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Abstract: In order to evaluate and project the quality of groundwater utilized for irrigation in the Sahara
aquifer in Algeria, this research employed irrigation water quality indices (IWQIs), artificial neural
network (ANN) models, and Gradient Boosting Regression (GBR), alongside multivariate statistical
analysis and a geographic information system (GIS), to assess and forecast the quality of groundwater
used for irrigation in the Sahara aquifer in Algeria. Twenty-seven groundwater samples were examined
using conventional analytical methods. The obtained physicochemical parameters for the collected
groundwater samples showed that Ca2+ > Mg2+ > Na+ > K+, and Cl− > SO4

2− > HCO3
− > NO3

−,
owing to the predominance of limestone, sandstone, and clay minerals under the effects of human
activity, ion dissolution, rock weathering, and exchange processes, which indicate a Ca-Cl water type.
For evaluating the quality of irrigation water, the IWQIs values such as irrigation water quality index
(IWQI), sodium adsorption ratio (SAR), Kelly index (KI), sodium percentage (Na%), permeability
index (PI), and magnesium hazard (MH) showed mean values of 47.17, 1.88, 0.25, 19.96, 41.18,
and 27.87, respectively. For instance, the IWQI values revealed that 33% of samples were severely
restricted for irrigation, while 67% of samples varied from moderate to high restriction for irrigation,
indicating that crops that are moderately to highly hypersensitive to salt should be watered in soft
soils without any compressed layers. Two-machine learning models were applied, i.e., the ANN and
GBR for IWQI, and the ANN model, which surpassed the GBR model. The findings showed that
ANN-2F had the highest correlation between IWQI and exceptional features, making it the most
accurate prediction model. For example, this model has two qualities that are critical for the IWQI
prediction. The outputs’ R2 values for the training and validation sets are 0.973 (RMSE = 2.492) and
0.958 (RMSE = 2.175), respectively. Finally, the application of physicochemical parameters and water
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quality indices supported by GIS methods, machine learning, and multivariate modeling is a useful
and practical strategy for evaluating the quality and development of groundwater.

Keywords: geographic information system (GIS); artificial neural network (ANN); multivariate
analysis; gradient boosting regression (GBR); Sahara aquifer; Algeria

1. Introduction

Groundwater is a crucial source of freshwater for humans. However, with enormous
population growth, agricultural use, industrialization, and unplanned urbanization, the
extraction of groundwater has continuously increased from 283 km3/year in the 1960s to
more than 700 km3/year in the last decades [1]. In many parts of the world, excessive
groundwater extraction threatens both the amount and quality of water by causing dramatic
drops in the water tables. Groundwater quality is essential in determining whether it is
acceptable for use in agriculture and other industries. Numerous elements, like the makeup
of the soil, seasonal variations, hydrogeochemical practices, and human actions, have an
influence on the quality of groundwater [2–6].

In recent years, the deterioration of groundwater quality has been exacerbated by
uncontrolled leaching of leachate from landfills, excessive use of fertilizers, and other
human activities that are significantly dangerous to human health [7–10]. Many studies
have evaluated groundwater quality in the world [11,12]. Nevertheless, the majority
of these studies primarily concentrated on single-parameter evaluation, in which the
governing elements were assessed individually, and the most compromised factor had a
significant influence on water quality [13]. Hence, there is an increasing need for techniques
that allow for better water quality interpretation to ensure effective groundwater quality
control and management. Owing to their statistical ease of use and adaptability. Irrigation
water quality indices (IWQIs) are among the best methods for monitoring groundwater
quality for agricultural activities. IWQIs can help to interpret complex water quality data
in simple terms [14–16]. Several indices have been used to categorize groundwater quality
for agricultural purposes. These indices include the irrigation water quality index (IWQI),
permeability index (PI), sodium adsorption ratio (SAR), Kelly index (KI), magnesium
hazard (MH), and sodium percentage (Na%) [17].

Additionally, researchers’ interest in the application of multivariate statistical methods,
such as principal component analysis (PCA) and cluster analysis (CA), as well as geo-
graphic information system (GIS) analysis, has grown [18], particularly in the assessment of
water quality [19]. Multivariate statistical approaches and GIS analysis have been utilized
collaboratively to highlight the primary variables affecting the geographical distribution of
groundwater quality. For example, Nas and Berktay [20] used GIS and traditional kriging
to analyze the spatial variation of groundwater quality indicators and map groundwater
quality in urban areas in Konya, Turkey. Gilbert et al. [21] used a combination of GIS and
multivariate analysis to analyze groundwater distribution in India. Studies conducted in
multiple nations, including the United States, and India, revealed that groundwater found
in various geological settings exhibits a variety of hydrochemical properties and falls into a
few graded categories of water intended for irrigation [14–16,22–26].

In addition, by assigning weights to important ions based on entropy, researchers have
explored approaches to reduce the subjectivity of existing water quality index technology,
which has been displayed to be a more precise and vital method for precise weighing
systems [27]. Water quality research, on the other hand, necessitates a significant amount
of data collection, laboratory analysis, data management, and testing [28]. As a result of the
computation’s subjectivity, WQI’s interpretation of the findings contains inconsistencies.
According to previous studies, there is not a perfect WQI model. Consequently, it is
crucial to implement a workable and affordable plan for accurate water quality assessment.
Further, techniques for selecting features based on models [29] can be used to isolate a
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subset of features that have a predictive and a high discriminative. This method can
improve model performance by reducing over-fitting and deleting unnecessary features.
In addition to enhancing interpretability, retaining the original feature representation has
its own set of advantages [30]. Moreover, there is a growing demand for feature selection
algorithms in the fields of modeling and prediction [31]. Numerous researchers have
investigated the effectiveness of various methods, such as Gradient Boosting Regression
(GBR), Decision Tree (DT), and Random Forest (RF), for reducing the dimensionality of
data. The RF model ranks all factors in terms of their importance [32]. Glorfeld [33] created
a back-propagation neural network index to recognize the most important elements. In
addition, the picking of hyperparameters has numerous benefits and can greatly affect the
performance of any machine learning model. It could, for instance, boost ML algorithm
performance [34] or make scientific studies more equitable and reproducible [35]. Given its
potential significance in bettering the prediction model [36], it has a direct impact on how
training algorithms act.

