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Abstract: As an important tool for the development and utilization of river water conservancy and
hydropower resources, cascade reservoirs will directly affect human life and ecological environment.
Therefore, how to sustainably and rationally dispatch the water resources of cascade reservoirs is of
great importance to human society and ecological environment. In order to solve this problem, this
paper constructs the objective function by considering the three goals of reservoir power generation
target, social benefit and ecological benefit. On this basis, a mathematical model of cascade reservoir
scheduling is established considering multi-dimensional constraints such as water transmission and
water supply capacity constraints, water level constraints and flow constraints. In addition, we
consider the fact that the crow search algorithm (CSA) is easy to fall into as the local optimal solution
due to the influence of its flight distance parameters on the search ability when solving large-scale
optimization problems. Therefore, a crow search algorithm based on particle swarm optimization
(PSO-CSA) is designed to solve the multi-objective scheduling model of cascade reservoir established
in this paper. Finally, this paper compares the PSO-CSA algorithm, PSO algorithm, CSA algorithm
and genetic algorithm (GA) which is widely used in reservoir water resource dispatch, through a
simulation example. The simulation results show the superiority of the algorithm designed in this
paper in solving the water resource control problem of cascade reservoirs.

Keywords: cascade reservoirs; multi-objective optimization; crow search algorithm; particle swarm
optimization; sustainable scheduling

1. Introduction

Water is very important to the entire human society, and how to rationally use water
resources has always been the focus of relevant researchers [1]. A cascade reservoir uses
the cascade development method to develop the river, and build the reservoir along the
river section by section, so as to make more reasonable use of the river’s water resources.
This method leads to a cascade arrangement of a series of reservoirs along the river from
upstream to downstream, which is why it is named cascade reservoir [2]. Figure 1 shows the
major cascade reservoirs of the State Water Project (SWP) in California, USA. SWP collects
water from rivers in Northern California and distributes the collected water resources to
the water supply areas in Southern California and San Francisco Bay Area through the
cascade reservoir system [3].

The water resource dispatch of cascade reservoirs, as an important means of river
water runoff regulation, directly affects the water shortage of the regional water supply
system and the power generation of the reservoir [4]. In addition, the lack of water in the
water supply system will have an impact on the surrounding ecological environment and
residential water use. Therefore, the goal of using only a single objective function for the
water resource dispatch of cascade reservoirs is no longer applicable, and it is urgent to
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propose a multi-objective scheduling method for cascade reservoirs to meet the needs of
cascade reservoir scheduling [5].
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At this stage, reservoir optimization scheduling and cascade reservoir scheduling are
mostly carried out in the background of flood control [5–8]. Ahmad, A. et al. [9] establish a
single-objective mathematical model based on the water resource scheduling for agricul-
tural irrigation, and studied single reservoir scheduling based on meta-heuristic algorithms
to reduce the agricultural water supply deficit of the reservoir. Similarly, Bashiri-Atrabi, H.
et al. [10] designed a single-objective mathematical model for the scheduling of a single
reservoir. On this basis, the optimization of a multi-reservoir hydropower system is studied.
This study establishes a single-objective mathematical model to maximize the generation
of cascade reservoirs [11]. Bozorg-Haddad, O. et al. [12] study the multi-objective opti-
mization of cascade reservoirs, focusing on reducing pollution and water supply deficit.
In addition, a two-objective mathematical model focusing on the maximization of energy
production and the minimization of water supply deficit has been established [13].

