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Abstract: Algal blooms have been observed worldwide and have had a serious impact on industries
that use water resources, which is a problem for people and the environment. For this reason, an
algae warning system is used to count the number of cyanobacterial cells and the concentration of
chlorophyll-a. Several studies using multispectral or hyperspectral data to estimate chlorophyll con-
centration have recently been carried out. In the present study, a comparative approach was applied
to estimate the concentration of chlorophyll-a at Paldang Dam, South Korea using hyperspectral data.
We developed a framework for estimating chlorophyll-a using dimension reduction methods, such as
principal component analysis and partial least squares, and various machine learning algorithms.
We analyzed hyperspectral data collected during a field survey to locate peaks in the chlorophyll-a
spectrum. The framework that used support vector regression achieved the highest R2 of 0.99, a
mean square error (MSE) of 1.299 µg/cm3, and showed a small discrepancy between observed and
real values relative to other frameworks. These findings suggest that by combining hyperspectral
data with dimension reduction and a machine learning algorithm, it is possible to provide an ac-
curate estimation of chlorophyll-a. Using this, chlorophyll-a can be obtained in real time through
hyperspectral sensor data input from drones or unmanned aerial vehicles using the learned machine
learning algorithm.

Keywords: hyperspectral; chlorophyll-a; machine learning

1. Introduction

Water is a vital resource for ecosystems and humans alike. Therefore, damage to
water resources can cause significant risks in the aquatic ecosystems living nearby, not only
humans. In particular, Harmful algal blooms (HABs) have been reported for a long time [1],
but it is hard to say that there is still a perfect countermeasure. Abnormal phenomena,
such as global warming and weather variability [2], human natural destruction, such as
aquaculture industry, and the resulting eutrophication, were suggested as the cause of
HAB. Damage caused by HABs has been reported in many lakes and rivers around the
world, including in Korea [3–5], owing to climate change caused by global warming [6].

Algal bloom is a phenomenon in which floating algae proliferate in large quantities
in eutrophic lakes or in slow-flowing rivers and seas, turning the water green. When
this phenomenon is severe, the algae block the sunlight from entering the water, which
prevents the photosynthesis of water plants [7]. Additionally, these HABs produce a high
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level of biomass and can negatively affect the environment and human activity through
seawater discoloration, anoxia, and mucilage induction [8]. Furthermore, when algal bloom
is left untreated, it becomes a critical threat to inland water and estuarine environments.
HABs negatively affect aquatic ecosystems and public service systems; they cause the mass
mortality of fish, animal death, human health hazard, and difficulties in managing food
and water supply [9].

Algal blooms that are potentially harmful to the ecosystem occur as a result of envi-
ronmental pollution in dams, lakes, reservoirs, and rivers all over the world. Algal blooms
in South Korea have resulted in the mass growth of cyanobacteria, which threatens the
steady and safe supply of drinking water and wreaks havoc on the ecosystem. Although it
is imperative to detect and fix the influx of phosphorus, which is the primary cause of algal
bloom, there is a growing need to quickly identify the appearance of algal bloom and to
remove phosphorus and floating waste. The concentration of chlorophyll-a is a commonly
used indicator that quantitatively represents the status of algal bloom. The concentration of
chlorophyll-a, which is one of the pigments required by cyanobacterial for photosynthesis,
is an important parameter in investigations on algal bloom [10,11].

There is a growing body of research that explores the estimation of chlorophyll-a. It
has been confirmed that existing chlorophyll-a estimation studies differ in terms of the
type of data and analysis method used, which include mathematical analysis using second-
order derivatives of spectra [12] and the use of a regression formula for river data [13].
In terms of the data used, water quality and weather conditions have been used [14], as
well as hyperspectral data [15]. In particular, hyperspectral sensors have been widely
used for estimating chlorophyll-a [16] because of their efficiency in the early estimation of
chlorophyll-a [17].