The groundwater of the Doucen plain is confined to the Sahara aquifers in the North-
western region of Ouled Djelal, Algeria. It is exposed to varying degrees of salinity, which
is attributed to the underlying fresh groundwater horizon, various pollutants of anthro-
pogenic origin, and connate water trapped in aquifer rocks. However, to the best of the
author’s knowledge, no comprehensive water quality research has been conducted on
the Doucen plain. Physicochemical parameters focused on hydrochemical features offer
preliminary knowledge regarding water facies, various geochemical pathways, and water
classification [17,37]. Therefore, this study aims to (i) identify the groundwater characteris-
tics, groundwater facies, and geochemical controlling mechanisms using physicochemical
parameters, Chloro-alkaline indices (CAI 1 and CAI 2), multiple graphical approaches,
and multivariate statistical analysis, (ii) assess and classify the groundwater quality for
irrigation using IWQIs and (iii) assess the performance of ANN and GBR models to forecast
the six IWQIs, namely IWQI, SAR, KI, Na%, MH, and PI.

2. Materials and Methods
2.1. Study Area

The region of Doucen is located in the Northwestern city (“wilaya”) of Ouled Djelal
(Figure 1). The plain of Doucen extends over almost 12.42 miles from the wilaya of Ouled
Djelal and 49.70 miles from the capital of the Biskra Provence. It is located at an elevation of
over 102 m and between 4◦57′ and 5◦17′ east longitude and 34◦30′ and 34◦45′ north latitude.
Area-wise, it’s 247.87 square miles, and it has administrative borders with the communes
of Chaiba to the west, El-Ghrouss to the east and north, the town of Ouled Djalel to the
south, the commune of Lioua to the east, and the commune of Still (El Oued willaya) to the
south-east. It is an oasis with a strong agricultural vocation that mainly produces dates
but also melons and watermelons. The commune of Doucen is vast, and it brings together
several urbanized centers; the most important ones are “Doucen Ville” and “Tafechna”.

Geologically, the Doucen region consists of formations of ages ranging from Secondary
to Quaternary. Secondary formations (Cretaceous) consist of limestone, crystalline lime-
stone, dolomites, sandstone, gypsum, anhydrite, clays, and marls, while tertiary formations
(Paleogene and Neogene) consist of limestone, marls, gypsum, clays, gravel, and sand red.
The quaternary formations consist of scree, pebbles, gravel, sand, gypsum limestone, sandy
alluvium, and clay alluvium (Figure 2). Hydrogeological studies have made it possible
to highlight the existence of several aquifer reservoirs of distinct importance in terms of
their lithological constitution, their geological structure, and the ease with which they are
exploited (Figure S1).
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2.2. Sampling and Hydrochemistry
2.2.1. Samples Collection

Twenty-seven (27) samples were collected from the study region (Figure 2). The
positions of the sample stations were recorded using a global positioning system (GPS
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map, 76 CSx). During and after the wet season, contaminants are likely to be susceptible
to seeping downhill [38]. Thus, water was pumped out for approximately 15 min before
sampling to eliminate stagnant water. The samples were collected using polypropylene
(PP) bottles, as proposed in a previous study [39]. Then, 0.45-µm acetate cellulose filters
were employed to clean the samples. In the absence of acidification, 250 cm3 PE bottles
were used for collecting samples for anions analysis. At last, the Algerian Waters laboratory
in Biskra received the samples that had been kept at a temperature of <4 ◦C (The laboratory
is accredited under ISO/IEC 17025).

2.2.2. Measurement of the Physicochemical Parameters

A WTW multiparameter (Weilheim, Germany) was used to monitor the physicochem-
ical parameters (pH, temperature, and electric conductivity). Titration was employed to
compute the concentrations of Ca2+, Mg2+, Cl−, and HCO3

− ions. The value of SO4
2− was

found by employing spectrophotometry. In addition, a flame photometer was utilized in
order to perform analyses on the K+ and Na+. TDS concentration was determined by weigh-
ing and drying at 103–105 ◦C in an oven. Nitrates were determined using the cadmium
column reduction method. With an analytical uncertainty of less than 4%, all samples were
examined in triplicate (Source: Gore, Michael. Spectrophotometry & Spectrofluorimetry.
New York: Oxford University Press, 2000). The cations-anions balance was initially checked
to make sure it was within 5%, which helped decide the analysis’ dependability by using
recommended techniques from the American Public Health Association (APHA) [40]. The
cadmium reduction method is a colorimetric method that involves contact of the nitrate
in the sample with cadmium particles, which causes nitrates to be converted to nitrites.
Hydrochemical outcomes were statistically investigated using DIAGRAMMES (version
5.8.0). STATISTICA software (version 8.0) was used to generate the results of the time series
analysis and multivariate statistics.

