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Abstract: Rainfall in Guanacaste, Costa Rica, has marked wet/dry phases: the rainy season is
punctuated by a short midsummer drought, and the dry season frequently has months of no rain. In
this region, spring and summer rainfall peaks are important for local rain-fed agriculture and annual
total for groundwater recharge and hydroelectricity production. We propose a novel model of rainfall
in this region, the double-Gaussian model, which uses monthly total rainfall data collected from
1980 to 2020 from two meteorological observation stations. Our model provides an intuitive way of
describing the seasonality of rainfall, the inter-annual variability of the cycle, and variability due to
the monthly Oceanic Niño Index, ONI. We also consider two alternative models, a regression model
with ARMA errors and a Tweedie model, as a means of assessing the robustness of our conclusions
to violations of the assumptions of the double-Gaussian model. We found that the data provide
strong evidence of an increase/decrease in rainfall in both temporal maxima during La Niña/El
Niño (negative/positive ONI) conditions but no evidence of a decade-scale trend after accounting for
ONI effects. Finally, we investigated the problem of forecasting future rainfall based on our three
models. We found that when ONI is incorporated as a predictor variable, our models can produce
substantial gains in prediction accuracy of spring, summer, and annual totals over naive methods
based on monthly sample means or medians.

Keywords: precipitation; Costa Rica; statistical modelling; Oceanic Niño Index; time trends

1. Introduction

The Pacific coast of Central America (including the Guanacaste province of Costa Rica)
is an interesting example of a region experiencing a tropical wet–dry climate. The Nicoya
peninsula of Guanacaste (see Figure 1) experiences an extremely dry season from roughly
September to May, and the rainy season is punctuated by a mild mid-summer drought
(MSD) locally called La Canícula or Il Veranillo di San Juan. The Pacific coast of Central
America is the only tropical region away from the equator that experiences this double max-
imum of rainfall [1]. The marked annual cycle of rainfall has profound influences on many
aspects of the environment and human life, including agriculture, electricity generation,
and tourism. The FuturAgua research project [2] was directed towards an understanding
of the socio-hydrologic consequences of water availability, use, and governance in the
Nicoya peninsula.

The overall intent of this report is to provide a statistically defensible model of rainfall
variability in the Nicoya peninsula as a basis for applied work on water balances, use,
and management and for related decision making. As rainfall variability is the primary
driver of the water balance, a detailed characterization of the temporal variability of rainfall
on a variety of time scales over the peninsula is fundamental to the understanding and
management of water resources in the Nicoya peninsula [2]. Potential long-term (multi-
decadal) rainfall trends driven by climate change will be important to water managers in
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the region, and inter-annual variability of wet and dry seasons, and the MSD, must be well
understood, as much of water management is driven by variability on a seasonal scale.
Short-term rainfall variability driving floods or droughts is important too but will not be
addressed in this work due to the unavailability of suitable data. Likewise, we do not
address the spatial variability of rainfall in the study region.

Figure 1. Location map of the Futuragua study domain showing topography and the five meteorolog-
ical stations.

The underlying physical mechanisms governing the annual wet/dry rainfall pattern
and the embedded MSD are not directly relevant to this work. However, a general un-
derstanding of those mechanisms will serve the work by placing the annual pattern in a
climatological context and so will provide some insight into possible changes in rainfall
accompanying climate change.

Previous statistical climatological studies of mechanisms, forcing, and variability
underlying the annual cycle of rainfall in the wet–dry tropics of Central America have been
undertaken using station data, satellite data, reanalysis data, and model output. Several
authors [3,4] analyzed rainfall in Costa Rica and confirmed earlier results [5] that the
annual total rainfall is related to El Niño-Southern Oscillation (ENSO); dry years generally
correspond to low Southern Oscillation Index (SOI) values, also called warm phases or
El Niño. A similar study [6] concluded that, in addition to ENSO effects, the relative
signs of sea surface temperature (SST) anomalies in the Eastern Pacific and tropical North
Atlantic Oceans have an effect on rainfall in Costa Rica. The authors noted the low levels
of explained variance in their statistical analyses and poorly understood aspects of the
underlying mechanisms.

The influence of large-scale atmosphere-ocean forcing by the Pacific Decadal Oscilla-
tion (PDO) and Atlantic Meriodonal Overturning (AMO) indices and North Atlantic SST on
biennial variability of total rainfall in Central America has been established [7,8], but these
works give no indication of such influence on the annual cycle. Therefore, although the
possibility of such an influence exists, we do not address it in our study.

Some authors [9] noted a link between Central America rainfall and cross-equatorial
flow and trade winds. Others [10] pointed out that this region abuts the east Pacific warm
pool (EPWP) and is the rainiest place on earth in the Boreal summer. Their analysis shows
statistical links among mature phase El Niño conditions, EPWP warm anomalies, enhanced
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eastern Pacific ITCZ, and consequently, enhanced rainfall over Central America. These
analyses show that multiple mechanisms govern rainfall in the wet/dry tropics, and not
surprisingly, that statistical associations are weak.