Methods that combine machine learning and measured hyperspectral data have been
recently developed for estimating chlorophyll-a. Sina Keller [18] estimated chlorophyll-a
applying machine learning techniques, such as principal component analysis (PCA) and
extreme tree [19], to hyperspectral sensors and obtained an R2 of 0.941. We studied how to
estimate the actual chlorophyll-a using only hyperspectral sensors without using water and
weather sensors to reduce costs. Since chlorophyll-a is estimated using only hyperspectral
sensors, it is easy to measure algae in a larger area using airplanes or drones [20].

In this study, we attempted to develop a model that provides optimal performance
in fitting chlorophyll-a to hyperspectral data, and we present a framework for estimating
chlorophyll-a with high performance by applying various machine learning models to
hyperspectral data and comparing them from various perspectives.

2. Materials and Methods

The data collection, preprocessing, and machine learning methods employed in this
study are discussed in this section. Figure 1 shows the workflow, which divides the entire
process of this study into several steps. First, the obtained hyperspectral data were sepa-
rated into training and testing data to estimate and evaluate chlorophyll-a. Subsequently,
eight different machine learning models were used to learn raw data. Four different
methods (standard scaler, min-max scaler, PCA, and partial least squares (PLS) [21] were
used for preprocessing and we could figure out the most appropriate model by compar-
ing each model’s evaluation metrics. This section includes data collection methods, data
descriptions, a preprocessing method, and a model definition.
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follows. OLS (ordinary least squares), RF (random forest), ET (extra trees), GB (Gradient Boosting), 
AdaBoost (Adaptive Boosting), KNN (k-nearest neighbor), SVR (support vector regression), 
XGboost (Extreme Gradient Boosting). 

2.1. Hyperspectral Datasets 
The data for this study were collected from Paldang Dam in Hanam, Gyeonggi-do, 

Korea using chlorophyll-a measurement sensors and hyperspectral sensors. This is an im-
portant location for the management of drinking water quality in Seoul, the capital of the 
Republic of Korea. In light of this, Paldang Dam is continuously conducting research on 
chlorophyll-a [22,23]. Figure 2 presents a map that shows the location of Paldang Dam. 

Figure 1. Machine learning framework for chlorophyll-a estimation. Hyperspectrali denotes an i nm
hyperspectral wavelength (i = 350 nm, . . . , 900 nm). The abbreviation in Figure 1 is described as
follows. OLS (ordinary least squares), RF (random forest), ET (extra trees), GB (Gradient Boosting),
AdaBoost (Adaptive Boosting), KNN (k-nearest neighbor), SVR (support vector regression), XGboost
(Extreme Gradient Boosting).

2.1. Hyperspectral Datasets

The data for this study were collected from Paldang Dam in Hanam, Gyeonggi-do,
Korea using chlorophyll-a measurement sensors and hyperspectral sensors. This is an
important location for the management of drinking water quality in Seoul, the capital of
the Republic of Korea. In light of this, Paldang Dam is continuously conducting research
on chlorophyll-a [22,23]. Figure 2 presents a map that shows the location of Paldang Dam.

2.2. Sampling Chlorophyll-a, Hyperspectral Sensor

A hyperspectral sensor (Water insight spectrometer station; WISP station) [24] and
a water quality sensor (YSI 6600EDS) were installed in the inflow waterway at Paldang
Dam, where an observatory is operated by a government agency. Hyperspectral data
and water quality data were collected periodically. The hyperspectral sensor measures
551 wavelengths between 350 nm and 900 nm at frequencies at intervals of 15 min from
01:00 to 8:00 every day. The water quality sensor measures chlorophyll-a with the same
time frequency. The measured wavelength is used as independent variables to predict the
measured chlorophyll-a. Figure 3 shows the technical principles of the hyperspectral sensor.
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Figure 2. Map of the location where the data were collected.

Data were collected from 10 June 2019 to 6 November 2019, but due to missing values
for chlorophyll-a, the data used for analysis were collected from 9 September 2019 at
02:45 to 7 October 2019 at 01:15. A total of 483 observations were used. The shape of
the data observations is shown in Figure 4. Because estimating the dependent variable
(chlorophyll-a) when an explanatory variable (hyperspectral wavelength data) is given is
an estimation problem, rather than a prediction problem, time dependence is ignored in
this study.
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to 7 October 2019 at 01:15. A total of 483 observations were used. The shape of the data 
observations is shown in Figure 4. Because estimating the dependent variable (chloro-
phyll-a) when an explanatory variable (hyperspectral wavelength data) is given is an es-
timation problem, rather than a prediction problem, time dependence is ignored in this 
study. 