2.2.3. Multivariate Statistical Analysis for Data Treatment

Large datasets can be streamlined and organized using multivariate statistical ap-
proaches to produce valuable insights [41,42]. In our case, two multivariate statistical
methods, Viz. Cluster analysis (CA) and Principal component analysis (PCA) were applied
to evaluate the physicochemical variables of our groundwater samples. Using a suite of
multivariate techniques, cluster analysis can identify meaningful classes within a dataset.
Unlike the non-hierarchical method, the hierarchical approach to CA does not require
the entire number of clusters to be known in advance. According to a survey conducted
by Belkhiri et al. [43], Ward’s method is superior to others because it results in a larger
proportion of correctly identified observations. Thus, the present study adopts Ward’s
clustering method, and the Euclidean distance was used in the current work to apply
CA [44]. Minimal information loss was achieved by data reduction and the extraction of
the most important components using PCA [44]. The aim of this project was to conduct the
principal components analysis (PCA) method to extract the major elements related to the
various causes of variance in hydrochemical data collected from the Doucen plain because
PCA is used by Ridley. However, specifics were not shared [45].

2.3. Indexing Approaches
2.3.1. Chloro-Alkaline Indices (CAI 1 and CAI 2)

Multiple ionic connections were employed to assess the dynamic geochemical procedures
in the current investigation. It comprises the dealings of [Ca2+ + Mg2+] vs. [SO4

2− + HCO3
−],

[Ca2+ + Mg2+] vs. [HCO3
−], [Ca2+/Na+] vs. [Mg2+/Na+], [HCO3

−/Na+] vs. [Ca2+/Mg2+]
and [Na+] vs. [Cl−]. In addition, Equations (1) and (2) [46] were utilized to determine the ion
exchange processes in the shallow aquifer using the Chloro-alkaline indices (CAI 1 and CAI 2):

CAI 1 =
Cl− − (Na+ + K+)

Cl−
(1)
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CAI 2 =
Cl− − (Na+ + K+)

SO2−
4 + HCO−3 + CO2−

3 + NO−3
(2)

2.3.2. Irrigation Water Quality Indices (IWQIs)

According to Table 1, the IWQI, SAR, KI, Na%, MH, and PI% were all determined
depended on the physicochemical parameters of the samples.

Table 1. The IWQIs, related formula and reference.

WQIs Formula References

IWQI ∑n
i=1 QiWi [47]

SAR Na+√
(Ca2++Mg2+)/2

[48]

KI Na+

Ca2++Mg2+ [49]

Na% (Na++K+)
(Ca2++Mg2+)+(Na++K+)

× 100 [50]

MH
[
Mg2+/

(
Ca2+ + Mg2+

)]
× 100 [51]

PI
(

Na++
√

HCO−3
(Ca2++Mg2++Na+)

)
× 100 [52]

Note(s): All IWQIs are calculated in meq/L.

2.4. Spatial Distribution Pattern

GIS are important tools for the analysis and performance of spatial data associated
with groundwater source control. Our topographic map was digitized using the USGS
satellite and ArcGIS software (ver. 10.5.x) for the preparation of the base map of the study
area. Garmin GPSMAP 64sx was used to pinpoint the precise locations of the sampling
spots (i.e., bore hole locations) using the GIS platform. Using ArcGIS 10.5 software, we
were able to produce maps presenting the geographical distribution of groundwater quality
indicators, such as IWQI, SAR, KI, Na%, MH, and PI%, that are useful for irrigation.

2.5. Gradient Boosting Regression (GBR)

Decision trees are the building blocks of GBR and can be utilized for either regression
or classification. A set of trees was constructed, with each tree focusing on the prediction
residuals of the previous tree [53]. GBR’s hyperparameter tuning flexibility and ability to
optimize a broad range of loss functions make it a highly flexible function-fitting technique.
No pre-processing of the data is required, and it may be used for both numerical and
categorical information. In addition, GBR can handle missing data on a large timescale.
Simple trees are constructed in each iteration to prevent overfitting, and these can be used
to extrapolate to novel data sets with greater precision. In general, a boosting approach
has three parts: an additive model, some form of weak learners, and some type of loss
function. The technique uses differentiable loss functions, can learn organically between
input parameters over time, and can portray non-linear connections such as wind power
curves [21]. To overcome the shortcomings of the underdeveloped models, gradient
boosting machines are used to analyze gradients. To do this, we employ an iterative
technique in which we unite base learners to decrease forecasting errors. Specifically, we
use an additive model to combine decision trees and then employ gradient descent to
decrease the loss function. The GBT (gradient boosting tree) Fn(xt) can be stated as the
summation of n regression-trees (Equations (3) and (4)).

Fn(xt) = ∑n
i=1 fi(xt) (3)
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where every fi(xt) is a decision tree (regression-tree). The ensemble of trees is constructed
sequentially by estimating fn+1(xt) which is the new decision tree, using the following equation:

argmin∑t L(yt.Fn(xt) + fn+1(xt)) (4)

where L(.) is differentiable for loss-function L(.). A steepest descent method is used to solve
it.

During GBR training, two criteria were considered: the number of boosting stages
to perform (Ns) and the number of features to consider when looking for the best split
(Mf). For Ns and Mf, the parameter values were (5,10, 15, 20, 25) and (‘auto’, ‘sqrt’, ‘log2’),
respectively. Then, hyper-parameter optimization was performed, and the top-level model
was built using the best values.

