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Abstract: Machine learning has been used to mine the massive data collected by automatic en-
vironmental monitoring systems and predict the changes in the environmental factors in lakes.
However, further study is needed to assess the feasibility of the development of a universal machine-
learning-based turbidity model for a large shallow lake with considerable spatial heterogeneity in
environmental factors. In this study, we collected and examined sediment and water quality data
from Lake Taihu, China. Three monitoring stations were established in three lake zones to obtain
continuous time series data of the water quality and meteorological variables. We used these data to
develop three turbidity models based on long short-term memory (LSTM). The three zones differed
in terms of environmental factors related to turbidity: in West Taihu, the Lake Center, and the mouth
of Gonghu Bay, the critical shear stress of bed sediments was 0.029, 0.055, and 0.032 N m−2, and the
chlorophyll-a concentration was 23.27, 14.62, 30.80 µg L−1, respectively. The LSTM-based turbidity
model developed for any zone could predict the turbidity in the other two zones. For the model
developed for West Taihu, its performance to predict the turbidity in the local zone (i.e., West Taihu)
was inferior to that for the other zones; the reverse applied to the models developed for the Lake
Center and Gonghu Bay. This can be attributed to the complex hydrodynamics in West Taihu, which
weakens the learning of LSTM from the time series data. This study explores the feasibility of the
development of a universal LSTM-based turbidity model for Lake Taihu and promotes the application
of machine learning algorithms to large shallow lakes.

Keywords: long short-term memory; Lake Taihu; spatial difference; turbidity

1. Introduction

Turbidity is a measure of the decrease in water clarity due to insoluble substances.
Decreased translucency due to increased turbidity impairs both the landscape value and
light-dependent biogeochemical processes of lakes [1,2]. Therefore, turbidity is an im-
portant indicator of the quality of lake environments [3], and is included in almost all
automatic lake environment monitoring systems. Although the importance of turbidity
has been widely recognized and large volumes of turbidity data have been collected, few
studies have focused on using other environmental factors to predict turbidity. Turbidity is
a composite water quality indicator that integrates the characteristics of sediments, humus,
algae, colloids, and other particles in lake water [4]. It is strongly nonlinear; therefore, it is
difficult to accurately simulate turbidity changes in lakes using regression models [5].

Having benefited from the developments of computer technology and science in
recent years, machine learning has been widely applied to the field of environmental
science and has significantly improved the interpretation of environmental monitoring
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data and the prediction accuracy of complex environmental factors [6,7]. Artificial neural
networks [8–11], such as backpropagation neural networks [12] and recurrent neural
networks [13], have been frequently used to predict lake environmental factors using the
massive volumes of data collected by environmental monitoring programs. The long short-
term memory (LSTM) model, which is a type of recurrent neural network, is particularly
suitable for time series data [14], and is one of the most popular machine learning methods
for predicting environmental factors, such as water level [15], dissolved oxygen [16],
chlorophyll-a concentration [17], and turbidity [18], in lakes.

However, it is necessary to evaluate the differences between the machine-learning-
based turbidity models developed for different zones in a large lake [19]. A machine-
learning-based model is usually trained based on the data from a single field station.
However, the environmental factors in a large lake usually exhibit large temporal and
spatial variations, and the data from a single station may not be representative of the
conditions of all of the zones in the lake. For example, the critical shear stress of sediments
varies spatially because of the spatial heterogeneity of the physicochemical properties of
sediments in large lakes [20], which in turn impacts the spatiotemporal distribution of the
suspended sediment concentration [21]. In a large shallow lake that is susceptible to algal
blooms, the turbidity may be affected by the spatial heterogeneity of algal particulates [22].
Theoretically, machine-learning-based models are point-based and are unable to take into
account such heterogeneities [23]. Few studies have focused on the adaptability of the
models that are trained using the data from a single field station. Therefore, in this study,
we examine the applicability of these models to predict the turbidity in different zones of
large lakes.

For this study, three high-frequency field stations were established in three zones
of Lake Taihu, China, to obtain continuous time series data of the water quality and
meteorological variables. We used these time series data and developed three LSTM-based
turbidity models to simulate the turbidity changes in the three zones; we compared the
accuracy of the simulation results from the different models. Our main objectives are: (1) to
study the differences in performance between the LSTM-based turbidity models trained
by the time series data collected from different zones of Lake Taihu; and (2) to explore the
feasibility of the development of a universal LSTM-based turbidity model for this large
shallow lake.