The MSD, a particular, local feature of the annual cycle of rainfall in the wet–dry tropics
of Central America, has been studied in parallel with the cycle itself. Some researchers [1]
reject the idea that the MSD is associated with the double crossing of the intertropical
convergence zone (ITCZ) over Central America. In agreement with earlier work [4], they
postulate that the MSD is driven by an intensification of the northeast trade winds in
July and August with subsequent subsidence downwind of the spine of Central America,
resulting in a suppression of rainfall. The noted trade wind intensification is related to
fluctuations in strength and position of the eastern Pacific ITCZ. Additional studies [11]
elaborated on a mechanism relating the MSD to SST contrasts between Pacific and tropical
North Atlantic Oceans—that is, a warmer Atlantic leading to less severe MSD. Another
author [12] employed a satellite-derived rainfall dataset and reanalysis of winds to study
the diurnal cycle of rainfall in the MSD region of Central America. His analysis shows that
the diurnal cycle of rainfall during the MSD involved less evening rainfall compared to that
in non-MSD months. The local circulations driving this diurnal cycle are shown to be part of
the trade-wind system, thereby linking the MSD to seasonal variability of the trades. Some
researchers [13] investigated possible responses of the MSD to climate change using model
output from the Coupled Model Intercomparison Project Phase 3. Their analysis suggests a
future early onset and increased intensity of the MSD. They emphasize that the mechanisms
underlying the MSD are yet to be fully understood. Other authors [14] have examined
a combination of local and remote forcings driving the MSD using satellite observations,
reanalysis data, and a linear baroclinic model. They concluded that the May–June early
peak is part of the southern branch of the North American Monsoon. The MSD is then
driven by northward movement of the ITCZ and an associated westward extension of the
Atlantic subtropical high, which drives divergence and subsidence over Central America.
The August–September rainfall peak is coincident with the northward limit of the Eastern
Pacific ITCZ and a peak in the Atlantic and Caribbean SST. A different group [10] suggested
a simple mechanism for MSD based on the biannual crossing of solar declination in Central
America. They posit that two peaks in convective instability produce the two rainfall peaks
and thus reject the idea of a rainfall suppression mechanism in favor of two instances
of a single precipitation enhancing mechanism. They acknowledge the influence of the
variety of remote processes invoked in earlier analyses. Most recently, researchers [15] have
quantified the inter-annual variability of the MSD in the entire Central American Region
and shown that the MSD intensity and magnitude have a negative relationship with Niño
3.4 and a positive relationship with the Caribbean low-level jet. They have also shown that
the MSD is dependent on sea surface temperature anomalies in the Pacific, Tropical North
Atlantic, and Caribbean waters.

These studies show that the MSD is a persistent climatological feature of the southwest
coast of Central America that is well simulated by a variety of global climate models. It
is probably governed by a complex interplay of local and remote processes, including
ENSO, ITCZ migration, the North American Monsoon, the North Atlantic subtropical
high, tropical low-level jets, regional SST, local convection, and topographic forcing. Not
surprisingly, statistical climatological analyses have failed to uncover a simple dominant
governing mechanism.

Building on this previous work, our first objective was to develop an interpretable,
statistically justified model of rainfall for two stations in the Guanacaste Peninsula of Costa
Rica. The model had to not only capture the annual cycle but also incorporate the effects of
the Oceanic Niño Index (ONI) and time (to allow for a possible climate change signal). Our
second objective was to use this model as a basis for predicting rainfall in the region over
a time span of one month to one year. We used available station rainfall data to inform
our choice of model and to assess its predictive ability. Our approach is an extension of
that used in the FuturAgua project, where a preliminary version of our model gave rainfall
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predictions that provided essential input for the hydrological models and informed public
stakeholders’ engagement efforts.

Rainfall modelling is generally done in one of three distinct ways:

1. Stochastic rainfall simulation. These models are used to provide a statistical representa-
tion of rainfall for forecasting floods and similar events. A particular variant is used
to generate synthetic sequences of rainfall for scenario building. The functional part
of these models uses atmospheric thermodynamics and semi-empirical models for
rainfall in various weather situations. The models are not location or time-specific and
are used in both regional and point applications. Examples of such models appear in
the literature [16,17].

2. Operational rainfall modelling. With this approach, rainfall is generated inside a fully
constituted weather forecast modelling system that is run continually by many na-
tional weather services. The models are based on the fundamental constitutive
equations of the atmosphere. Precipitation is modelled by semi-empirical schemes
that use local thermodynamic, topographic, and weather conditions. The output,
a sequence of predictions, is generally on a grid resolution of a few tens of kilometres
and is produced approximately once per hour. This kind of modelling is enormously
computationally intensive.

3. General circulation modelling. These models are also based on the fundamental consti-
tutive equations of the atmosphere. However, in contrast with operational rainfall
modelling, these models are averaged in space and time over larger areas and longer
times. This type of modelling is designed to study climate change on a scale of
100 years or longer. The spatial resolution is quite coarse—tens to hundreds of kilo-
metres. Statistical downscaling approaches can be used to produce finer-resolution
(regional scale) rainfall predictions. Similar to operational modelling, this kind of
modelling is enormously computationally intensive. The literature [18] provides a
description of this approach to precipitation modelling.

The modelling approach we take in this work is neither stochastic nor operational.
Instead, we developed a simple but novel analytical representation of rainfall seasonality
from time series of observations at two stations in the Nicoya peninsula. The statistical
(empirical) model that we propose describes the annual cycle of rainfall as a function
of time and ENSO via ONI, a large-scale climate driver, namely, an index measure of a
particularly important (in this region) component of intermediate-term climate variability.
Our model is applicable only in a particular region (the wet–dry climate region of Central
America), has the ability to predict, and can be used in a scenario-building mode.

The remainder of the paper is organized as follows. In Section 2, we describe the
rainfall data and illustrate some of their key features. In Section 3, we propose the double-
Gaussian model to describe the rainfall data. We interpret and estimate its parameters,
including the effects of ONI on rainfall and decade-scale trends. We also present two
alternative models, a regression model with ARMA errors and a Tweedie model, which we
use to assess the robustness of our results to model misspecification. In Section 4, we study
the ability of our models to predict future rainfall in comparison to naive methods based
on monthly sample means or medians. We conclude with a discussion in Section 5.

2. Station Data and Preliminary Analyses

The purpose of this section is to describe the data used in the subsequent analyses and
to illustrate the MSD.

Earlier work [19] describes how the longest possible sequences of daily rainfall totals
for as many stations as possible in the study region were sought from Instituto Meteorológico
Nacional (IMN), the National Meteorological Institute of Costa Rica. These authors selected
data from Nicoya, Paquera, Garza, La Guinea, and Liberia (see Figure 1 for station locations),
filling in missing data where possible to facilitate inter-station analysis.

A simple view of spatial rainfall structure across the study domain was derived
from inter-station correlation analyses. Correlation coefficient matrices based on daily
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and weekly rainfall showed that rainfall amounts at each pair of stations are only weakly
correlated on these shorter time scales. In contrast, monthly totals are highly correlated.
Therefore, these monthly values were used to demonstrate the annual rainfall pattern,
namely, the wet and dry seasons and the MSD, as depicted in Figure 2 [19].
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Figure 2. Annual cycle of total monthly rainfall values at the Liberia station (left) from 1980 to 2020
and at the Nicoya station (right) from 1980 to 2016. The red line represents the observed median
rainfall in each month.