2.6. Back-Propagation Neural Network (BPNN)

The backpropagation neural network (BPNN) model is extremely popular [54]. There
are three different types of layers that make up a BPNN: (1) the input layer, which serves
as the neural net’s primary data source; (2) the concealed layer, which acts as a bridge
between the independent inputs layer and the dependent output layer; and (3) the final
layer, which outputs the results of the inputs that were given. Artificial neural networks
(ANNs) are a layer-by-layer machine learning approach for extracting high-level features
from unstructured data. The number of nodes in the network is proportional to how well
the regression works, while the network itself contains a hidden layer. The hidden layers
nodes contain a set of parameters, which are typically referred to as weight and biases,
which are what constitute the “updated parameters” in the network. “Output layer” refers
to the final layer, and it shows the estimated value of the target variables. By adopting
a network of neurons or nodes connected by weighted connections, ANN models are
instances of generalized mathematical modeling that replicate the human brain in pattern
detection and prediction [55,56].

During training, the network was subjected to no fewer than 2000 iterations or until
the error measurement was less than 10−4. In order to train the model and determine the
optimal number of neurons (3, 6, 9, 12, 15, 18, and 21) for the model’s hidden layer, the
validation strategy was combined with the LOOV technique. During the development of
the ANN model, we investigated which activation function—”identity”, “logistic”, “tanh”,
and “relu”—was the most effective. The restriction imposed by memory to efficiently
implement the technique, the weight optimizer Broyden-Fletcher-Goldfarb-Shanno (lbfgs),
was employed [57]. The most important feature has to be identified so that the regression
model’s capacity for prediction may be increased and the complexity of hyperspectral
images can be reduced [33,58].

2.7. Datasets and Software for Data Analysis

In this study, 27 samples were used across the training and validation processes. The
model was trained and verified with the use of a technique known as leave-one-out cross-
validation (LOOCV). In each experiment, LOOCV will keep most of the data for training
purposes while setting aside a subset for validation. This approach may mitigate the effects
of over-fitting and yield a more precise measure of the model’s prediction ability [59]. The
software Python 3.7.3 was utilized for all these processes: data analysis, model construction,
and data preparation. To perform tasks involving regression, the GBR and the ANN
modules contained in the Scikit-learn package (version 0.20.2) were studied. A computer
with an Intel Core i7-3630QM CPU running at a frequency of 2.4 GHz and 8 GB of Random
Access Memory (RAM) was used for the data analysis.

2.8. Model Evaluation

The effectiveness of a regression model has been evaluated using the following sta-
tistical measures: the coefficient of determination (R2) and the root mean square error
(RMSE) [60,61].
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3. Results and Discussion
3.1. Groundwater Hydrochemical Properties

The analysis of the local elemental molar concentrations reveals that the cations
evolved as follows: Ca2+ > Mg2+ > Na+ > K+ while the anions evolve in the following
manner: Cl− > SO4

2− > HCO3
− > NO3

−. The distribution of the main ions (Ca2+, Mg2+,
and Cl−) is caused by anthropogenic factors such as irrigation water quality and unchecked
fertilization; it is also strongly influenced by the local lithology. Both calcium and magne-
sium can come from the dissolution of calcium or magnesium sulphates. The transition
from one dominant ratio to another can be done by dilution after mixing or precipitation of
one of the ions. Regarding the origins of Cl−, it may result from the soil’s high levels of
organic matter decomposing due to wastewater from “Doucen ville” [62]. Table 2 displays a
statistical summary of the groundwater samples that were analyzed in relation to irrigation
water standards.

Table 2. Descriptive outcomes of the groundwater samples with the standard limit for irrigation
activities.

Parameters FAO * Minimum Maximum Average Standard Deviation

pH 8.5 7.08 8.24 7.50 0.24
TDS 2000 1046 4650 2137 931
EC 3000 2091 9300 4274 1862
K+ 2 2.00 50.00 16.89 13.20

Na+ 919 50.00 340.00 167.11 89.98
Ca2+ 400 176.00 561.00 353.48 110.30
Mg2+ 60 75.00 423.00 155.44 84.31
SO4

2− 960 320.00 472.00 403.26 36.17
Cl− 1036 177.00 1808.00 621.67 384.37

HCO3
− 610 450.00 830.00 548.81 79.74

NO3
− 10 3.61 41.80 19.18 10.94

Note(s): FAO *: Food and Agricultural Organization [63].

According to the physicochemical parameters results (Table 2), the pH values varied
from 7.08 to 8.24 with a mean value of 7.50, which represents a weakly alkaline environ-
ment [64]. The pH values of the collected samples were within the allowable limit for
irrigation. The TDS values diverse from 1045.5 mg/L to 4950 mg/L with an average value
of 2136.81 mg/L (Table 2). Moreover, the electrical conductivity (EC) values ranged from
9300 µS/cm to 2091 µs/cm, with an average value of 4273.62 µS/cm (Table 2). According to
the results of EC values, the majority of our samples (74%) were unfit for irrigation purposes.
Table 2 shows that the average K+ content in our samples was 17.70 mg/L, with a range of
2–50 mg/L. This means that none of our groundwater samples are suitable for irrigation.
Because of the high concentration of K+, we can deduce that potash feldspars minerals
have been weathered and that chemical fertilizers (NPK) have been dissolved [65]. Further,
Na+ concentrations extended from 50 to 340 mg/L, with an average of 168 mg/L, making
all groundwater samples technically appropriate for irrigation (Table 2). The concentration
of the Ca+2 ion ranged from 176 to 561 mg/L, with a value of 353.48 mg/L serving as the
average (Table 2). As shown by the Ca+2 levels, the majority of the collected samples (78%)
were acceptable for irrigation, while 22% were not. This discrepancy might be attributed to
the impact of the dissolution of carbonate minerals from the gypsum deposits [66,67].