2. Materials and Methods
2.1. Study Area

Lake Taihu, located in the economically developed and densely populated middle
and lower reaches of the Yangtze River in China, has a surface area of approximately
2338 km2. It is a typical large shallow lake, with an average depth of 1.9 m and a maximum
depth of less than 3 m [24]. The Lake Taihu basin is in a subtropical monsoon climate
zone, with southeasterly winds prevailing in summer and autumn and northwesterly
winds prevailing in winter and spring [24]. Studies have shown that the wind field has
an important influence on the turbidity of Lake Taihu [25]. The inflows are mainly on the
western lakeshore, while the outflows are on the eastern lakeshore (Figure 1). The inflows
carry a large number of upstream sediments into Lake Taihu and result in the silting up of
West Taihu. In addition, Lake Taihu suffers from severe eutrophication and cyanobacterial
blooms occur frequently in the northwestern part of the lake between April and October
every year [26].

2.2. Data Collection
2.2.1. Sediment and Chlorophyll-a

The sediments were collected and examined at 116 sediment sampling sites (Figure 1)
distributed across Lake Taihu. At each site, the thickness of the sludge was measured
using the rod measurement method [27], samples of the uppermost sediments (about
50 g) were collected for physical and chemical analyses, and the latitude and longitude were
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recorded. The Taihu Laboratory for Lake Ecosystem Research provided monthly lab-based
chlorophyll-a (Chl-a) concentrations at all of the chlorophyll-a sampling sites (Figure 1) for
2017–2021, and analyzed the density and the moisture content of the sediments.
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2.2.2. High-Frequency In Situ Observations

We established three environmental monitoring stations along a southwest-northeast
transect across Lake Taihu. The water quality and meteorological data were automatically
collected at the stations located in West Taihu (S1), Lake Center (S2), and the mouth of
Gonghu Bay (S3) (Figure 1). At each station, a YSI-6600 Sonde (YSI Inc., Yellow Springs,
OH, USA) was installed 1 m below the lake surface: it measured the water temperature
(0.001 ◦C), conductivity (0.01 mS cm−1), pH (0.01), chlorophyll-a (0.01 ug/L−1), phyco-
cyanin (0.01 ug/L−1), dissolved oxygen (0.01 mg L−1), and turbidity (0.1 NTU). At each
station, a portable weather station WXT520 (Vaisala, Finland) was installed 4 m above
the lake surface: it measured the wind speed (0.1 m s−1), temperature (0.1 ◦C), relative
humidity (0.1%), and pressure (0.1 hPa). Sondes were calibrated weekly. Sampling interval
was 30 min for both Sonde and WX520.

2.3. LSTM-Based Turbidity Model
2.3.1. LSTM

The LSTM is a special type of recurrent neural network [14]. It has three different
types of gates: the forget gate, input gate, and output gate. The forget gate is responsible
for discarding or retaining information; the input gate is responsible for updating the
state of the neural cell; and the output gate is responsible for determining the value
of the hidden state that is input to the next neural cell. Therefore, the LSTM model
can remember important information from earlier time steps without being affected by
short-term memory [28]. In machine learning, the vanishing gradient problem could be
encountered when training artificial neural networks with gradient-based learning methods
and backpropagation [29]. In such methods, during each iteration of training, each of the
neural network’s weights receives an update proportional to the partial derivative of the
error function with respect to the current weight. The LSTM is able to effectively avoid
such a problem and is better at learning long-term sequence data.
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2.3.2. Development of LSTM-Based Turbidity Model

For each station, each raw time series dataset (e.g., wind speed or turbidity) was
normalized and transformed into a supervised learning dataset using walk-forward val-
idation [30] (Figure 2). The transformed dataset was further split into a training set, a
validation set and a test set, which were used for training, evaluation, and error detection,
respectively. During data processing, the input time window (2–16 h) and the size of the
training set (600–9000 sets) were adjusted continuously to determine the optimum solution
for the initial input data.
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Using TensorFlow (Mountain View, CA, USA), we developed and applied three LSTM-
based turbidity models: LSTM_S1, LSTM_S2, and LSTM_S3 were based on the time series
data from the sites S1, S2, and S3, respectively.