Due to their very weak spatial structure and long sequences of observed values, in the
present paper, we focus on time series of monthly total rainfall for only the Liberia and
Nicoya stations.

Nicoya is located at the crest of the ridge running parallel to the shoreline down the
spine of the Nicoya Peninsula, and Liberia is in the lowlands between the peninsula and the
major mountain range making up the Costa Rican Highlands. Choosing these two stations
affords an opportunity to detect any effects of local topographic rainfall forcing embedded
in larger-scale effects.
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The literature provides a strong indication that rainfall in this region is influenced
by ENSO (e.g., [20]). We accessed monthly ONI data from the National Weather Service
Climate Prediction Center website. We used these data to estimate the influences of ENSO
on the various features of the annual cycle of rainfall at Liberia and Nicoya.

Of considerable local interest is the possibility that Guanacaste rainfall is subject to
longer term trends, possibly due to changing climates. The data sequences observed
from 1980 to 2020 (Liberia) and from 1980 to 2016 (Nicoya) provide the opportunity to
detect such secular trends, though the high degree of inter-annual variability makes this
task difficult [19].

3. Statistical Models and Estimation of the ONI Effect and Long-Term Time Trend

In this section, we develop the double-Gaussian model, a parametric model that we
use to describe the annual cycle in the rainfall observations, and estimate its parameters. We
discuss the advantages and disadvantages of this model. We also present two alternative
models that describe the annual cycle semi-parametrically (by allowing a different parame-
ter to characterize each monthly mean): a classical regression model with autoregressive
moving average (ARMA) errors and a model based on the Tweedie distribution and other
more realistic assumptions. These alternative models provide a means of assessing the
sensitivity of our results to the assumptions inherent in the double-Gaussian model. We
fit these three models to the data from Liberia and Nicoya. We interpret the resulting
parameter estimates, paying particular attention to the estimates of the ONI effect and
long-term time trend.

We first define notation common to all three models. In particular, let Yit be the total
rainfall (in mm) in month t of year i, t = 1, . . . , 12, i = 1, . . . , 36. Let xit1 be ONI (in ◦C)
in month t of year i. Let time be represented by xit2, the number of months between our
starting date, December 1979, and month t of year i. We also define the constant n as the
total number of months over which rainfall was observed (n = 492 for Liberia and n = 443
for Nicoya). In all models, we incorporate time via the predictor xit2/n (rather than xit2)
because, in some contexts (e.g., [21]), the estimated coefficient of a predictor that grows
with n is inconsistent.

The Nicoya series includes five missing values, which we assume are missing com-
pletely at random and are therefore excluded.

3.1. Double-Gaussian Model

The double-Gaussian model, which we present in this section, uses a simple, paramet-
ric, functional form to approximate the two-peak, annual rainfall pattern that is so strongly
evident in Figure 2. Let Y∗it = Yit/(1 mm), a unitless measure of total rainfall in month t of
year i. Our model assumes that

Zit ≡ ln(Y∗it + 1) ∼ N(ln(λit), σ2
t ) (1)

where

λit = A1 exp
{
− (t− l1)2

φ1

}
+ A2 exp

{
− (t− l2)2

φ2

}
+ δ. (2)

In other words, λit is a linear combination of two Gaussian-shaped basis functions.
Here, A1 and A2 are the amplitudes of the median spring and summer peaks, respectively.
The two peaks are centered at locations (months) l1 and l2, with widths controlled by φ1
and φ2 (months squared). The parameter δ is an offset.

We allow the amplitudes of the peaks to depend on ONI—and extended their model by
allowing the amplitudes to depend on time as well. In our version, we let
A1 = exp{β10 + β11xit1 + β12

xit2
n } and A2 = exp{β20 + β21xit1 + β22

xit2
n }. Since the variabil-

ity of rainfall is lower in the wet months (May–October), we define σt ≡ σ1 for 5 ≤ t ≤ 10
and σt ≡ σ0 otherwise.
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Although the model is expressed on the logarithmic scale (to stabilize the variance
of the rainfall observations), the parameter λit has a ready interpretation on the original
scale as the median of Yit + 1. (We added 1 mm to each rainfall measurement as a way of
handling zeroes in the data.)

Note that “Gaussian” in the name “double-Gaussian model” refers to the shape of
the two Gaussian basis functions in (2). In contrast, Zit is assumed to have a Gaussian
distribution. We emphasize that this model is not equivalent to a 2-component Gaussian
mixture model; (2) describes the annual cycle of rainfall over the course of one year, not the
probability distribution of rainfall in a given month.

The double-Gaussian model relies on one further critical assumption: the Yits are
treated as independent. We assessed the reasonableness of this and the other model
assumptions after fitting the model.

Since we estimated the model parameters using maximum likelihood estimation and
prefer to avoid constrained optimization methods, we reparameterized the model so that
the range of every parameter is the entire real line. In particular, we defined φ∗1 = log φ1,
φ∗2 = log φ2, δ∗ = log δ, σ∗0 = log σ0, and σ∗1 = log σ1. We then estimated the parameters
(β10, β11, β12, l1, φ∗1 , β20, β21, β22, l2, φ∗2 , δ∗, σ∗0 , σ∗1 ).

The maximum likelihood estimates of the parameters and their standard errors (for
each station separately) are listed in Table 1. Of particular interest in our analysis are
β11 and β21, the parameters that represent the effects of ONI (in ◦C−1), and β12 and β22,
the parameters that represent the (unitless) effect of time. For both stations, we have
evidence at the 5% level that ONI is negatively associated with spring rainfall (i.e., that
β11 is negative). For a 1 ◦C increase in ONI, the amplitude of the spring peak changes by
an estimated factor of 0.558 in Liberia and 0.805 in Nicoya. Likewise, for both stations,
we have evidence that ONI is negatively associated with summer rainfall (i.e., that β21 is
negative); for a 1 ◦C increase in ONI, the amplitude of the summer peak changes by an
estimated factor of 0.757 in Liberia and 0.811 in Nicoya. Likelihood ratio tests provide
evidence that the effect of ONI on the spring peak is different from that on the summer
peak in Liberia (p-value = 0.026), but there is no such evidence for Nicoya (p-value = 0.934).
The data provide no evidence of a long-term time trend in rainfall at either station.