When dealing with multi-objective optimization problems, with the development
of swarm intelligence technology, a large number of algorithms have emerged in recent
years [14,15]. An improved genetic algorithm is designed to solve multi-objective opti-
mization problems [16]. Similarly, Recio et al. designed a particle-swarm-based genetic
algorithm based on genetic algorithms to solve reservoir multi-objective scheduling prob-
lems. It can be seen that algorithms including differential evolution algorithms and genetic
algorithms are widely used in multi-objective optimization problems [17]. As a novel bio-
inspired algorithm, the CSA algorithm has the advantages of simple structure and fewer
parameters, and has been gradually applied to multi-objective optimization problems [18].
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As for the relevant algorithms of reservoir scheduling, genetic algorithm (GA), as a
representative technology in the field of evolutionary computing, has been widely used
in reservoir scheduling problems [1,8]. Rashid et al. [19] and Babamiri, O. et al. [20] both
designed genetic algorithms to solve the reservoir scheduling problem. In addition, an
improved sine–cosine algorithm is designed to solve the reservoir scheduling problem [21].
The simulation results show that the algorithm has excellent performance in solving the
reservoir scheduling problem. Seifollahi-Aghmiuni, S. et al. [22] apply the improved
evolutionary algorithm to the reservoir scheduling problem, and achieve good results,
providing a certain reference for the improvement of the heuristic algorithm. Based on
the theory of swarm intelligence, an improved heuristic algorithm was designed for the
scheduling model of hydropower stations [23]. Chen et al. designed an improved PSO
algorithm for reservoir flood control scheduling tasks. Experimental results show that
compared with the GA algorithm, the improved PSO algorithm has a better effect in dealing
with reservoir scheduling problems [24].

In addition, the issue of reservoir dispatch in the context of hydropower genera-
tion has also received extensive attention from relevant researchers. According to the
characteristics of the reservoir power generation system, Ford et al. established a multi-
reservoir-based co-generation model. Experimental results show that this scheme plays an
important role in reducing costs and improving efficiency in hydropower generation [25].
Sakthivel et al. [26] optimized power generation by optimizing water flow. Acuña et al. [27]
designed corresponding models and algorithms to improve the capacity of hydropower
plants. Zhang et al. [28] considered the ecological indicators on the basis of considering the
power generation indicators, so as to establish the corresponding mathematical model and
carry out the research of reservoir scheduling, which has a certain reference significance for
this paper.

It can be seen from the above studies that cascade reservoir dispatch research for
flood control and power generation purposes has been widely available. However, there
are certain gaps in the research on sustainable cascade reservoir scheduling for daily
use, industrial water and ecological water. In view of this problem, in order to make
reasonable use of the water resources of cascade reservoirs, the ecological water demand
objective is introduced into the mathematical model, and the corresponding constraints
are improved. This paper establishes a multi-objective function model with the smallest
industrial, agricultural, ecological and living water shortage rates with the largest power
generation capacity of the reservoirs. Further, according to the multi-objective function
model, the corresponding solution algorithm is designed to form a sustainable cascade
reservoir scheduling scheme. This scheme enables the reservoir to solve the contradiction
of the water resource demands of industry, agriculture and domestic use, and avoid harm
to the ecological environment around the reservoir while ensuring the goal of reservoir
power generation.

The rest of this paper is structured as follows: The second part of the article reviews
the relevant research on optimal reservoir scheduling at this stage. The third part of the
paper establishes a multi-objective mathematical model of cascade reservoirs. In the fourth
part of the article, an algorithm is proposed. The fifth part of the article conducts simulation
experiments. Finally, the conclusions are given in the sixth part.