The concentration of Mg2+ ions in the collected water samples extended from 75 to
423 mg/L, with an average value of 155.44 mg/L (Table 2), signifying that all groundwater
samples were inappropriate for irrigation. The elevated concentration of Mg2+ revealed
leaching and ion exchange process of ferromagnesium minerals from the aquifer materi-
als [68,69]. The HCO3

− concentrations were from 450 to 830 mg/L, with an average of
548.81 mg/L. According to HCO3

− values, the majority of samples (93%) were within the
satisfactory limit for irrigation purposes consistent with the value guide of 610 mg/L [63].
According to [63], all of our groundwater samples were suitable for irrigation since their
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sulphate concentrations ranged from 320 to 472 mg/L, with an average of 403.29 mg/L
(Table 2). Overall, the chloride concentrations in the groundwater samples that were taken
diverse from 177 to 1808 mg/L, with an average of 621.66 mg/L (Table 2). Approximately
7% of the samples exceeded the required value related to irrigation, although the vast
majority (93%) were under the permitted level for irrigation. Evaporitic formations, per-
haps related to the local agro-food sector or urbanization via wastewater discharges [41],
contributed to the elevated chloride concentrations found in the groundwater samples.
Finally, the nitrate concentrations varied between 3.61 mg/L and 40.71 mg/L (average
value of 20.48 mg/L), as indicated in Table 2.

More than two-thirds (67%) of the groundwater samples had nitrates values too high
for irrigation, while 33% were completely unfit for the purpose.

The high concentration of NO3
− suggested anthropogenic activity due to excessive

inorganic nitrogenous fertilizer application, home and industrial wastes, and intense
irrigation [52,64,65,70].

3.2. Groundwater Facies and Source Identification
3.2.1. Groundwater Types

Geology, water-rock interaction, and groundwater flow pattern through the aquifer
are important in the production and classification of water types, which are, in turn,
explained by groundwater hydrochemical facies. To better understand the preponderance
of major ions in the groundwater aquifer, a Piper diagram was developed to depict the
geochemical attribution and hydrogeochemical properties of groundwater [71]. Rock-water
interaction, ion exchange, weathering of soils, and salt-bearing sedimentary rock were the
main geochemical controlling processes, as shown in Figure 3.
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3.2.2. Processes Influencing Groundwater Chemistry

The diagram of Gibbs can help in identifying the variables that affect the hydrochem-
istry of groundwater [72]. It classified the water into three types such as precipitation
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dominance, rock dominance, and evaporation dominance [73,74]. As shown in Figure 4,
water-rock interactions appear to be the predominant natural process governing water
chemistry, as evidenced by the fact that groundwater samples cluster in the rock weath-
ering dominating field and the evaporation zone dominance. Furthermore, the ratios of
Na+/(Na+ + Ca2+) were from 0.31 to 0.53; an average of 0.31 was recorded, which showed
a robust cation exchange in the organization [47,75] according to Equations (5) and (6):
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Ion exchange:
2NaX + Ca2+ → 2Na+ + CaX2 (5)

Reverse Ion exchange:

CaX2 + 2Na+ → Ca2+ + 2NaX (6)

The scatter plot HCO3/Na versus Ca/Na revealed a high influence on the weathering
process (Figure 5a). Generally, the dissolution of calcite minerals and dolomite was respon-
sible for high Ca2+ and Mg2+ along with HCO3

− ions in groundwater [76,77]. Moreover,
the scatter plot between Mg/Na and Ca/Na demonstrated that the main mechanism and
factor contributing to the presence of magnesium in groundwater is silicate weathering
(Figure 5b). Nonetheless, the Ca2+ + Mg2+ vs. HCO3

− + SO4
2− relations of most groundwa-

ter samples (Figure 5c) revealed the non-dominancy of carbonate weathering in the study
area. The plotting of Ca2+ + Mg2+ versus HCO3

− (Figure 5d) indicated an excess of HCO3
−

due to rock weathering and the ion exchange process, which was a prime mechanism to
release the HCO3

− into the groundwater [78]. Consequently, Na+: Cl− ratios in the majority
of samples were lower than unity (Figure 5e). According to Figure 5e, the ratio of Na+/Cl−

was 0.28, indicating another chloride source [79]. Finally, chloro-alkaline indices (CAI) were
applied to examine the cation exchange process and geochemical controlling mechanisms
on the groundwater chemistry. The CAI values such as CAI 1 and CAI 2 showed positive
values (Figure 5f), which indicates high cation exchange tendency between the Ca2+ and
Mg2+ in the surrounding rock and Na+ and K+ in the groundwater [75,80,81].

3.3. Analysis of Multivariate Statistics
3.3.1. Cluster Analysis

Concerning the similarity of the groundwater samples, a combination of Ward’s
linkage technique and Euclidean distance were used. In Figure 6, the Dendrogram was
displayed to classify the different physicochemical variables in the obtained groundwater
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samples. In order to roughly match normally distributed data, all variables were log-
transformed. Standard scores (z-scores) were calculated and applied to each variable [82].
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2− + HCO3
−], (d) [Ca2+ + Mg2+] vs. [HCO3
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The Dendrogram of the ten physicochemical parameters (Mg2+, Ca2+, K+, Na+, Cl−,
HCO3

−, NO3
−, SO4

2−, EC and TDS) had been divided into three main groups (Figure 6).
The obtained results revealed that TDS and EC were the major distinction parameters.
The first group (G1) revealed a close association between the carbonate’s parameters
HCO3

−, SO4
2−, Mg2+, and Ca2+, due to the major predominance of Mg2+, Ca2+ in the

chemical composition of our groundwaters, such as sulphates or anhydride and calcium
sulphates. The second group (G2) revealed a close association between the evaporate
parameters. For example, Na+, K+, Cl−, EC, and TDS, indicate the main participation of
chlorides and salts in the electrical conductivity with the dominance of Cl− in the chemical
composition of groundwater in the study region. Both G1 and G2 demonstrated that the
lithological component dominated the mineralization of the Plio-Quaternary aquifer’s
waters in Doucen. Finally, the third group (G3) showed a close association between
Mg2+ and Ca2+, indicating the probable same origin of these two elements. G3 showed
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the dissociation of nitrates from other chemical elements present in groundwater, which
indicates an anthropogenic source.