The primary advantage of the double-Gaussian model is the parametric form of the
median rainfall, which provides a clear description of the annual cycle. This structure
allows easy quantification of the annual cycle of rainfall for hydrologic model input.

Possible weaknesses of the double-Gaussian model are the normality and indepen-
dence assumptions. Diagnostic plots of the standardized residuals (included in the online
supplementary material) show that the normality assumption is violated in the drier
months, where many zero values occur. However, normality is often unimportant for the
validity of likelihood-based inference procedures. With respect to the independence as-
sumption, the estimated autocorrelation functions of the standardized residuals (depicted
in the online supplementary material) provide no suggestion of autocorrelation in the
residuals. The assumption of independence of the rainfall observations is thus reasonable,
despite their time-series nature. The explanation is that the ONI values effectively explain
the autocorrelation in the rainfall measurements. Therefore, while the model provides
a good description of the data, its predictive capabilities are restricted to the case where
future values of ONI or other similar variables can be treated as known or can be forecast a
few months ahead (as is the case for ONI, as discussed in Section 4).

Given these considerations, we cautiously take our inference based on the double-
Gaussian model as valid. However, to assess the robustness of our conclusions to model
misspecification, we compared our findings to those based on two different models, the re-
gression model with ARMA errors and the Tweedie model.
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Table 1. Estimates and standard errors of the parameters of the double-Gaussian model.

Station Parameter Estimate Standard Error p-Value

β10 5.774 0.150 0.000
β11 −0.583 0.117 0.000
β12 −0.342 0.237 0.150
l1 5.820 0.050 0.000
φ∗1 −0.021 0.083 0.798

Liberia β20 5.849 0.128 0.000
β21 −0.278 0.065 0.000
β22 0.185 0.206 0.368
l2 9.198 0.062 0.000
φ∗2 0.593 0.074 0.000
δ∗ 0.426 0.105 0.000
σ∗0 0.143 - -
σ∗1 −0.330 - -

β10 5.825 0.099 0.000
β11 −0.217 0.077 0.005
β12 −0.237 0.163 0.144
l1 5.885 0.071 0.000
φ∗1 0.621 0.096 0.000

Nicoya β20 6.054 0.094 0.000
β21 −0.209 0.048 0.000
β22 0.093 0.154 0.544
l2 9.137 0.060 0.000
φ∗2 0.652 0.079 0.000
δ∗ 0.594 0.166 0.000
σ∗0 0.343 - -
σ∗1 −0.782 - -

3.2. Regression Model with ARMA Errors

The regression model with autoregressive moving-average (ARMA) errors is a stan-
dard model for describing autocorrelated, normally distributed outcomes whose means
depend on predictor variables (e.g., [22,23]). It is therefore a reasonable alternative to the
double-Gaussian model. As explained in the online supplementary material, we consider,
in particular, the regression model with AR(1) errors applied to a transformation of the
rainfall measurements, Y1/4

it . We use standard diagnostic tools such as Q-Q plots and
autocorrelation function plots of residuals as justification for this choice (e.g., [23]).

Our model can be expressed as

Y1/4
it = mt + γ1δt1xit1 + γ2δt2xit1 + γ3δt3xit1 + γ4

xit2
n

+ εit, (3)

where mt is the effect of month t (in mm1/4). The variable δt1 is one if t < 5 or t > 10 (i.e.,
to indicate the dry season) and zero otherwise. The variable δt2 is one if 5 ≤ t ≤ 7 (i.e.,
to indicate the spring peak in May, June, and July) and zero otherwise. The variable δt3 is
one if 8 ≤ t ≤ 10 (i.e., to indicate the summer peak in August, September, and October) and
zero otherwise. The purpose of the variables δt1, δt2, and δt3 is to allow for an interaction
effect between month and ONI; in particular, the effect of ONI (in units of mm1/4(◦C)−1

is assumed to be γ1 during the dry months, γ2 during the spring peak, and γ3 during the
summer peak. (With a larger sample size, the model could be generalized to allow an ONI
by month—rather than an ONI by season—interaction.) The parameter γ4 represents the
effect of time (in mm1/4). Finally, εit follows an AR(1) process.

We fit the regression model with AR(1) errors using the arima function in the R
package stats. Table 2 shows the estimates of some of the parameters and their standard
errors. (The remainder appear in the online supplementary material.) Of note are the
statistically significant effects of ONI on the spring peak (Liberia) and summer peaks
(Liberia and Nicoya). However, we found no evidence of a long-term time trend. A caveat
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to our findings is that we used the same dataset both to select the model and to make
inferences about the regression coefficients. Consequently, the reported p-values may be
too small. The estimated lag-1 coefficients are small for both stations. In other words,
after adjusting for month and ONI effects, the rainfall observations are approximately
independent. These results are broadly consistent with those based on the double-Gaussian
model, lending strength to our conclusions based on the latter and, importantly, further
justifying the independence assumption.

Table 2. Estimates and standard errors of some of the parameters of the regression model with
AR(1) errors.

Station Parameter Estimate Standard Error p-Value

γ1 −0.104 0.049 0.032
γ2 −0.380 0.108 0.000

Liberia γ3 −0.303 0.074 0.000
γ4 0.014 0.115 0.902

Lag 1 Coefficient 0.076 0.045 -
Residual Variance 0.459 - -

γ1 −0.025 0.055 0.646
γ2 −0.152 0.121 0.212

Nicoya γ3 −0.239 0.083 0.004
γ4 −0.105 0.136 0.441

Lag 1 Coefficient 0.100 0.048 -
Residual Variance 0.538 - -

The model with ARMA errors provides a flexible way of handling autocorrelation
in the rainfall measurements—a key advantage relative to the double-Gaussian model.
In particular, the double-Gaussian model requires the inclusion of a predictor variable (such
as ONI) to explain the autocorrelation in the observation. On the other hand, the model
with ARMA errors does not have this requirement because it can explain the autocorrelation
via the error terms. It therefore allows rainfall to be predicted even when future values of
such predictor variables are unknown.