2. Multi-Objective Sustainable Scheduling Model of Cascade Reservoirs
2.1. Problem Description

Figure 2 shows the topology of cascade reservoirs in the Oroville–Thermalito Complex.
The Oroville–Thermalito Complex belongs to the California State Water Project, which is
composed of a cascade reservoir system and is the source of SWP. The maximum capacity of
the Oroville–Thermalito Complex is 4.47 Km3. Lake Oroville reservoir (hereafter referred to
as reservoir A) is the upstream reservoir of the cascade reservoir system; Thermolito Forebay
reservoir (hereafter referred to as reservoir B) is a downstream reservoir; Thermolito
Afterbay reservoir (hereafter referred to as reservoir C) is located at the end of reservoir B,
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and the length of the canal connecting reservoir B and reservoir C is only 2.8 km. Reservoir
A, reservoir B and reservoir C jointly form the Oroville–Thermalito Complex.
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It can be seen from Figure 2 that during the scheduling of the cascade reservoir system,
reservoir A has inflow runoff to supply water; reservoir A carries water by gravity to
reservoir B; reservoir B can carry water by gravity to reservoir C, and reservoir C can also
carry water from reservoir A through the lifting water station. During the scheduling of
the cascade reservoir system, reservoir A is responsible for replenishing water to reservoir
B and reservoir C, and supplying water to water supply area I. The water in water supply
area I can be divided into four parts: industrial water, agricultural water, ecological water
and domestic water. Reservoir B is responsible for replenishing water to reservoir C and
supplying water to water supply area II. Taking one year as a decision-making cycle and
one month as a time period, the joint sustainable scheduling of the A-B-C cascade is to
determine the discharge flow of each reservoir during the month based on the inflow
of reservoir A and the power generation index, water supply index, etc., of reservoir A,
reservoir B and reservoir C.

It is worth pointing out that when solving a multi-objective mathematical model,
whether it is a Pareto solution or other solution, and then making a decision, it is in-
evitable that it will be influenced by expert experience. Therefore, the mathematical model
established in this paper is as follows.

2.2. Model Establishment

Before establishing the model, this paper first gives some symbolic descriptions, as
shown in Table 1.

Table 1. Symbol Description.

Symbol Illustrate

∆t The duration of the unit period
T scheduling period set, T = {1, 2, · · ·, t}
N Reservoir set, N = {1, 2, · · ·, n}

Ln,t,U The upstream water level n of the reservoir during the time period t
Ln,t,D The downstream level n of the reservoir during the time period t
Ln,t,L Loss of head n of reservoirs within time t
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Table 1. Cont.

Symbol Illustrate

Qt,n,G The flow rate of generators in reservoir n within the time period t
Qt,n,Gmax The maximum flow rate of generators in reservoir n in the time period t

Qn
t,P The discharge rate of the reservoir n

Qn
t,I The flow rate of the reservoir n

Qn−1,n The three-year average runoff within the n− 1→ n river section

Qn−1,n
t,R,I

The water demand of industry within the time period t of the n− 1→ n
river section

Qn−1,n
t,R,A

The water demand of agriculture within the time period t of the n− 1→ n
river section

Qn−1,n
t,R,D

The water demand of residents during the time period t of the n− 1→ n
river section

Qn−1,n
t,R,E

The water demand of the ecological environment during the time period t
of the n− 1→ n river section

Qn−1,n
t,P,I

The amount of water provided by industry in the river section during the
time period t of the n− 1→ n river section

Qn−1,n
t,P,A

The amount of water provided by agriculture in the river section during
the time period t of the n− 1→ n river section

Qn−1,n
t,P,D

The amount of water provided by residents in the river section during the
time period t of the n− 1→ n river section

Qn−1,n
t,P,E

The amount of water provided of the ecological environment during the
time period t in the n− 1→ n river section

ξn−1,n
t,L

Water scarcity indicator function during the time period t within a river
section n− 1→ n

ξn−1,n
t,L,E

Water shortage index function of ecological environment during the time
period t in the river section n− 1→ n

δn The output coefficient of the generator of the reservoir n

According to the goal of sustainable operation of cascade reservoirs in this paper,
the multi-objective functions of maximizing power generation, minimizing water short-
age in agriculture, industry and domestic, and minimizing water shortage in ecological
environment are established as follows.

min f = ∑
n∈N

∑
t∈T

ξn−1,n
t,L × ∑

n∈N
∑
t∈T

ξn−1,n
t,L,E ×

1
∑

t∈T
∑

n∈N
(Qt,n,G × δn × ∆Hn × ∆t)

(1)

Among them, the calculation formula of the reservoir power generation is
Qt,n,G × δn × ∆Hn × ∆t. That is, the product of the passing flow, power generation time,
head and generator output coefficient. The calculation method of the water shortage index
function ξn−1,n

t,L and ξn−1,n
t,L,E the water shortage index function of the ecological environment

in the time period t of the river section n− 1→ n is shown in Formulas (2) and (3). The
head ∆Hn of the reservoir n is calculated as shown in Equation (4).