2.3.3. LSTM Model Experiments

We designed different wind field scenarios (LSTM_W, Table 1) to evaluate the influence
of the wind speed on the performance of the LSTM-based turbidity models. We used the
model based on the time series data collected from Station S2 (LSTM_S2); LSTM_S2-W1
is the model prediction that omits the future wind speed and LSTM_S2-W2 is the model
prediction that takes into account the future wind speed.

Table 1. Wind field (LSTM_W) and station (LSTM_S) scenarios used in model experiments.

Scenario Prediction Future Wind Speed Train Set Test Set

LSTM_W
LSTM_S2-W1 No S2 S2
LSTM_S2-W2 Yes S2 S2

LSTM_S
LSTM_S11, S12, S13 Yes S1 S1, S2, S3
LSTM_S21, S22, S23 Yes S2 S1, S2, S3
LSTM_S31, S32, S33 Yes S3 S1, S2, S3

Remark: S1, S2, and S3 represent the dataset comprising raw data collected at stations S1, S2, and S3, respectively.

We designed station scenarios (LSTM_S, Table 1) to assess the differences between
LSTM_S1, LSTM_S2, and LSTM_S3. We used LSTM_S1 to predict the turbidity at stations
S1, S2, and S3; LSTM_S11, S12, and S13 are the model predictions for S1, S2, and S3,
respectively. Similarly, LSTM_S21, S22, and S23 are the predictions of LSTM_S2 for S1,
S2, and S3; LSTM_S31, S32, and S33 are the predictions of LSTM_S3. We examined and
compared the different model predictions.
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2.4. Data Processing and Analysis

We used Kriging to obtain the spatial distribution of sediments in Lake Taihu. The
data from the Chl-a sampling sites that were the nearest to S1, S2, and S3 were used to
calculate the average Chl-a concentrations at S1, S2, and S3.

After using the linear interpolation to replace some abnormal and missing data, we
obtained 34,850 usable records at the sites S1, S2, and S3.

The standard wind speed at 10 m above the lake surface, W10, was calculated from the
raw wind speed data using the following equation [5]:

W10 = WS

 ln
(

10
z0

)
ln
(

z
z0

)
 (1)

where WS is the observed wind speed; z0 is the roughness of the lake surface and is set to
0.001 m [5]; z = 4 m is the height at which the wind speed was measured. The critical shear
stress (τce) of the bed sediments was calculated by:

τce = 0.065(ρsd − ρ)1.5, (2)

where ρsd is the bulk density of the fresh sediment and ρ is the water density. The data
analyses of the time series turbidity, wind speed, and Chl-a data from S1, S2, and S3 were
performed using SPSS (Armonk, NY, USA); they included correlation analysis, calculation
of descriptive statistics, one-way Analysis of Variance (ANOVA), and Least Significant
Difference (LSD) post hoc tests.

The root mean square error (RMSE) and Nash–Sutcliffe Efficiency Coefficient (NSE)
were used to test the model results. The former primarily measures the errors in a single
set of measurements, while the latter measures the errors of the peak simulation. A lower
RMSE value and a higher NSE value indicate a higher forecasting performance and accuracy.
The formulas for the RMSE and NSE are given by:

RMSE =

√
∑n

i=1(Si − Oi)
2

n
, (3)

NSE = 1 − ∑n
i=1(Oi − Si)

2

∑n
i=1
(
Oi − O

)2 (4)

where O is the observed value, S is the predicted value, and O is the average of the
observed values.

3. Results
3.1. Sediment Characteristics

Most of the sediments are located in the western and southern parts of the lake; and
the sediment thickness is relatively higher (lower) in the southwestern (northeastern) lake;
few sediments are located at Station Lake Center (S2) (Figure 3).

At S1, S2, and S3, the sludge thickness was 20, 0 (no sludge), and 7.5 cm, respectively;
the density of the bed sediments was 1.58, 1.90, and 1.62 kg m−3; the moisture content was
53.82%, 45.45%, 51.93%; the critical shear stress was 0.029, 0.055, and 0.032 N m−2.