However, this model has three major drawbacks in our setting. First, like the double-
Gaussian model, it is based on the assumption of normality, which, according to QQ plots
of the residuals (not shown), is clearly unrealistic in the dry months. Second, interpretation
of the effects of predictors is challenging given that they are specified on the scale of
the transformed response (and neither the mean nor the median of the untransformed
response has a simple relationship with the predictors). Third, while the non-parametric
specification of the annual cycle is a flexible approach, it lacks the descriptive appeal of the
double-Gaussian model.

3.3. Tweedie Model

To address our concerns about the normality assumption required of the double-
Gaussian model and regression model with AR(1) errors, we also consider a Tweedie
model [24]. The Tweedie distribution (e.g., [25]) does not, in general, have a closed form
but is flexible and includes the gamma and compound Poisson-gamma distributions as
special cases. The latter is a continuous distribution with a point mass at zero—a feature
that is especially appealing in our context, where certain months regularly see zero rainfall.

To be more specific, given month-specific random effects, we assume that monthly
rainfall follows a Tweedie distribution with a mean depending on the month of the year,
ONI, and time (in number of months since December 1979). The random effects, which
are autocorrelated, induce autocorrelation in the monthly rainfall observations. As in the
regression model with AR(1) errors, we specify the mean structure non-parametrically,
with one parameter for each month of the year.
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The specification of the model is as follows. Again, let Y∗it = Yit/(1 mm), a unitless
measure of total rainfall in month t of year i. Let µit be the expected value of Y∗it . We model
µit as

µit = exp
(

at + b1δt1xit1 + b2δt2xit1 + b3δt3xit1 + b4
xit2
n

)
, (4)

where at is the (unitless) effect of month t; δtk, k = 1, 2, 3 are defined as in Section 3.2; b1,
b2, and b3 are the effects of ONI (in units of ◦C−1) during the dry months, spring peak,
and summer peak, respectively; and b4 is the (unitless) effect of time.

In addition, let Uit ≥ 0 be a unitless, unobserved random effect associated with
month t of year i. In our context, these random effects are not assumed to have a physical
interpretation (though they may well correspond to the local and remote meteorological
processes that affect rainfall, as outlined in Section 1). Rather, they are included as a
convenient means of allowing for autocorrelation in the observed rainfall totals. We assume
that, given the random effects, the Y∗its are independent and Tweedie-distributed. We
further assume that

E[Y∗it | Uit] = µitUit

Var[Y∗it | Uit] = φtµ
qt
it Uit

E[Uit] = 1

Var[Uit] = τ2

Cov[Uis, Ujt] = τ2ρdisjt ,

where φt, qt, and ρ are unknown, unitless parameters to be estimated; 0 ≤ ρ < 1; t > s;
and disjt = 12(j− i)+ t− s > 0 represents the number of months between observations (i, s)
and (j, t) (divided by 1 month to preserve dimensional homogeneity). These assumptions
imply that Cov[Y∗is, Y∗jt] = µisµjtτ

2ρdisjt —i.e., that Y∗is and Y∗jt are correlated; the correlation
decreases to zero as disjt → ∞. Our model builds on earlier work [24], allowing φt and qt to
depend on month.

Previous authors [24] estimated most of the parameters in the Tweedie model using
an iterative procedure. In particular, at each iteration, they replaced the random effects
with their best unbiased predictors, estimated the regression parameters using unbiased
estimating equations, and estimated the remaining parameters via the method of moments
(MOM; e.g., [26]). They repeated this procedure until convergence was achieved. We used
the same method of estimation (with an adjustment to the MOM estimators since φt can
differ by month in our model). Rather than the suggested Newton scoring algorithm, we
used the multiroot function in the R package rootSolve to solve the estimating equations.
For simplicity, we handle the missing values in the Nicoya data by replacing them with the
sample median rainfall for their corresponding months. Following previous authors [24],
we did not estimate qt. Instead, for t = 1, 2, 3, 4, we set qt = 1.62 (the maximum likeli-
hood estimate obtained by assuming independent Tweedie observations in those months).
For t = 5, 6, . . . , 12, we set qt = 2, which corresponds to the gamma distribution. This
distribution provides a reasonable fit to the rainfall in those months (where no zero rainfall
observations occurred). The online supplementary material contains details about the
goodness of fit of this model.

Table 3 shows the resulting estimates of some of the parameters and their standard
errors. We have no evidence of an ONI effect in the dry months (p = 0.967 in Liberia and
p = 0.732 in Nicoya) or of a time trend (p = 0.738 in Liberia and p = 0.069 in Nicoya).
However, the effects of ONI on the spring and summer peaks (i.e., b2 and b3) are significant
at both stations. In particular, if ONI in month t of year i is 1 ◦C greater than in month t of
year j and t is a spring month, then the expected rainfall in month t of year i is estimated to
differ from that in month t of year j by a factor of e−0.281 = 0.755 (95% confidence interval:
[0.634, 0.900]) in Liberia and e−0.147 = 0.863 (95% confidence interval: [0.752, 0.991]) in
Nicoya. Similarly, if ONI in month t of year i is 1 ◦C greater than in month t of year j
and t is a summer month, then the expected rainfall in month t of year i is estimated to
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differ from that in month t of year j by a factor of e−0.322 = 0.725 (95% confidence interval:
[0.659, 0.797]) in Liberia and e−0.231 = 0.794 (95% confidence interval: [0.733, 0.859]) in
Nicoya. These findings, like those from the regression model with AR(1) errors, reinforce
our conclusions based on the double-Gaussian model. They also suggest that the impact of
the violation of the normality assumption in the double-Gaussian model may be minimal.