Figure 3. Technological principle of hyperspectral sensor WISP station. Upper lens 2 point ( 1©, 2©):
Light must enter through the two lenses during measurement, not under overcast or rainy conditions.
Side lens 1 point ( 3©): The distance between the measurement point and the point to be measured is
calculated; it is then installed such that the reflected light reaches the side lens point at a 48◦ angle, as
illustrated on the left. This is the spectroscopic principle by which the reflected light is measured
using a single wavelength band.
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is the chlorophyll-a observed at each time point, and the spectrum is the hyperspectral data for the
bands, 350 nm to 900 nm, observed at each time point.



Water 2022, 14, 4080 6 of 16

2.3. Data Preprocessing

To evaluate the estimated chlorophyll-a, preprocessing was performed by dividing the
training and testing data into a 7:3 ratios. For the total of 483 observations, training data
and testing data observations numbered 338 and 146, respectively, and the data division is
shown in Figure 5.
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Four alternative preprocessing approaches were used to improve the performance
of the model on hyperspectral data, which is high-dimensional data. We compared and
fitted eight different machine learning models to each approach to obtain the best model.
To begin, we used the standard scaler method, which is a method for transforming data
into a normal distribution by setting the mean to 0 and the variance to 1. The min-max
scaler can be used to scale the values of observations using lower and upper limits that are
predefined. Pretreatment was carried out in this investigation by setting the lower limit to
0 and the upper limit to 1.

For high-dimensional data, algorithms such as PLS and PCA are often utilized for
dimensionality reduction to improve prediction performance and speed [25]. PCA is a
method that employs the main components that maximize the variance of a linear combi-
nation of explanatory variables, whereas PLS uses the main components that maximize the
linear combination of explanatory variables and the covariance of dependent variables.

2.3.1. PCA

PCA is an unsupervised feature extraction technique that transforms high-dimensional
data into low-dimensional data. The principal component PCI ( i = 1, 2, . . . , k), which is a
new variable created by PCA, can be generated as many times as the value of p, which is
the maximum number of original variables. Principal components that explain more than
70–80% of the variation in the original variable are generally chosen and employed. PCA
can cause data loss because it reduces the dimensionality of the data.

2.3.2. PLS

PLS is a method for reducing the dimensions of a variable by creating a new variable
through a linear combination of variables. The value of p, which is the maximum number
of original variables, is used to generate a latent variable, which is a variable extracted from
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a linear combination of variables. The mean square error (MSE) is used to determine the
ideal number of latent variables.

In this study, only five principal components were used in PCA and PLS, and they
accounted for 99.9% of a total of 551 hyperspectral bands ranging from 350 nm to 900 nm.

2.4. Machine Learning Algorithm

To estimate the chlorophyll-a, ordinary least squares (OLS), support vector regression
(SVR) [26], the k-nearest neighbor (KNN) [27], the bagging model, and the boosting model
were used. Furthermore, optimal hyperparameters were obtained using grid search for
cross validation, and the optimized model was determined by preventing overfitting.

2.4.1. SVR

SVR is a generalized support vector machine (SVM) algorithm. Unlike SVM, SVR is a
method for finding a regression line that optimizes flatness. SVM finds the hyperplane that
maximizes the distance between each data point adjacent to various groups.

LSVR = min
1
2
||ω||2 + C ∑n

i=1(ξi + ξ∗i )

ξ is the distance between the regression line and the regression equation’s upper bound-
ary, and ξ∗ is the distance between the regression line and the regression equation’s
lower boundary.

2.4.2. KNN

KNN is a learning method that uses the k most similar objects to identify unlabeled
objects. It can be extended to categorical dependent variables and to regression and time
series prediction.

