8 and T0.2 are given in Figure 6b,
and it was found to be 41.1.
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Figure 6. Experimental concentration decay curve. (a) Dimensional decay curve, (b) dimensionless
decay curve.
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Figure 7. Determination of experimental Biot number.

Step 2. Confirmation of intraparticle diffusion-limited adsorption
The Freundlich exponent, 1/n, and dimensionless fluid-to-solid ratio, V/mβ, can

be calculated from the experimental conditions and the relationship of the adsorption
equilibrium. The concentration decay curves (NCDCs) in the CMBR were estimated by
numerical calculations based on the model with fluid film and intraparticle diffusion
transfer resistances. For obtaining a series of Biot numbers, the experimental values of
1/n and V/mβ were used. Figure 7 shows an illustration of the relationship between
Biot numbers and T0.2/T0.8 values based on the NCDCs. The rate-limiting process in the
system under consideration can be calculated from the T0.2/T0.8 value (=41.1) obtained
from the experimental NCDC (dotted line in Figure 7). As seen in Figure 7, the mass
transfer resistance in the fluid-to-solid film is negligible because of the very large Biot
number condition of the adsorption experiment at T0.2/T0.8 = 41.1. This step can be
skipped when the film transfer is not obviously rate-limiting in the adsorption process.
Nonetheless, this step is effective to ensure that the decay curve (adsorption data) is
obtained under appropriate conditions for estimating the intraparticle diffusion coefficient,
and the estimated diffusion coefficient is reliable.

Step 3. Determination of RD
The NCDCs are calculated numerically using the experimentally obtained values of

1/n and V/mβ for a series of RD (=Dp/Dsβρs) using the parallel diffusion model. The
T0.2/T0.8 value was determined for each NCDC to obtain the relationship between RD and
T0.2/T0.8. The relationship between RD and T0.2/T0.8 is shown in Figure 8, along with
the T0.2/T0.8 value determined from the experiment. The value of RD in the experimental
system was found to be 1.75.
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Step 4. Determination of Ds and Dp
The NCDC was recalculated using the parallel diffusion model with the known and

determined parameters of 1/n = 0.1616, V/mβ = 1.003, and RD = Dp/Dsβρs = 1.75. The
obtained NCDC values were compared with the experimental data, as shown in Figure 9.
Then, the time ratio (T/t) of 3.9 × 10−4 min−1 was obtained (Figure 9). The value of Ds
was estimated using Equation (14), based on the definition of the dimensionless variable T.
Constant 60 is included in the equation for the conversion of time units from minutes to
seconds.

Ds = 60
(

T
t

)
r2

p = 60
(

3.9 × 10−4
)
(0.03575)2 = 8.31 × 10−9 cm2/s (14)
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Figure 9. Comparison of the concentration decay curves obtained by the experiment and the numeri-
cal calculation of the theoretical model.

The value of Dp can be obtained from the RD and Ds values, as shown in Equation (15).

Dp = RDDsβρs =
(
3.9 × 10−4)(8.31 × 10−9)(0.3474)(484)
= 1.40 × 10−6cm2/s

(15)

where β = q0/c0 = kc0
1/n/c0 [L/g], and ρs [g/L] denotes the apparent solid density.

The ratio of pore diffusivity (Dp) to molecular diffusivity (DAB) is independent of the
adsorption system and depends on the adsorbate used [1]. Wilke and Chan’s equation [31]
was used to estimate the molecular diffusivity. For p-nitrophenol at 293.2 K, the value was
6.85 × 10−6, and the value of Dp/DAB was calculated to be 0.204. This value is similar
to that of 0.22 reported by Furuya [8]. The efficiency of this method for determining the
kinetic parameters in the parallel diffusion model was validated.

3.5. Summary of the Determination Procedure

The overall procedure for determining the kinetic parameters in the parallel diffusion
model is shown in Figure 10. The graphs of RD vs. T0.2/T0.8 and Biot number vs. T0.2/T0.8,
as shown in Figures 5 and 7, respectively, can be prepared in advance for the conditions
used in practice. The kinetic parameters examined in this study can be determined simply
using graphs with a few batch adsorption experiments.
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4. Conclusions

In liquid-phase adsorption, the mass transfer within porous solids is dominated by
pore and surface diffusion. Because these diffusions occur in parallel, the mechanism with
low diffusion resistance is more dominant. In this study, the parallel diffusion model, a
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simple method for obtaining pore and surface diffusivity from one experimental concen-
tration decay curve, was examined using the CMBR technique. It was confirmed that
both diffusion coefficients can be obtained from one concentration decay curve when the
reactor’s concentration change is sufficiently large and the fluid-to-solid mass transfer
resistance is negligible.

Using the proposed method, real sample data were analyzed, and the validity of the
calculated diffusivities was discussed. The ratio of pore diffusivity to effective molecu-
lar diffusivity was estimated using Chan’s equation. The obtained value of 0.204 was
comparable to the previously obtained results by other scholars.