ξn−1,n
t,L = ωi ×

(
Qn−1,n

t,R,I −Qn−1,n
t,P,I

)
Qn−1,n

t,R,I

+ ωa ×

(
Qn−1,n

t,R,A −Qn−1,n
t,P,A

)
Qn−1,n

t,R,A

+ ωd

(
Qn−1,n

t,R,D −Qn−1,n
t,P,D

)
Qn−1,n

t,R,D

(2)

Among them, ωi is the weight coefficient of industrial water shortage rate, ωa is the
weight coefficient of the agricultural water shortage rate, ωd is the weight coefficient of
the water shortage rate of residents. The three coefficients are determined based on expert
experience, and the specific relationship is shown in Equation (5).

ξn−1,n
t,L,E =

(
Qn−1,n

t,R,E −Qn−1,n
t,P,E

)
Qn−1,n

t,R,E

(3)

∆Hn = Ln,t,U − Ln,t,D − Ln,t,L (4)
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The specific calculation method of ∆Hn is the water level in the upstream section of
reservoir n minus the water level in the downstream section of reservoir n, minus the head
loss of reservoir n.

ωi + ωa + ωd = 1 (5)

On this basis, the following constraints are established according to the structure of
the reservoir and the relevant performance indicators.

Minimum ecological water constraints

Qn−1,n
t,R,E ≥ ζ ×Qn−1,n (6)

Constraint (6) guarantees a minimum limit for ecological water use, where ζ is the
ecological water use coefficient. Generally, 10% of the average runoff of the river within the
time period t is taken. This constraint further ensures the sustainability of water dispatch
in cascade reservoirs.

Reservoir maximum and minimum water level constraints

Lnmin ≤ Ln,t ≤ Lnmax (7)

Ln,t =
Qn

t,I −Qn
t,P

Sn
+ Ln,t−1 (8)

Constraints (7) and (8) constrain the highest and lowest water levels of reservoir n in
the time period t. Among them, the actual water level of the reservoir n in the Ln,t period t;
Lnmin, Lnmax are the highest and lowest water levels of the reservoir n in the time period
t, respectively. Equation (8) is how n is calculated. Where Sn is the cross-sectional area of
the reservoir.

Reservoir water balance constraints

Volt,n = Volt−1,n +
(
Qn

t,I −Qn
t,P
)
× ∆t−Qt,n,L (9)

Constraint (9) ensures the balance of the number of reservoirs, that is, the amount of
water entering the reservoir minus the amount of water out minus the loss of water and
the original water volume of the reservoir is equal to the existing quantity of the reservoir.
Where Qt,n,L is the water loss of the reservoir n in the time period t, including the number
of infiltration, the amount of evaporation, etc.

Constraints of maximum flow through the turbine of reservoir power station

Qt,n,G ≤ Qt,n,Gmax (10)

Formula (10) ensures that the flow through the turbine of the reservoir power station
does not exceed its maximum flow rate.

The above constraints ensure the timing constraints such as the stagnant water level,
the highest water level and the maximum outflow of the reservoir, which provides a basis
for the practical application of the model established in this paper.

3. PSO-CSA Algorithm Design
3.1. Introduction to the Algorithm

As a novel bio-inspired algorithm, CSA algorithm has been widely used in the field
of optimization. LIU et al. [18] and Razavi et al. [29] both explore the application of
a CSA algorithm to multi-objective optimization problems, and the study of the above
problems provides theoretical support for the application of CSA algorithm in reservoir
scheduling problems.