Water 2023, 15, x FOR PEER REVIEW 13 of 25 
 

 

groundwater in the study region. Both G1 and G2 demonstrated that the lithological com-

ponent dominated the mineralization of the Plio-Quaternary aquifer’s waters in Doucen. 

Finally, the third group (G3) showed a close association between Mg2+ and Ca2+, indicating 

the probable same origin of these two elements. G3 showed the dissociation of nitrates 

from other chemical elements present in groundwater, which indicates an anthropogenic 

source. 

 

Figure 6. Cluster dendrogram for variables: G1 (group 1), G2 (group 2), G3 (group 3) and the groups 

could be distinguished in terms of their hydrochemical variable at the red line. 

3.3.2. Principal Component Analysis (PCA) 

Three factors (F) were retained from the PCA analysis with an Eigen value of more 

than one. F1 explained 59.86% of the dataset variability, while F2 and F3 explained, re-

spectively, 11.35% and 10.35% (Figure 7). The value of the variable loading is presented in 

Table 3. The value close to ±1 revealed a high correlation between the factor and the vari-

ables. These loadings are further categorized into three categories, such as strong (>±0.75), 

moderate (±0.75 to ±0.50), and weak (±0.50 to ±0.30), as reported by Hinge et al. [44,74]. F1 

has a robust positive relationship with TDS, EC, Cl-, Ca3+, Mg2+, K+, and SO42−. The source 

of SO42− may be oxidation of SO42− coming from fertilizer and sulfur compounds. The Ca2+, 

Mg2+, and K+ could be due to anthropogenic sources, such as irrigation water quality, do-

mestic waste, and uncontrolled fertilization. The presence of chloride could be due to 

weathering of soils and salt-bearing formation. F2 was moderately correlated with Na+, 

while F3 was highly correlated with NO3− and moderate correlation with HCO3−, which 

indicates alkaline water passing through rocks and soil. These results shed light on the 

methods through which human activities, rock weathering, and the ion exchange process 

affect groundwater quality. 

Figure 6. Cluster dendrogram for variables: G1 (group 1), G2 (group 2), G3 (group 3) and the groups
could be distinguished in terms of their hydrochemical variable at the red line.

3.3.2. Principal Component Analysis (PCA)

Three factors (F) were retained from the PCA analysis with an Eigen value of more than
one. F1 explained 59.86% of the dataset variability, while F2 and F3 explained, respectively,
11.35% and 10.35% (Figure 7). The value of the variable loading is presented in Table 3. The
value close to ±1 revealed a high correlation between the factor and the variables. These
loadings are further categorized into three categories, such as strong (>±0.75), moderate
(±0.75 to ±0.50), and weak (±0.50 to ±0.30), as reported by Hinge et al. [44,74]. F1 has a
robust positive relationship with TDS, EC, Cl−, Ca3+, Mg2+, K+, and SO4

2−. The source
of SO4

2− may be oxidation of SO4
2− coming from fertilizer and sulfur compounds. The

Ca2+, Mg2+, and K+ could be due to anthropogenic sources, such as irrigation water quality,
domestic waste, and uncontrolled fertilization. The presence of chloride could be due to
weathering of soils and salt-bearing formation. F2 was moderately correlated with Na+,
while F3 was highly correlated with NO3

− and moderate correlation with HCO3
−, which

indicates alkaline water passing through rocks and soil. These results shed light on the
methods through which human activities, rock weathering, and the ion exchange process
affect groundwater quality.

3.4. Irrigation Water Quality Indices

Based on the parameters’ standard value intervals, we classified the quality of the
irrigation water in our study area using the IWQI, SAR, KI, MH, Na%, and PI (Table 4).

3.4.1. Irrigation Water Quality Index

IWQI involves the usage of either individual chemical indices [81,83–85] or several
associated indices [47,86,87]. Although evaluating groundwater for irrigation based on indi-
vidual characteristics is useful, the combined indices give decision-makers more insightful
information.
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Table 3. Correlation between the different physicochemical parameters and factors.

Parameter F1 F2 F3

EC 0.965 0.051 −0.016
TDS 0.965 0.051 −0.016
Ca2+ 0.781 −0.438 0.200
Mg2+ 0.761 −0.448 0.121

HCO3
− 0.514 −0.007 0.551

Cl− 0.920 0.166 −0.148
Na+ 0.724 0.522 −0.141
K+ 0.805 0.444 −0.147

SO4
2− 0.761 −0.241 0.089

NO3
− −0.274 0.427 0.778

F1 (factor 1), F2 (factor 2), F3 (factor 3).

Table 4. Statistical analysis and classes of IWQIs.