Table 3. Estimates and standard errors of some of the parameters of the Tweedie model.

Station Parameter Units Estimate Standard Error p-Value

b1
◦C−1 −0.004 0.097 0.967

b2
◦C−1 −0.281 0.089 0.002

Liberia b3
◦C−1 −0.322 0.048 <0.001

b4
◦C−1 0.037 0.111 0.738

τ2 - 0.024 - -
ρ - 0.437 - -

b1
◦C−1 −0.029 0.086 0.732

b2
◦C−1 −0.147 0.070 0.036

Nicoya b3
◦C−1 −0.231 0.040 <0.001

b4
◦C−1 −0.173 0.095 0.069

τ2 - 0.022 - -
ρ - 0.467 - -

As in the analysis based on the regression model with AR(1) errors, after accounting
for month and ONI effects, the estimated residual autocorrelation was very low (maximum
estimated lag-1 correlation of 0.055 for Liberia and 0.087 for Nicoya).

The Tweedie model has a number of advantages. First, as mentioned earlier, it provides
an excellent approximation of the distribution of rainfall on the original scale, capturing
both the zero observations and the (approximately continuous) non-zero observations.
A second appealing feature is the model’s high degree of interpretability. In particular,
the effects of the predictor variables have a simple interpretation as (multiplicative) changes
in mean monthly rainfall. Finally, like the regression model with AR(1) errors, the Tweedie
model can incorporate autocorrelation in the responses and can therefore be used to model
rainfall with or without the inclusion of ONI as a predictor.

The main weakness of the Tweedie model—shared by the AR(1) model—is its non-
parametric treatment of the month effects, which is undesirable from the perspective of
description. In addition, estimation of the parameters of this model requires customized
code and non-trivial computing time, whereas estimation in the context of the double-
Gaussian model and the regression model with AR(1) errors can be performed using
standard statistical software and requires mere seconds.

3.4. Summary of Models and Inferential Results

Our models have advantages and disadvantages. Of the three models, the double-
Gaussian model provides the simplest, most interpretable description of rainfall in the
region. However, its simple structure leads to limitations from a prediction standpoint—
namely, future ONI values must be known with a high degree of certainty. The regression
model with AR(1) errors and the Tweedie model overcome this limitation but rely on less
interpretable, semi-parametric mean structures. Another advantage of the Tweedie model
is that its assumptions are more statistically defensible than those of other two models
(leading to more reliable inference), but this advantage comes at the cost of increased
computational effort required to estimate parameters.

While a comparison of effect estimates across models would not be sensible given that
they are on different scales, we can say that inference based on all three models leads to the
same general conclusions: evidence of a negative impact of ONI on spring and summer
rainfall and no evidence of a time trend.
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4. Rainfall Forecasting

In this section, we discuss the use of our models for forecasting future rainfall. Due
to the inherent variability of rainfall (see Figure 2), we do not expect any of our models to
be able to predict rainfall precisely. Rather, our question of interest is whether our models
provide an improvement over naive prediction methods based on monthly sample mean
or median rainfall.

Our focus is point prediction rather than formal inference; therefore, the points we
raised in Section 3 regarding the validity of the assumptions of some of our models are less
of a concern. Prediction intervals, which are more heavily dependent on the validity of the
model assumptions, are beyond the scope of this paper, but we discuss them in general
terms in Section 5.

We are interested in prediction in two cases: the case where future values of ONI are
treated as unknown and not used in modelling and the case where future values of ONI
are routinely predicted (e.g., by the Climate Prediction Center) and thus may be treated as
known. We omit time as a predictor in all cases given its earlier demonstrated insignificance.

To assess the predictive ability of our proposed models, we forecast the following
rainfall summary quantities over the years 2006–2020 in Liberia and 2007–2016 in Nicoya:

1. Spring peak (total rainfall in May, June, and July) conditional on all observations prior
to January of the year in question.

2. Summer peak (total rainfall in August, September and October) conditional on all
observations prior to January of the year in question.

3. Annual total conditional on all observations prior to January of the year in question.
4. Monthly rainfall conditional on all observations prior to the month in question (“One-

month-ahead predictions”).
5. Monthly rainfall conditional on all but the last three observations prior to the month

in question (“Three-month-ahead predictions”).

Of particular interest are the predictions of the spring and summer peaks because of
their importance for local, rain-fed agriculture and the predictions of annual total rainfall
because of their importance for groundwater recharge and hydroelectricity production.

Comparing the predictive ability of the three models is challenging because they are
designed to predict fundamentally different quantities. In particular, the double-Gaussian
model is designed to predict mean monthly total rainfall on the log(Yit + 1) scale given
future ONI values; the AR(1) model is designed to predict mean monthly total rainfall
on the Y0.25

it scale with or without knowledge of future ONI values; and the Tweedie
model is designed to predict mean monthly total rainfall on the original scale with or
without knowledge of future ONI values. Since the scales differ across models, we cannot
compare their monthly predictions directly. The only exception is the case of the double-
Gaussian model and the AR(1) model; the back-transformation of their predictions results
in predicted median monthly rainfall in both cases.

In the same vein, predicted mean spring, summer, and annual rainfall, obtained by
summing the relevant monthly predictions, are on three different scales. Those based on
the Tweedie model are on the original scale and are thus readily interpretable; those based
on the other two models are on transformed scales and cannot be back-transformed to
obtain predicted median totals. Therefore, we do not compare the predictions of mean
spring, summer, and annual rainfall across models directly.

However, we can derive “naive predictions” of rainfall on any scale over any subset of
months based on the appropriate sample means or medians from our data. Thinking of
the naive predictions as a benchmark, we can then observe whether our methods result in
improved predictions. For example, we can compare the estimated mean spring rainfall
on the log(Yit + 1) scale based on the double-Gaussian model to the sample mean spring
rainfall on the same scale.

To make predictions using our models, we require estimates of their parameters.
As fitting the Tweedie model involves some computational time, when predicting monthly
rainfall (quantities 4 and 5 above), we used the parameter estimates resulting from fitting
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the model to all data observed prior to January of the year in question. In contrast,
fitting the regression model with AR(1) errors or the double-Gaussian model is essentially
instantaneous. Thus, for predictions based on these models, we used parameter estimates
derived by fitting the model to all data observed prior to the time in question. Importantly,
in all cases, only past data were used to predict future rainfall.