3.2. Turbidity, Wind, and Chl-a during In Situ Observations

During the period of in situ observations, the mean turbidity at S1, S2, and S3 was
116.46, 60.51, and 45.15 NTU, respectively (Table 2), and the mean Chl-a concentration at
S1, S2, and S3 was 23.27, 14.62, 30.80 ug L−1, respectively. Meanwhile, the mean wind
speed at S1, S2, and S3 was 4.27, 4.75, and 4.29 m s−1, respectively (Table 2); the wind speed
evidently affects the turbidity.
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Table 2. Statistical characteristics of turbidity, wind speed, and chlorophyll-a (Chl-a).

S1 S2 S3

Turbidity (NTU)
Mean 116.46 60.51 45.15

Standard Deviation 80.39 36.92 37.84
Maximum 314.20 289.30 259.40

Wind Speed (m s−1)
Mean 4.27 4.75 4.29

Standard Deviation 2.30 2.36 2.62
Maximum 12.26 14.97 19.00

Chl-a (mg m−3)
Mean 23.27 14.62 30.80

Standard Deviation 15.46 9.03 26.60
Maximum 59.99 33.59 105.35

The Pearson correlation analysis method could be used to select the influencing
factors of the predicted variable [31,32]. Therefore, we calculated the Pearson correlation
coefficients between the different environmental variables measured at S2. As shown in
Figure 4, the turbidity is positively (negatively) correlated with Chl-a, pressure, and wind
speed (temperature). The correlation coefficient between the wind speed and turbidity
was the largest (r = 0.57, p < 0.05). Global studies have shown [33–35] that wind is the
main driving force of sediment resuspension in shallow lakes. Therefore, we developed the
LSTM-based turbidity model using synchronous wind speed.

3.3. Evaluation of LSTM Model Accuracy

The turbidity time series from S2 were used to train the LSTM-based turbidity model.
The results showed that the model error increased with the forecast period (Figure 5). The
NSE value was >0.9 and the RMSE value was <10 NTU when the forecast period was 2 h.
When the forecast period exceeded 10 h, the NSE value decreased to <0.5 and the RMSE
value increased to >20 NTU. However, the input time window had no influence on the
model prediction. Therefore, to minimize the demand on computing resources, the input
time window was set to 2 h.

The size of the training set could influence the predictions of the LSTM-based turbidity
model (Figure 6). When the size of the training set increased from 600 to 3000 sets, the NSE
value of the prediction increased from 0.1 to nearly 0.7, and the RMSE value reduced by
more than 10 NTU. When the size of the training set increased to 9000 sets, the RMSE and
NSE values of the prediction became <13 NTU and >0.9, respectively.
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3.4. Model Experiments
3.4.1. LSTM_W Scenario

Figure 5 shows the NSE and RMSE values of the LSTM_S2-W1 Scenario, the NSE
value decreased and the RMSE value increased with increasing forecast period; the NSE
value was below 0.5 and the RMSE value was above 20 NTU at a forecast period of
10 h. However, for LSTM_S2-W2, the RMSE value increased with the forecast period, and
reached 20 NTU at a forecast period of 12 days (Figure 7); the NSE value decreased with
the forecast period and reached 0.7 at a forecast period of nine days; the rate of the decrease
in the NSE value increased considerably for the forecast periods of >12 days.
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3.4.2. LSTM_S Scenario

Figure 8 shows the results of the LSTM_S Scenario; the NSE values of all the predictions
were >0.6. The performance of LSTM_S1 was similar to that of LSTM_S2. Among the
3 scenarios, the LSTM_S2 performed the best, with a NSE of 0.90 and RMSE of 10.20 NTU.
Meanwhile, LSTM_S1 performed the poorest with a NSE of 0.60 and RMSE of 28.30 NTU.
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The NSE (RMSE) produced by LSTM_S31, S32, and S33, was 0.69 (25.06NTU), 0.61
(20.19NTU) and 0.88 (12.19 NTU), respectively. We compared the performance of LSTM_S3
with the performance of LSTM_S1 and that of LSTM_S2. For LSTM_S3, the performance at
S2 was the poorest.

4. Discussion

We developed LSTM-based turbidity models using high-frequency time series data
obtained from stations S1, S2, and S3. We found that increasing the size of the training set
considerably improved the prediction accuracy, while the input time window had almost
no impact on the prediction results.