In univariate time series data, KNN predicts a value using information for the pattern
most similar to the previous pattern of the value to be predicted. The parameters used
are w and k, similarity is calculated using the Euclidean distance of the previous w points,
and the most similar k patterns are used. For m multivariate time series data observations,
similarity is calculated using the m-dimensional Euclidean distance calculation value.
Figure 6 is a summary of KNN’s method.
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2.4.3. Bagging

“Bagging” is shorthand for bootstrap aggregating. It is a technique for producing a
large number of samples by bootstrapping from training data, training a model with each
sample, and aggregating the results into ensembles.

Bagging is usually used for classification and regression, and in this study, the average
value of the predicted results for each sample is used as the predicted value for fitting
chlorophyll-a concentration, which is a dependent variable, as shown in Figure 7.
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Random forest (RF) [28] is a method for reducing variance by ensuring variety and
unpredictability in data. When the bagging model is trained, the RF method randomly
selects fewer variables than the number of original variables, and it chooses the best variable
among the variables to branch out when it searches for the decision tree’s branching point.
This procedure continues until a fully developed tree is formed. The method uses the
average of the estimates from each bootstrap model sampled.

Extremely randomized trees (ET) [19] is similar to RF, but it achieves greater random-
ness than RF when searching for branches of a decision tree, and is much faster because it
uses a random variable rather than the best variable.

2.4.4. Boosting

As one of the ensemble strategies of machine learning, boosting is an algorithm that
improves the performance of classification or regression models by producing multiple
weak learners and by successively generating and merging models.

After all data are randomly sampled, the weights of all samples are initialized. We
create a weak learner, and after training, we output the model weights of the weak learner
according to the results. The data are updated using the weights of the output model. After
repeating this process N times, N model weights are ensembled to create a new learner. In
this study, adaptive boosting (AdaBoost) [29], gradient boosting (GB) [30], and extreme
gradient boosting (XGBoost) [31], which are based on the idea of the boosting algorithm,
were used. Figure 8 summarizes the boosting method described above.
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AdaBoost, which was developed from boosting techniques, is a method for increasing the
weight of observations with large training errors and lowering the weight of small observations.
After random sampling of the training data, the weights of the data are initialized.

Wt
i =

1
m

, i = 1, 2, . . . , m, t = 1, 2, . . . , T (1)

In Equation (1), W is the data weight, i is the number of observations selected through
sampling, and t is the number of weak learners. To find the best learner in the ensemble,
we need to find the weak learners and extract the weights.

εt =
∑n

i=1 Wt
i |ht(xi)− yi|

∑n
i=1 wt

i
(2)

αt = log
(

εt

1− εt

)
(3)

Wt+1
i = wt

i α
1−|ht(xi)

−yi |
t (4)

In Equation (2), ε is the error rate loss function, and h is the weak learner. In Equation
(3), α is the weight of the weak learner. A new weight vector is obtained by finding ht
when εt is at a minimum, and then finding the corresponding weight α. Equations (2)–(4)
are repeated to ensemble the newly created weight Wi and the corresponding ht to finally
obtain the boosted model. Equation (5) defines the final model.

h(x) = sign
[
∑m

i αtht(x)
]

(5)

GB is a regression approach that uses boosting and a strong ensemble model. It
employs a gradient in the loss function, which assesses the ability of the model coefficient
to match the data. By forming an ensemble of many basic decision tree models, GB creates
a predictive model. The GB model inherits all of the benefits of decision tree models while
further improving resilience and accuracy. The GB model has additional advantages, such
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as the capacity to manage huge datasets without preprocessing, resilience to outliers, the
ability to manage missing data, robustness to complicated data, and resistance to overfitting.
The GB model, in general, begins by fitting the data using a basic decision tree model that
has a certain level of accuracy.

XGBoost is a distributed processing algorithm that uses the greedy approach to quickly
discover classifiers and acceptable parameters. All leaves are tied to the final score of the
model when a tree, which is a classifier, is generated using an ensemble model called
classification and regression tree (CART); therefore, it is feasible to compare the scores
of different models having the same classification result. This technique can be used to
identify the best performing model.

3. Results

This section focuses on the performance of the model, the influence of the four pre-
processing methods, and presents a comparison between the estimated and observed data
values. Table 1 lists the formulas for the evaluation metrics used in this study. We applied
six evaluation metrics to select the optimal model from among various models. A detailed
evaluation of the performance of the eight machine learning models and the four prepro-
cessing methods are summarized in Table 2. The optimal models were those achieving
good results in at least four of the six metrics.