The CSA algorithm was proposed by Askarzadeh et al. in 2016 inspired by the foraging
behavior of crows in nature. During the foraging process, crows will hide excess food in a
hidden location and choose a suitable time to remove it. An interesting phenomenon is
that in the crow population, each individual crow is very greedy and will follow each other,
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and once crow A gets the location of the food hidden by another crow, crow A will steal
from him at the right time. In addition, when the tracked crow finds itself being followed,
the tracked crow will try to run to another place as a way to confuse the stalker. Therefore,
the CSA algorithm follows the following principles:

• Multiple crow individuals form crow populations and live as populations.
• Each individual crow can remember where he or she hides their food.
• The crows in the crow population will find and steal each other’s food by tracking.
• When an individual crow being followed discovers that it is being followed, it takes

steps to confuse the other party.
• Specifically, the specific process of the CSA algorithm is as follows:

Step 1. Initialize the problem parameters. Initialization parameters include the popu-
lation capacity P of the crow population; maximum number of iterations λmax; raven flight
length ψ; crow perception probability φ; the dimension of the problem D.

Step 2. Initialize the location and memory of crows in the crow population.

Crp =


c1

1 c1
2 · · · c1

d

c2
1 c2

2 · · · c2
d

...
...

...
...

cP
1 cP

2 · · · cP
d

 (11)

cp,λ =
[
cp,λ

1 , cp,λ
2 , · · ·, cp,λ

d

]
, p ∈ P (12)

Among them, Equation (11) is the initialization formula for the position of individual
crows in the crow population; in Equation (12), cp,λ is the position vector of crow p during
the λ iteration.

Mc =


m1

1 m1
2 · · · m1

d

m2
1 m2

2 · · · m2
d

...
...

...
...

mP
1 mP

2 · · · mP
d

 (13)

Among them, Equation (13) is the memory initialization formula of individual crows
in the crow population.

Step 3. Calculate the fitness function. According to the objective function formula,
the fitness function value of each crow’s position is calculated from the position vector of
that crow.

Step 4. Update the position of crows in the crow population as shown in Equation (14).

cp,λ+1 =

{
cp,λ + rand1(h)× ψp,λ ×

(
mh,λ − cp,λ

)
, rand1(h) ≥ φh,λ

Random Position, Others
(14)

Among them, the crow p updates its position by tracking the crow h, and if the crow h
does not know that it is being tracked, the position of the crow p is updated according to the
rand1(h) ≥ φh,λ time in Formula (14). Where rand1(h) is a random number in the interval
(0, 1); φh,λ is the perceived probability of crow h during the λ iteration. If Raven h knows
that he is being tracked, the position of raven p is updated as “Others” in Equation (14).

Step 5. Detect the feasibility of a new location for crow p. If the crow’s new position
satisfies the constraints of the problem, the crow updates the position; if the crow’s new
location does not meet the constraints of the question, the location update is not made.
Calculate the new fitness function value based on the updated position of the crow p.
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Step 6. Update the memory of the crow, and determine whether to update the memory
of the crow through the fitness function value of the crow’s new position, the specific
formula is as follows.

mp,λ+1 =

{
cp,λ+1, f

(
cp,λ+1) ≤ f

(
mp,λ+1)

mp,λ+1, Others
(15)

Step 7. Determine whether the maximum number of iterations λmax has been reached,
and output the result if so, otherwise return Step 4 to repeat the operation.

3.2. Improvement Strategy

Because the CSA algorithm is in the solution process, when the crow finds that
there are other crows tracking it, the update randomness of the crow position is too high,
which is conducive to the algorithm jumping out of the local optimal solution, but it
also causes the convergence accuracy of the algorithm to be low. In addition, the update
of the crow’s memory, because the update formula is too simple, is not conducive to
algorithm optimization. Therefore, the CSA algorithm is not ideal for dealing with large-
scale problems such as reservoir scheduling, so the PSO algorithm is combined with
the CSA algorithm, and the feeding strategy of whales is introduced, and a new hybrid
algorithm is designed to solve the problem.

3.2.1. The Crow Flies at Variable Speed

Since the crow search algorithm performs position updates, the flight speed is a fixed
value. Therefore, the crow variable speed flight strategy is designed to imitate the update
method of particle velocity in the particle swarm, as shown in Equation (16).