Wind waves and lake currents are two hydrodynamic processes that influence the
turbidity in large shallow lakes [36]. In Lake Taihu, wind waves are the dominant mecha-
nism of sediment erosion and resuspension [37,38]; resuspended sediments are horizontally
transported by the lake currents. These processes determine the spatial distribution of tur-
bidity in Lake Taihu. Compared to the model that did not consider the future wind speed,
the effective forecast period of the model considering the future wind speed increased to
12d when the criterion of NSE > 0.5 was employed to define the availability of the machine-
learning-based model [39]. When the forecast period was <24 h, the RMSE produced by the
LSTM-based turbidity model was <15 NTU, while the NSE was >0.8. However, under the
same conditions, the RMSE and NSE produced by the regression-analysis-based turbidity
models were >20 NTU and <0.5, respectively.

In addition to wind, ecological variables (e.g., sediment properties and algal
biomass) [11] also influence turbidity. We collected and analyzed the bed sediments
at stations S1, S2, and S3. The sediment thickness at S2 was the lowest and the critical shear
stress was the highest (0.055 N m−2) among the three sites (Figure 3); this indicates that the
likelihood of sediment erosion was the lowest at site S2, where the low Chl-a concentration
and relatively constant wind fetch amplified the influence of the wind on the turbidity.
Therefore, we inferred that wind was the major factor influencing turbidity at the Lake
Center. At site S3, the sediment thickness was 7.5 cm, and the critical shear stress was
0.032 N m−2, indicating that the sediments could be easily eroded and resuspended to
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increase turbidity. The Chl-a concentration was significantly higher at site S3 than at site
S2 (p < 0.05); therefore, the wind, sediment properties, and Chl-a jointly influenced the
turbidity at site S3. As a result, the LSTM_S2 and LSTM_S3 fully learned the turbidity
changes caused by wind and by the joint influence of the ecological variables, respectively.
Thus, LSTM_S2 (LSTM_S3) accurately predicted the turbidity at site S2 (S3), with a NSE
of 0.89 and a RMSE of 10.84 NTU (a NSE of 0.88 and a RMSE of 12.19 NTU). However,
the accuracy of the turbidity predictions at the other sites was lower because of the spatial
heterogeneity in the environmental factors.

The environment at site S1 was similar to that at site S3. The bed sediments could
resuspend easily (with a thickness of 20 cm and a critical shear stress of only 0.029 N m−2) and
the Chl-a concentration was relatively high (23.27 mg m−3). The LSTM_S1 and LSTM_S2 at
all of the three sites showed comparable performances. Considering the great performance
of LSTM_S2 and LSTM_S3, LSTM_S1 could theoretically learn the turbidity changes caused
by the factors above. However, neither LSTM_S1 nor the other two models could predict the
turbidity at site S1 with a relative high accuracy; the performance of LSTM_S1 was lower
at site S1 than at sites S2 and S3. This could be explained by the complex hydrodynamic
processes (e.g., inflow, wind setup, wave breaking, and alongshore currents) occurring
at site S1 [40,41], which was near the shore of West Taihu. The complex hydrodynamic
processes complicated the turbidity changes and weakened the learning of the LSTM
from the time series data, and subsequently decreased the accuracy of the LSTM-based
turbidity model.

Although the Chl-a concentration, sediment properties and other environmental
factors would influence the turbidity in Lake Taihu, wind played a key role. Therefore,
the model trained with the wind speed and turbidity time series from any a given zone
of Lake Taihu could predict the turbidity in other zones with a relatively high accuracy
(NSE > 0.6). However, we recommend establishing monitoring stations in zones where
turbidity is influenced by fewer environmental factors to increase model universality; the
length of the time series data and the diversity of the input variables should be increased to
improve the model performance.

5. Conclusions

We developed LSTM-based models for three zones in Lake Taihu and the comparison
between them showed that the lake environment influences the model performance in two
ways. On one hand, the spatial heterogeneity of the Chl-a concentrations and sediment
physicochemical properties lowers the applicability of the point-based models to other
zones in the lake. On the other hand, the complex hydrodynamics weaken the learning of
LSTM from the turbidity time series in the training phase and reduce the model accuracy.
Overall, although the prediction accuracy would fluctuate, the model developed based on
the observed data from any station could predict the turbidity changes in other zones with
a relatively high accuracy (NSE > 0.6).
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