Table 1. Equations for evaluation metrics used in machine learning analysis.

Metric Equation Range (Optimal Value)

R2
 ∑n

i=1(yobs
i −yobs)

(
ypred

i −ypred
)

√
∑n

i=1(yobs
i −yobs)

2
√

∑n
i=1

(
ypred

i −ypred
)2


2

0.0~1.0 (1.0)

NSE 1−
∑n

i=1

(
yobs

i −ypred
i

)2

∑n
i=1(yobs

i −yobs)
2

−∞~1.0 (1.0)

d 1−
∑n

i=1

(
yobs

i −ypred
i

)2

∑n
i=1

(∣∣∣ypred
i −yobs

∣∣∣+|yobs
i −yobs|

)2
0.0~1.0 (1.0)

RMSE
√

1
n

n
∑

i=1

(
yobs

i − ypred
i

)2 0.0~∞ (0.0)

RSR
√

∑n
i=1

(
yobs

i −ypred
i

)2

√
∑n

i=1(yobs
i −ypred)

2

0.0~∞ (0.0)

PBIAS ∑n
i=1 yobs

i −ypred
i

∑n
i=1 yobs

i
× 100 −∞~∞ (0.0)

This table summarizes the equations, ranges, and optimal values of the evaluation metrics used in this study,
where yobs

i is the i-th observed value, ypred
i is the i-th predicted value, yobs is the mean of the observations, and

ypred is the mean of the predicted values.

Table 2. Machine learning results for the estimation of chlorophyll-a.

Method R2 MSE MAPE NSE d PSR

Baseline

OLS 0.380 126.665 77.598 −7.592 0.402 2.121
RF 0.919 20.070 44.153 −0.361 0.557 0.922
ET 0.986 18.878 42.474 −0.281 0.569 0.912
GB 0.941 12.765 33.110 0.134 0.701 0.809

AdaBoost 0.908 22.93 47.754 −0.555 0.502 0.963
KNN 0.925 17.284 39.489 −0.172 0.617 0.898
SVR 0.991 1.299 8.365 0.912 0.977 0.297

XGBoost 0.948 10.908 30.194 0.26 0.742 0.765

Standard
Scaler

OLS 0.122 337.646 178.614 −21.904 0.305 1.04
RF 0.919 19.967 43.996 −0.354 0.558 0.921
ET 0.986 18.918 42.529 −0.283 0.568 0.913
GB 0.947 11.282 31.21 0.235 0.732 0.772

AdaBoost 0.908 23.348 48.034 −0.584 0.507 0.963
KNN 0.929 16.617 39.044 −0.127 0.632 0.882
SVR 0.986 2.132 10.473 0.855 0.961 0.379

XGBoost 0.948 10.908 30.194 0.260 0.742 0.765



Water 2022, 14, 4080 11 of 16

Table 2. Cont.

Method R2 MSE MAPE NSE d PSR

Min-Max
scaler

OLS 0.737 45.016 48.533 −2.054 0.685 1.604
RF 0.919 19.967 43.996 −0.354 0.558 0.921
ET 0.986 18.878 42.474 −0.281 0.569 0.912
GB 0.947 11.282 31.21 0.235 0.732 0.772

AdaBoost 0.908 23.348 48.034 −0.584 0.507 0.963
KNN 0.930 16.797 39.028 −0.139 0.632 0.879
SVR 0.987 1.950 10.113 0.868 0.965 0.363

XGBoost 0.948 10.908 30.194 0.260 0.742 0.765

PCA

OLS 0.170 330.055 184.408 −21.389 0.314 1.003
RF 0.964 6.675 23.326 0.547 0.853 0.636
ET 0.986 5.820 22.345 0.605 0.861 0.589
GB 0.980 3.428 16.316 0.767 0.935 0.472

AdaBoost 0.962 8.479 27.148 0.425 0.82 0.68
KNN 0.928 16.752 39.179 −0.136 0.63 0.884
SVR 0.982 2.602 11.776 0.824 0.953 0.419