ψp,λ+1 = ψp,λ + β× rand2 ×
(

min
(

cp′ ,λ
)
− cp,λ

)
(16)

where β is the learning factor; rand2 is a random number in the interval (0, 1); min
(

cp′ ,λ
)

is the position of the individual with the best fitness function produced by the individual
crow in the current number of iterations.

3.2.2. Raven Spiral Update Location Strategy

In order to increase the choice of crow position update, the crow spiral update position
strategy is designed. The position of the crow is updated based on the distance between the
stalker and the tracked individual in the crow population. Raven p updates its position by
tracking raven h, and if raven h does not know that it is being tracked, raven p‘s position
is updated according to rand1(h) ≥ φh,λ in Equation (17). If raven h knows that they are
being followed, the position of raven p is updated as in the case of rand1(h) < φh,λ in
Equation (18).

cp,λ+1 =

{
cp,λ + rand1(h)× ψp,λ ×

(
mh,λ − cp,λ

)
, rand1(h) ≥ φh,λ

cp,λ+1∗, rand1(h) < φh,λ
(17)

cp,λ+1∗ =
{

l⇀ × eb×rand3 × cos(2πrand3) + cp,λ, rand3 ≤ 0.5
Random Position, rand3 > 0.5

(18)

In Equation (19), l⇀ is the distance between crow h and crow p, and the specific
calculation formula is shown in Equation (19). b is a helical shape constant; rand3 is a
random number in the interval (0, 1).

l⇀ =
∣∣∣cp,λ − ch,λ

∣∣∣ (19)
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3.2.3. Crow Memory Contraction Update Strategy

In order to increase the choice of crow memory update, this paper designs a crow
memory contraction update strategy according to the whale’s contraction encirclement
strategy. The fitness function value of the crow’s new position is used to determine
whether to update the crow’s memory. There are three main update methods, as shown in
Formulas (20) and (21).

mp,λ+1 =

{
cp,λ+1, f

(
cp,λ+1) ≤ f

(
mp,λ+1)

mp,λ+1∗, f
(
cp,λ+1) > f

(
mp,λ+1) (20)

mp,λ+1∗ =
{

cp,λ+1 − rand4 × µ× l⇀, rand4 ≤ 0.5
mp,λ, rand4 > 0.5

(21)

where rand4 is a random number in the interval (0, 1), µ is the memory contraction coeffi-
cient. When the fitness function relationship is f

(
cp,λ+1) ≤ f

(
mp,λ+1), the λ + 1 memory

mp,λ+1 of the generation of crow p is updated to the position of the λ + 1 generation of crow
p. When the fitness function relationship is f

(
cp,λ+1) > f

(
mp,λ+1), the memory mp,λ+1

of the λ + 1 generation of crow p is updated according to the Formula (21) update. First,
a random number rand4 is generated, and when rand4 ≤ 0.5, the memory mp,λ+1 of the
λ + 1 generation of crow p is updated according to the crow memory contraction update
strategy; when rand4 > 0.5, the memory mp,λ+1 of the λ + 1 generation of the crow p keeps
the memory of the previous generation unchanged.

3.3. Improve the Specific Solution Steps of the Algorithm

Step 1. Initialize problem parameters such as decision variables in the reservoir
scheduling model. Initialization parameters include the population capacity P of the crow
population; maximum number of iterations λmax; crow flight length ψ; crow perception
probability φ; the dimension of the problem D; memory contraction coefficient µ; helical
shape constant b; learning factor β.

Step 2. Initialize the location and memory of crows in the crow population.
Step 3. The fitness function is calculated according to Equation (1).
Step 4. Update the crow’s flight length according to the crow’s variable speed flight

strategy. This is shown in Equation (17).
Step 5. Update crow positions in the crow population according to the spiral update

location strategy. This is shown in Equations (18) and (19).
Among them, the crow p updates its position by tracking the crow h, and if the crow h

does not know that it is being tracked, the position of the crow p is updated according to
the rand1(h) ≥ φh,λ in Formula (18). If raven h knows that it is being tracked, the position
of raven p is updated as rand1(h) < φh,λ case in Equation (19).