When comparing estimated means, we used mean squared error (MSE) to compare
the two sets of predictions (since mean rainfall is the optimal predictor when MSE is the
chosen loss function); when comparing estimated medians, we used mean absolute error
(MAE) as a measure of prediction error (since the median is the optimal predictor when
MAE is the chosen loss function).

The missing data from the Nicoya station were omitted from all predictions.
Let Y = (Y11, Y12, . . . , YIT) be the random vector of rainfall measurements observed

up to year I, month T, and let y be the observed realization of this random vector. Let Ynew
be a new monthly total that we wish to predict.

4.1. Double-Gaussian Model

For the double-Gaussian model, we use y to find the maximum likelihood estimates
of the parameters in (1) and (2). Using these parameter estimates and the month and ONI
value corresponding to Ynew, we can then estimate λnew = E[log(Ynew + 1)]. We use λ̂new
as the point predictor of E[log(Ynew + 1)], and we use exp(λ̂new) as the point predictor of
the median of Ynew + 1.

Table 4 shows the ratios of the prediction errors based on the double-Gaussian model
(where future ONI values are assumed known) to those based on the appropriate naive
method (sample mean or sample median rainfall over the specified subset of months).
For spring, summer, and annual totals, the prediction errors based on the double-Gaussian
model are substantially smaller than those based on the naive method; the reduction in
error is 17–27% in the case of the spring totals, 35–41% in the case of the summer totals,
and 40–49% in the case of the annual totals. However, for 1- and 3-month-ahead predictions,
the two methods are approximately equivalent. Figures 3–9 provide a different view of
these results, displaying the observed and predicted values over the various time scales.

Table 4. Ratio of the prediction error (PE) based on the double-Gaussian model (where ONI is
assumed known) to that based on the naive method (sample means/medians by month).

Station Quantity Scale Mean or Median Error Measure PE Ratio

Spring total log(Yit + 1) Mean MSE 0.730
Summer total log(Yit + 1) Mean MSE 0.591

Liberia Annual total log(Yit + 1) Mean MSE 0.608
1-month-ahead Yit Median MAE 1.050
3-month-ahead Yit Median MAE 1.049

Spring total log(Yit + 1) Mean MSE 0.836
Summer total log(Yit + 1) Mean MSE 0.655

Nicoya Annual total log(Yit + 1) Mean MSE 0.515
1-month-ahead Yit Median MAE 1.003
3-month-ahead Yit Median MAE 0.999
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Figure 3. Predicted (using the double Gaussian and naive approaches) and observed total spring
rainfall values at the Liberia station (left) from 2006 to 2020 and at the Nicoya station (right) from
2007 to 2016. Rainfall is reported on the scale log(Yit) + 1.

Figure 4. Predicted (using the double Gaussian and naive approaches) and observed total summer
rainfall values at the Liberia station (left) from 2006 to 2020 and at the Nicoya station (right) from
2007 to 2016. Rainfall is reported on the scale log(Yit) + 1.
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Figure 5. Predicted (using the double Gaussian and naive approaches) and observed total annual
rainfall values at the Liberia station (left) from 2006 to 2020 and at the Nicoya station (right) from
2007 to 2016. Rainfall is reported on the scale log(Yit) + 1.

Figure 6. One-month-ahead predicted (using the double Gaussian and naive approaches) and
observed monthly rainfall values at the Liberia station from 2006 to 2020. “Month” is the number of
months since January 2006.
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Figure 7. One-month-ahead predicted (using the double Gaussian and naive approaches) and
observed monthly rainfall values at the Nicoya station from 2007 to 2016. “Month” is the number of
months since January 2007.

Figure 8. Three-month-ahead predicted (using the double Gaussian and naive approaches) and
observed monthly rainfall values at the Liberia station from 2006 to 2020. “Month” is the number of
months since January 2006.
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Figure 9. Three-month-ahead predicted (using the double Gaussian and naive approaches) and
observed monthly rainfall values at the Nicoya station from 2007 to 2016. “Month” is the number of
months since January 2007.

4.2. Regression Model with AR(1) Errors

For the regression model with AR(1) errors, we first define

η̂ = Ê
[
Y0.25

new
∣∣Y = y

]
,

which we calculate using the model fit with or without ONI, as desired, and the month and
ONI value (if applicable) corresponding to Ynew. Given past rainfall observations y, we
use η̂ as a point predictor of the mean of Y0.25

new , and we use η̂4 as a point predictor of the
median of Ynew. We use this method (via the R function forecast in the package forecast)
to predict rainfall when the future ONI is treated as known or unknown.

Table 5 provides the ratios of the prediction errors based on the regression model with
AR(1) errors (where future ONI values may be assumed known or unknown) to that based
on the appropriate naive method. Predictions of spring, summer, and annual totals based
on this model with ONI included are substantially more accurate than those based on the
naive method; the model-based method reduces prediction error by 10–17% in the case of
the spring totals, 36–40% in the case of the summer totals, and 39–49% in the case of the
annual totals. The corresponding 1- and 3-month-ahead predictions, however, are only
slightly more accurate than the naive predictions. Additionally, when we exclude ONI
from the model, the two methods perform similarly. Plots of the observed and predicted
rainfall values are available in the online supplementary material.
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Table 5. Ratio of the prediction error (PE) based on the regression model with AR(1) errors (where ONI
may be assumed known or unknown) to that based on the naive method (sample means/medians
by month).