XGBoost 0.981 3.229 15.499 0.781 0.935 0.459

PLS

OLS 0.171 330.243 184.598 −21.402 0.314 1.002
RF 0.983 4.291 17.468 0.709 0.928 0.51
ET 0.986 4.475 20.171 0.696 0.905 0.514
GB 0.988 1.875 10.351 0.873 0.969 0.356

AdaBoost 0.977 7.481 25.6 0.493 0.868 0.625
KNN 0.932 14.624 36.223 0.008 0.663 0.861
SVR 0.981 2.828 12.363 0.808 0.948 0.436

XGBoost 0.990 1.595 10.416 0.892 0.972 0.327

3.1. Perfromance Measures

We used different performance measures to show the significant differences between
the fit models. The performance metrics used in this study are given below [32–37].

1. R2: This is an applied evaluation metric for fit regression models that is used mainly
in hydrological studies [32]. However, there is a disadvantage that R2 increases
unconditionally when the number of variables increases.

2. Nash-Sutcliffe efficiency (NSE): This metric reflects the desirable and undesirable
features of a model of interest, and it increases as the quality of the model increases [33].
However, it is sensitive to extreme values because it uses squared differences, and it
cannot identify model bias [32].

3. d: This consists of MSE and potential error (PE) [34]. It offers the advantage that
errors and differences are given an appropriate weightage that is not inflated by
squared values. However, it is sensitive to extreme values because it uses squared
differences [32].

4. Root mean square error (RMSE): This metric is obtained by applying the root to the
mean of the total squared error (the sum of the individual squared errors). Therefore,
it increases when the variance associated with the frequency distribution of error
magnitudes increase [37].

5. RSR (RMSE-observations standard deviation ratio): This metric standardizes RMSE
using the standard deviation of the observations. Therefore, a lower RSR means better
model performance and a lower RMSE [35].

6. Percent bias (PBIAS): This measures the average tendency of the simulated data to be
larger or smaller than their observed counterparts. That is, positive values indicate a
model underestimation bias, and negative values indicate a model overestimation bias.
It is useful for continuous long-term simulations and can help identify the average
model simulation bias [36].

3.2. Estimation

In this section, we focus on the performance of the machine learning models in
estimating chlorophyll-a, the impact of the four preprocessing methods, and the comparison
between the estimated and measured chlorophyll-a values. Table 2 summarizes the machine
learning results estimated in combination with the preprocessing methods. Each machine
learning model’s hyperparameters were optimized using GridSearch. Table 3 summarizes
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the GridSearch results of the best-performing model for each of the machine learning
techniques summarized in Table 2.

Table 3. GridSearch results for each machine learning technique.

ML Model (with
Preprocessing) Hyperparameters Type Search Space Optimal Parameters

OLS - - - -

Random Forest
(PLS)

min_samples_leaf Discrete 3, 5, 7, 10 3
max_depth Discrete 3, 4, 5, 6 6

Extreme Tree
(PLS)

min_samples_leaf Discrete 3, 5, 7, 10 5
max_depth Discrete 3, 4, 5, 6 6

Gradient Boost
(PLS)

min_samples_leaf Discrete 3, 5, 7, 10 10
n_estimators Discrete 100, 200, 300 300

AdaBoost
(PLS)

n_estimators Discrete 100, 200, 300 300
learning_rate Discrete 0.1, 0.05, 0.02, 0.01 0.1

KNN
(PLS)

n_neighbrs Discrete 3,5,7,9,11, 5
weights Categorical “uniform”, “distance” distance

algorithm Categorical “ball_tree”, “kd_tree”, “brute” ball_tree

SVR
(Baseline)

Kernel Categorical “rbf”, “sigmoid” rbf
C Discrete 10,30,100,300,1000 1000

XGBoost
(PLS)

max_depth Discrete 5, 6, 7 5
learning_rate Discrete 0.03, 0.05, 0.07 0.07

Among all the models, SVR obtained the best results, and XGBoost and ET showed
good results. OLS showed very poor performance for all preprocessing methods aside
from the OLS method; R2 was generally greater than 90%. Among the methods, PCA and
PLS generally achieved an R2 greater than 95%. SVR showed the best performance for all
preprocessing combinations; SVR combined with raw data showed the best result with
R2 = 99.1%.