Step 6. Detect the feasibility of a new location for a crow. If the crow’s new position
satisfies the constraints of the problem, the crow updates the position; if the crow’s new
location does not meet the constraints of the question, the location update is not made.
Calculate the new fitness function value based on the updated position of the crow p.

Step 7. Update the crow’s memory, and determine whether to update the crow’s mem-
ory by the fitness function value of the crow’s new position, as shown in
Formulas (21) and (22).

Among them, the memory mp,λ+1 update strategy of the λ + 1 generation of crow p is:
when the fitness function relationship is f

(
cp,λ+1) ≤ f

(
mp,λ+1), update to the position of the

λ + 1 generation of crow p. When rand4 ≤ 0.5∧ f
(
cp,λ+1) > f

(
mp,λ+1), update according to

the crow memory contraction update strategy; when rand4 > 0.5∧ f
(
cp,λ+1) > f

(
mp,λ+1),

the crow’s memory remains unchanged from the previous generation.
Step 8. Determine whether the maximum number of iterations λmax is reached, and if

so, output the scheduling result of cascade reservoir water resources, otherwise return to
Step 4 to repeat the operation.
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4. Results and Discussion
4.1. Overview of Engineering Background

In order to further demonstrate the effect of the model established in this paper and
the algorithm in the sustainable scheduling problem of cascade reservoirs, this paper
selects the Lake Oroville Reservoir (reservoir A) and its adjacent downstream reservoir,
the Thermalito Forebay Reservoir (reservoir B), which belong to the Oroville-Thermalito
Complex, for dispatch when the incoming flow is known. Lake Oroville Reservoir is a large
reservoir located in the California waterways, the main source of water in the California
waterways, and is a reservoir for water storage, power generation, flood control, tourism,
and comprehensive utilization of fish and wildlife, with an installed capacity of 644,000 kW
and six generator sets, three of which are pumped storage units for power generation and
pumping, with a reservoir capacity of 4.36×108 m3.

The water demand of industry, agriculture, residents’ living and ecological environ-
ment in the unit period of reservoir A and reservoir B in December in a certain year are
shown in Table 2.

Table 2. Water demand from reservoir A and reservoir B over different periods of time.

Month 1 2 3 4 5 6

Total

Reservoir Purpose Water Demand (Unit:×104m3)

A

Industry 1000 1012 1224 1200 1200 1500
Agriculture 509 500 2400 3972 4675 5825
Domestic 85 90 90 100 115 115
Ecology 75 88 90 115 167 199

B

Industry 750 780 795 795 740 800
Agriculture 240 250 709 771 895 950
Domestic 600 590 580 625 707 794
Ecology 133 135 139 180 188 195

Month 7 8 9 10 11 12

Reservoir Purpose Water Demand (Unit:×104 m3)

A

Industry 1400 1500 1224 1200 1000 1344 14,804
Agriculture 5990 4614 1200 1150 504 300 31,641
Domestic 120 140 140 122 95 95 1307
Ecology 204 207 200 188 152 107 1792

B

Industry 820 950 890 825 825 755 9725
Agriculture 945 900 864 752 400 295 7972
Domestic 790 787 746 690 605 610 8124
Ecology 199 195 180 172 150 145 2011

4.2. Display of Simulation Results

According to Figure 2 and Table 2, the industrial, agricultural, domestic and ecological
water in the two water supply areas of water supply area I and II are provided by scheduling
reservoir A and reservoir B. The CSA algorithm, the PSO algorithm, the GA algorithm and
the PSO-CSA algorithm proposed in this paper are run 30 times, and the total convergence
curve of the running process is shown in Figures 3–5. Among them, Figure 3 shows
the optimal convergence curves of the four algorithms during the 30 runs. Figure 4
shows the worst convergence curves of the four algorithms during the 30 runs of the four
algorithms. Figure 5 shows the average convergence curve over the course of 30 runs of the
four algorithms.
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Further, Table 3 shows the specific values of the optimal value, the worst value and
the average value of the fitness function of the CSA algorithm, the PSO algorithm, the GA
algorithm and the PSO-CSA algorithm during 30 runs.