Criteria Min Max Mean Range Class Number of Samples (%)

IWQI

19.01 73.61 47.17 85–100 No restriction 0 (0.0%)
70–85 Low restriction 0 (0.0%)
55–70 Moderate restriction 9 (33.33%)
40–55 High restriction 9 (33.33%)
0–40 Severe restriction 9 (33.33%)

SAR

0.63 4.10 1.88 <10 Excellent 27 (100%)
10–18 Good 0.00
19–26 Fair Poor 0.00
>26 Unsuitable 0.00

KI
0.08 0.62 0.25 <1 Suitable 27 (100%)

>1 Unsuitable 0.00

Na%

7.88 39.31 19.96 <20% Excellent 16 (59.26%)
21–40% Good 11 (40.74%)
41–60% Permissible 0.00
61–80% Doubtful 0.00
>80% Unsuitable 0.00

MH
25.38 56.22 41.18 <50% Suitable 25 (92.59%)

>50% Unsuitable 2 (7.41%)

PI
13.95 46.68 27.87 >75% Suitable 0.00

25–75% Moderate 15 (55.55%)
<25% Unsuitable 12 (44.44%)
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In this study, five hazard parameters have been used: SAR, EC, Cl, Na, and HCO3,
to judge the groundwater’s viability for irrigation in agriculture [47]. The resulting IWQI
value varies from 19.01 to 73.61, with an average value of 47.17. The IWQI suitability
categorization of groundwater samples falls into three categories (moderate, high, and
severe restriction) with an equal 33.33% (Table 4). Based on physicochemical parameters,
the overall index map shows the water’s appropriateness for irrigation (Figure 8a). A map
can be used to estimate groundwater validation for irrigation. According to IWQI values,
the central region of our region has documented water quality degradation brought on by
anthropogenic activities and geogenic sources (rock weathering and the ion exchange process).

3.4.2. Sodium Adsorption Ratio

The ability of the soil structure in the aquifer is shown by the sodium adsorption
ratio. SAR is also employed in irrigation water to remove Ca2+ and Mg2+ ions and acquire
Na+ ions from groundwater at ion-exchangeable sites, potentially causing soil particle
dispersion and a decrease in infiltration capacity [88,89]. Whilst significant salinity of water
can benefit the structure of the soil by improving the infiltration rate, which causes more
water stress in plants. Table 4 shows that the calculated percent of SAR in groundwater
samples varied from 0.63% to 4.1% (mean of 1.88%). According to sodium adsorption
(SAR), four classes were created to identify the irrigation water [48], unsuitable (>26%),
fair poor (19–26%), good (10–18%), and excellent (<10%). The value of SAR indicated that
all of the study site’s water samples belong to the excellent category, which indicates its
suitability for irrigation (Figure 8b). These results showed that irrigated water had no
impact on crop output or soil infiltration.

3.4.3. Kelly Index

Groundwater suitability for irrigation was determined using the KI method, and the
results indicated an overabundance of sodium ions in the water [90]. The KI value was
diverse from 0.08 to 0.62, with a mean value of 0.25. With regards to the KI outcomes, 100%
of the groundwater samples were deemed irrigation-ready (Table 4 and Figure 8c). If the
KI value is greater than one (KI > 1), there is too much sodium present, whereas a number
lower than one (KI < 1) denotes irrigation-ready water [91,92].

3.4.4. Sodium Percentage

Since Na+ concentrations have a negative effect on soil permeability, Na% can be
utilized to define whether or not water is appropriate for irrigation purposes [93]. Clay
minerals remove Mg2+ ions and Ca2+ from irrigation water by absorbing excess Na+. Na+

in water is exchanged for Ca2+ and Mg2+ in soil, reducing permittivity and, therefore, soil
penetration. Sodium concentration ranged from 7.88% to 39.31%, with a mean of 19.95%
across all samples (Table 4). There are five categories for the quality of irrigation water
depending on the Na% value [94]: excellent (20%), acceptable (20–40%), allowed (40–60%),
dubious (60–80%), and inappropriate (>80%). About 59.26% of the samples are in the
excellent class, and these are positioned in the north, south east, and south west of the
tested area. Nonetheless, about 40.74% of the samples are in the ideal category for irrigation
and are located in the geographic center of the region (Figure 8d).

3.4.5. Magnesium Hazards

MH, defined as the ratio of magnesium to calcium in the water, was estimated using
the above-mentioned equation (Table 1). As shown in the MH value, there are two main
categories of groundwater utilization in irrigation. If the MH value is below 50%, the water
is considered appropriate, whereas if it is above 50%, it is deemed unsuitable [95]. The
rate at which soil absorbs water from irrigation may be affected by the adsorption of clay
minerals to Mg2+ ions in water if the concentration of Mg ions is larger than that of calcium
ions [89]. The groundwater samples showed the MH value varied from 25.38 to 56.22, with
a mean value of 41.17. With an MH value of less than 50, groundwater was appropriate for
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irrigation in 25 samples, while with an MH value of more than 50, it was not (Figure 8e).
These inappropriate samples are situated in the research area’s northern region.
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3.4.6. Permeability Index

Since irrigation water consumption has a lasting effect on soil permeability, the PI
serves as a vital gauge of irrigation water quality; it is regulated by bicarbonate, calcium,
magnesium, and sodium ions found in the soil. To decide whether or not groundwater is
suitable for irrigation [96], the parameter PI was used with the following cutoffs: unsuitable
(PI = 25), good (PI = 25–75), and excellent (PI > 75). The PI value for our samples was
reported to range from 13.95 to 46.68, with an average value of 27.86. Approximately
55.55% of the water samples were found in the moderate class, and the rest (44.44%) were
unsuitable for irrigation; these samples were located in the north, south east, and south
west of our area (Figure 8f).