Because the parallel diffusion model was used in this study, the diffusion mechanism
with a smaller mass transfer resistance dominated the overall intraparticle diffusion. There-
fore, the surface diffusion controlling model must be used when the RD value is less than
0.1, and the pore diffusion controlling model should be applied when the RD value is
greater than 10.
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Nomenclature

ap: Surface area based on solid particle [cm2/cm3]
Bi: Biot number = kfrp/(Dsβρs) [-]
ce: Equilibrium concentration at time = infinity [mg/L]
cs: Fluid concentration at r = rp [mg/L]
ct: Concentration within the vessel at time t [mg/L]
c0: Concentration within the vessel at time = 0 [mg/L]
Cm: Dimensionless concentration [-]
Dp: Pore diffusivity [cm2/s]
Ds: Surface diffusivity [cm2/s]
kf: Fluid film mass transfer coefficient [cm/s]
m: Weight of adsorbent [g]
1/n: Freundlich exponent [-]
qe: Amount adsorbed in equilibrium with ce [mg/g]
qt: Average amount adsorbed within the adsorbent at time t [mg/g]
q0: Amount adsorbed at equilibrium with fluid concentration c0 [mg/g]
Qm: Dimensionless amount of adsorption [-]
r: Internal radial length (length from the solid center) [cm]
rp: Particle radius [cm]
RD: Ratio of diffusion resistance = Dp/(Dsβρs) [-]
t: Time [min]
V: Volume of the vessel [L]
β: q0/c0 [L/g]
ε: Porosity [-]
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13. Medved’, I.; Černý, R. Surface diffusion in porous media: A critical review. Micropor. Mesopor. Mater. 2011, 142, 405–422.
[CrossRef]

14. Ma, Z.; Whitley, R.D.; Wang, N.-H.L. Pore and surface diffusion in multicomponent adsorption and liquid chromatography
systems. AIChE J. 1996, 42, 1244–1262. [CrossRef]

15. Rosen, J.B. Kinetics of a fixed bed system for solid diffusion into spherical particles. J. Chem. Phys. 1952, 20, 387–394. [CrossRef]
16. Kavand, M.; Asasian, N.; Soleimani, M.; Kaghazchi, T.; Bardestani, R. Film-pore-[concentration-dependent] surface diffusion

model for heavy metal ions adsorption: Single and multi-component systems. Process Saf. Environ. Prot. 2017, 107, 486–497.
[CrossRef]

17. Ma, A.; Abushaikha, A.; Allen, S.J.; McKay, G. Ion exchange homogeneous surface diffusion modelling by binary site resin for the
removal of nickel ions from wastewater in fixed beds. Chem. Eng. J. 2019, 358, 1–10. [CrossRef]

18. Souza, P.R.; Dotto, G.L.; Salau, N.P.G. Detailed numerical solution of pore volume and surface diffusion model in adsorption
systems. Chem. Eng. Res. Des. 2017, 122, 298–307. [CrossRef]

19. Souza, P.R.; Dotto, G.L.; Salau, N.P.G. Statistical evaluation of pore volume and surface diffusion model in adsorption systems. J.
Environ. Chem. Eng. 2017, 5, 5293–5297. [CrossRef]

20. Valderrama, C.; Gamisans, X.; de las Heras, X.; Farrán, A.; Cortina, J.L. Sorption kinetics of polycyclic aromatic hydrocarbons
removal using granular activated carbon: Intraparticle diffusion coefficients. J. Hazard. Mater. 2008, 157, 386–396. [CrossRef]

21. Saripall, K.P.; Serne, R.J.; Meyer, P.D.; McGrail, B.P. Prediction of diffusion coefficients in porous media using tortuosity factors
based on interfacial areas. Ground Water. 2002, 40, 346–352. [CrossRef]

22. Liu, B.J.; Yang, Y.W.; Ren, Q.L. Parallel pore and surface diffusion of levulinic acid in basic polymeric adsorbents. J. Chromatogr. A
2006, 1132, 190–200. [CrossRef] [PubMed]

23. Liu, B.; Zeng, L.; Mao, J.; Ren, Q. Simulation of levulinic acid adsorption in packed beds using parallel pore/surface diffusion
model. Chem. Eng. Technol. 2010, 33, 1146–1152. [CrossRef]

24. Yao, C.; Chen, T. A new simplified method for estimating film mass transfer and surface diffusion coefficients from batch
adsorption kinetic data. Chem. Eng. J. 2015, 265, 93–99. [CrossRef]

25. Chung, P.-L.; Bugayong, J.G.; Chin, C.Y.; Wang, N.H. A parallel pore and surface diffusion model for predicting the adsorption
and elution profiles of lispro insulin and two impurities in gradient-elution reversed phase chromatography. J. Chromatogr. A
2010, 1217, 8103–8120. [CrossRef] [PubMed]
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