Table 3. The optimal value, the worst value and the average value of the fitness function of the four
algorithms in the process of running 30 times.

Algorithm CSA PSO GA PSO-CSA

Index Numerical Value

The optimal value 16.06 16.29 16.72 15.00
The worst value 16.55 16.50 17.04 15.74

The average value 16.36 16.45 16.81 15.48

In addition, the PSO-CSA algorithm proposed in this paper has been operated
30 times, and the water supply volume of reservoir A and reservoir B to the two wa-
ter supply areas in each month (including the water supply volume provided by reservoir
A/B to the industry, agriculture, domestic and ecology in water supply area I and II) are
given under the optimal fitness function value, as shown in Table 4.

Table 4. Outflow volumes of A and B reservoirs solved by PSO-CSA algorithm.

Month 1 2 3 4 5 6

Reservoir Water Demand (Unit:×104m3)

A 1522.7 1613.4 3559.4 5216.5 6014.5 7534.7
B 1591.5 1733.2 2172.0 2208.1 2420.8 2505.0

Month 7 8 9 10 11 12

Reservoir Water Demand (Unit:×104m3)

A 7063.2 6110.1 2643.3 2621.8 1732.8 1769.7
B 2640.0 2791.45 2614.7 2386.9 1972.3 1723.1
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4.3. Discussion

From Figures 3–5, it can be seen that the results of the PSO-CSA algorithm are the best
results, whether from the optimal convergence curve of the algorithm or from the worst
convergence curve and average convergence curve of the algorithm. It can be seen from
Table 3 that during the process of running the four algorithms 30 times, the optimal value
of PSO-CSA algorithm is 15.00, 7.06–11.46% lower than that of the other three algorithms;
the worst value of PSO-CSA algorithm is 15.74, 4.83–8.26% lower than that of the other
three algorithms; the average value of PSO-CSA algorithm is 15.48, 5.68–8.59% lower than
that of the other three algorithms. Therefore, it can be concluded that compared with the
PSO algorithm, CSA algorithm and GA algorithm, the scheme presented in this paper has
the best effect in the sustainable scheduling of reservoirs.

Within a scheduling period (one year), the water supplied by reservoir A to water
supply area I is 47,402.1 ×104 m3, the demand of water supply area I is 49,724 ×104 m3,
the average water supply guarantee rate is 95.33%, and the water deficit within one year is
2321.9 ×104 m3; reservoir B to water supply area II is 26,759.05 ×104 m3, the demand of
water supply area I is 27,832 ×104 m3, the average water supply guarantee rate is 96.15%,
and the water deficit within one year is 1072.95 ×104 m3. In addition, it is worth pointing
out that the annual power generation of the PSO-CSA algorithm designed in this paper is
7.84–12.17% higher than that of the other three algorithms.

5. Conclusions

Considering the environmental demand for reservoir water resource dispatch, this
paper establishes a multi-objective function from the benefit objectives, water supply
objectives and environmental objectives of cascade reservoir scheduling. The real conditions
such as the minimum ecological water limit, the maximum water level and the minimum
water level limit of the reservoir were considered. In addition, in order to improve the
convergence accuracy of the CSA algorithm, a PSO-CSA algorithm is designed to solve
the problem. Experimental results show that the proposed algorithm has high superiority
in solving the water resource scheduling of cascade reservoirs, and the annual power
generation of the PSO-CSA algorithm designed in this paper is 7.84–12.17% higher than
that of the other three algorithms. It should be pointed out that this paper does not consider
the flood control objectives of cascade reservoirs, and in the process of further research,
this paper will add flood control targets to the cascade reservoir scheduling model, so as to
improve the model.
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