4. IWQIs Prediction Using GBR and ANN

The high-level variables were filtered using the studied parameters, as shown in
Table 5 and Figure 9, using the GBR and ANN models. These characteristics contributed
to the identification of IWQI, SAR, KI, Na%, MH, and PI. The training and testing results
(accuracy and RMSE) for forecasting the investigated parameters using the GBR and
ANN models are publicized in Table 5 and Figure 9. The unused reserved values of
GBR and ANN models were compared to the expected values. Results from the present
study examination and comparison of multivariate methods show that this approach
significantly improves predictability. Relying on independent validation to assess the
accuracy of a regression model is preferable since validation data are not incorporated
into the model construction practice. In this work, to forecast each output, the ANN
model has surpassed the GBR model. The findings showed that the ANN-2F had the
highest correlation between IWQI and the exceptional features, making it the most accurate
prediction model. This model has roughly two qualities that are critical for IWQI prediction.
The R2 and RMSE values for the training and validation sets were 0.973, 2.492, and 0.958,
2.175, respectively. When measuring SAR, the ANN-3F model had the best outcomes.
In the training set, the R2 value was 0.999 (RMSE = 0.003), and in the testing phase, it
was 0.999 (RMSE = 0.006). The most accurate model (ANN-3F) for determining KI had
RMSE values for the training and testing sets of 0.002 and 0.004, respectively, and R2

values of 0.999, and 0.999, respectively. Na% predictions were most accurate with the
ANN-2F model. Regarding the training and test sets, the model achieved an R2 of 1.0
(RMSE = 2.306 × 10−7) and 1.0 (RMSE = 4.169 × 10−7). The ANN-2F model accurately
forecasted the MH. R2 scores for the training and testing sets were 0.999 (RMSE = 0.005
and 0.036, respectively). In terms of predicting the PI, the ANN-4F model outscored
other models. With R2 values of 0.999 for the training set and 0.999 for the testing set
(RMSE = 0.003 and 0.106, respectively), the model completed well. According to [97], who
assert that the performance exceeded expectations, several techniques, including filtering
high-level characteristics and changing model hyperparameters, were necessary to update
regression approaches for correct prediction. In four main areas, deep learning algorithms
exceed expectations: selecting the most relevant feature from an image’s color space,
integrating image data with information about plants’ surroundings, augmenting data, and
merging separate trained deep networks [98].
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Table 5. The outcomes of GBR and ANN models based on optimal features.

Variable Model
Optimal Features

(F)
Hyper-Parameters Training Validation

R2 RMSE R2 RMSE

IWQI

GBR EC, Na+, Cl− (Ns = 25,
Mf = log2) 0.991 1.481 0.951 2.562

ANN Cl−, Na+ (h1 = 18, h2 = 9,
fun = relu) 0.973 2.492 0.958 2.175

SAR

GBR Mg2+, Na+ (Ns = 25,
Mf = log2) 0.983 0.128 0.841 0.294

ANN Ca2+, Mg2+, Na+ (h1 = 9, h2 = 12,
fun = logistic) 0.999 0.003 0.999 0.006

KI

GBR Mg2+, Na+ (Ns = 25,
Mf = log2) 0.981 0.020 0.763 0.054

ANN Mg2+, Na+, Ca2+ (h1 = 6, h2 = 15,
fun = tanh) 0.999 0.002 0.999 0.004

Na%

GBR Mg2+, Ca2+, Na+ (Ns = 25,
Mf = auto) 0.990 0.909 0.783 3.186

ANN Ca2+, Na+ (h1 = 3, h2 = 18,
fun = identity) 1.0 2.306 ×

10−7 1.0 4.169 ×
10−7

MH

GBR Ca2+, Mg2+ (Ns = 25,
Mf = auto) 0.969 1.125 0.557 2.946

ANN Ca2+, Mg2+ (h1 = 9, h2 = 9,
fun = logistic) 0.999 0.005 0.999 0.036

PI

GBR Na+, Mg2+ (Ns = 25,
Mf = auto) 0.984 1.093 0.577 4.147

ANN HCO3
−, Mg2+, Ca2+, Na+ (h1 = 18, h2 = 15,

fun = logistic) 0.999 0.003 0.999 0.106

Note(s): where Ns is the number of boosting stages to perform, Mf is the number of features to consider when
looking for the best split, h1 and h2 are amount of neurons in the two hidden layers, and fun is the activation
function.
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5. Conclusions

In this study, IWQIs, multivariate statistical analyses, GBR, and ANN models, backed
by GIS techniques, were applied to determine groundwater quality for irrigation in the
Doucen Plain, Northeastern Ouled Djelal, Algeria. According to the physicochemical re-
sults, groundwater in the study area revealed ion sequences of Ca2+ > Mg2+ > Na+ > K+,
and Cl− > SO4

2− > HCO3
− > NO3

−, which indicates Ca-Cl water type due to the domi-
nance of sandstone, limestone and clay minerals under the influence of anthropogenic
activities, rock weathering, ion dissolution, and exchange processes. The IWQI values
revealed that 33% of our samples were severely restricted for irrigation, while 67% were
diverse from moderate to high constraints for irrigation. In addition, SAR, KI, Na%, MH,
and PI% showed that 100.0%, 100.0%, 59.0%, 92.0%, and 44.0% of groundwater samples
were classified as excellent, suitable, excellent, suitable, and suitable, respectively. The
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ANN model has surpassed the GBR model. The findings showed that the ANN-2F had the
highest correlation between IWQI and the exceptional features, making it the most accurate
prediction model. For example, the most accurate model (ANN-3F) for determining KI
had RMSE values for the training and testing sets of 0.002 and 0.004, respectively, with R2

values of 0.999 and 0.999. Accordingly, an effective and practical strategy for assessing the
quality of groundwater and its development is the use of physicochemical parameters and
water quality indices supported by GIS techniques, multivariate modeling, and machine
learning.
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