The values presented in bold text represent the best values obtained for the evaluating
metrics for each model. PCA and PLS provided better estimates than the other prepro-
cessing methods, and SVR was the best model for each preprocessing approach. The left
side of Figure 9 shows chlorophyll-a values estimated using SVR with each pretreatment
method compared with the observed values, and the right side shows the corresponding
residual values.

3.3. Variable Importance

In Figure 10, we show the variable importance distribution for the chlorophyll-a
hyperspectral input data generated using SVR without preprocessing. As can be seen
in Table 2, the feature importance of SVR was checked because SVR showed the best
performance baseline. Feature importance had the highest peak at 704 nm, and it was
confirmed that wavelengths between 650 nm and 730 nm are important variables for
estimating chlorophyll-a.
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Figure 9. Left-side figure shows the difference between the observed and fitted values using support
vector regression for each preprocessing scheme, while the right-side figure shows the residual value.
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4. Discussion

A variety of solutions have been used to prevent HABs. We used hyperspectral data
to estimate chlorophyll-a concentration in an attempt to avert dangerous algal blooms in
advance. Methods for predicting, preventing, and eliminating algae have been proposed
in various fields [38,39]. In this study, we presented a machine learning algorithm to
quickly observe algae. One such initiative was to use the chlorophyll-a estimation algo-
rithm presented in this paper to readily identify areas of dangerous algal blooms using
a hyperspectral image recording device for data that are collected using a drone or an
unmanned aerial vehicle. Previously, an analysis was carried out to estimate chlorophyll-a
using a water quality parameter and a specific wavelength band of the hyperspectral
sensor. Shafique et al. [13] and Murugan et al. [15] estimated chlorophyll-a by computing
specific wavelength band values. However, in the present study, we used a range of ma-
chine learning algorithms to estimate and evaluate chlorophyll-a concentration using just
hyperspectral sensor data. As a result, high R2 values were obtained for seven machine
learning methods, except for OLS, with the PLS preprocessing method. Using this method,
chlorophyll-a can be estimated immediately without measuring water quality data using
hyperspectral data acquired by drones and unmanned aerial vehicles.

Our study obtained reasonable results for several models. In particular, Keller [18] was
able to obtain an R2 of 0.914 using PCA with ET. Our data obtained generally good values
from all models using PLS. Moreover, the results were considered appropriate because the
values obtained using the evaluation metrics were not significantly different compared
with the chlorophyll-a estimation results of previous studies [18].

In this study, we used six evaluation metrics to explain the machine learning results.
Various evaluation indicators were applied to increase the objectivity of the analysis results.
In addition, the dimensions were reduced using PLS and PCA during pretreatment, which
led to better results.

However, we found several outcomes of interest in this study. Considering the fact
that algal blooms show significant differences from season to season, and that HABs occur
in the summer, the inability to use data over a long period of time may have an impact
on the application of the developed model. Moreover, because the data are not time-
dependent, we cannot apply deep learning models for estimation. Considering that the
ultimate solution for algal blooms is to predict the occurrence of algal blooms in advance,
the inability to use machine learning and deep learning for chlorophyll-a prediction could
be a limitation. This study presents the applicability and characteristics of machine learning
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models to predict algal bloom in a field reservoir. The collection of field data including
four-seasons observation in the future would improve the precision and applicability of the
model developed in this study.

5. Conclusions

In this study, we developed a method for estimating chlorophyll-a concentration with
high accuracy by applying various machine learning models to hyperspectral data and
comparing the results using various performance measures. The feasibility of estimating
chlorophyll-a using hyperspectral data was investigated, and the future application of
hyperspectral data was discussed [40,41]. Dimensionality reduction approaches, such
as PCA and PLS, as well as min-max scaling and standard scaling, were used in the
chlorophyll-a estimation preprocessing procedure. A framework for analysis was presented,
which included eight machine learning methods and data preprocessing methods. The
estimation performance of each framework was compared, and it was finally determined
that SVR was the best model among all the analysis frameworks.
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