Station Quantity Scale Mean or Median Error Measure PE Ratio PE Ratio
(ONI Known) (ONI Unknown)

Spring total Y0.25
it Mean MSE 0.732 1.000

Summer total Y0.25
it Mean MSE 0.604 1.000

Liberia Annual total Y0.25
it Mean MSE 0.606 0.988

1-month-ahead Yit Median MAE 0.927 0.962
3-month-ahead Yit Median MAE 0.947 0.998

Spring total Y0.25
it Mean MSE 0.895 1.002

Summer total Y0.25
it Mean MSE 0.642 1.000

Nicoya Annual total Y0.25
it Mean MSE 0.512 0.951

1-month-ahead Yit Median MAE 0.926 0.949
3-month-ahead Yit Median MAE 0.975 1.006

4.3. Tweedie Model

For predictions based on the Tweedie model, we first estimate the parameters of the
model described in Section 3.3, modified to exclude the time trend—and the effects of ONI,
if desired. To predict Ynew, we use the best linear predictor (e.g., [27]):

Ŷnew = E[Ynew] + Cov[Ynew, Y]′ Var[Y]−1(y− E[Y]),

evaluated by replacing the unknown parameters with their estimates. We use Ŷnew as a
point predictor of E[Ynew | Y = y].

Table 6 lists the ratios of the prediction errors based on the Tweedie model (where
future ONI values may be assumed known or unknown) to those based on sample monthly
means. When ONI is included, this model reduces the prediction error of annual total
predictions by approximately 66%! It also reduces the prediction error of the spring total
predictions by 10–27% and the prediction error of the summer total predictions by 30–39%.
However, the 1- and 3-month ahead predictions are only slightly more accurate than the
naive predictions. Additionally, when we exclude ONI from the model, the performances
of the two methods are comparable. Plots of the observed and predicted rainfall values are
available in the online supplementary material.

Table 6. Ratio of the prediction error (PE) based on the Tweedie model (where ONI may be assumed
known or unknown) to that based on the naive method (sample means/medians by month).

Station Quantity Scale Mean or Median Error Measure PE Ratio PE Ratio
(ONI Known) (ONI Unknown)

Spring Total Yit Mean MSE 0.728 1.000
Summer Total Yit Mean MSE 0.703 1.000

Liberia Annual Total Yit Mean MSE 0.338 1.000
1-Month-Ahead Yit Mean MSE 0.931 0.940
3-Month-Ahead Yit Mean MSE 1.017 0.987

Spring Total Yit Mean MSE 0.904 1.000
Summer Total Yit Mean MSE 0.610 1.000

Nicoya Annual Total Yit Mean MSE 0.344 1.000
1-Month-Ahead Yit Mean MSE 0.919 0.965
3-Month-Ahead Yit Mean MSE 0.963 0.970

4.4. Summary of Models’ Predictive Performance

As expected, because of the high variability of rainfall in this region, none of the
models is able to predict rainfall with high precision. That said, incorporating ONI as a
predictor sometimes leads to considerable gains in prediction accuracy: all three models
produce meaningfully more accurate predictions of the spring, summer, and annual totals
when ONI is included.
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A final point of interest is that, while the models with ONI included are able to
predict the spring, summer, and annual totals with substantially greater accuracy than the
naive methods, these models are able to predict 1- and 3-month-ahead rainfall with only
minimally greater accuracy. The explanation seems to lie in the variation of the timing
and smoothness of the spring and summer peaks. The models can predict the total rainfall
during the spring and summer—and hence over the entire year—with some accuracy.
However, they are not able for predicting rainfall with monthly resolution.

5. Discussion and Conclusions

In this paper, we analyzed the annual cycle of monthly rainfall totals for the years
1980 to 2020 at the Liberia and Nicoya stations in the Guanacaste province of Costa Rica.
Our first objective was to develop a statistical model that describes this cycle and allows
us to assess the long-term temporal trend and the influence of ENSO (as reflected in the
ONI). Our second objective was to provide statistical methods for forecasting rainfall that
account for the relatively complex annual rainfall pattern in this tropical wet–dry climatic
zone. These tasks are difficult due to the many months with zero rainfall, autocorrelation,
and a high degree of inter-annual variability.

To achieve our objectives, we proposed a novel model, the double-Gaussian model,
as an intuitive way of describing the observed rainfall patterns. This model explicitly
describes the robust, two-peak, annual rainfall pattern, leading to useful interpretations of
the ONI effect. Our analysis provides no evidence of a time trend but very strong evidence
of an association between ONI and spring and summer peaks of rainfall.

The double-Gaussian model relies on the assumption of normality (which is clearly
violated in our setting) and independence (which may be mildly violated in our setting). We
therefore checked the sensitivity of our conclusions to model misspecification by consider-
ing two alternative models. The regression model with AR(1) error relaxes the assumption
of independence, and the Tweedie model relaxes the assumptions of both independence
and normality. The consistency of our conclusions across models suggests that the impact
of the violations of the double-Gaussian model is minimal. Therefore, we feel comfortable
using it as a descriptive tool in practice.

We also used our models to predict rainfall at the two stations (training the models
with data from previous months). We showed that if ONI can be reliably forecast and
included as a predictor variable, predictions of spring, summer, and annual totals can
be considerably more accurate than those based on sample monthly means or medians.
Such predictions will be of great utility to local water managers as they plan for short-term
water-management strategies [19].

We assume that the inclusion of other covariates (for example, as noted earlier, PDO
and AMO indices and North Atlantic SST) would improve predictive performance. We
encourage such extensions of the double-Gaussian model via structures similar to those
used to incorporate ENSO forcing. In addition, lagged values of ONI could be considered,
though our preliminary investigation of this issue suggests that rainfall is more strongly
correlated with contemporaneous ONI values than with lagged ONI values.

Although our work was limited to point predictions of rainfall, prediction intervals
are a worthwhile topic for future research. One approach would be to develop a fully
parametric model based on justified assumptions. In our case, the Tweedie model, al-
though based on reasonable assumptions, is semi-parametric and can therefore produce
only point predictions, not prediction intervals. In contrast, the double-Gaussian model and
regression model with AR(1) errors are parametric but are based on the flawed assumption
of normality. That said, the normality assumption is reasonable if we fit those models only
to rainfall from the wet months. Prediction intervals for rainfall in those months would
then presumably be valid.

In the Futuragua project, an earlier version of the double-Gaussian model [19], with its
high degree of interpretability, proved to be well-suited to developing a set of rainfall
scenarios ranging from extreme La Niña to extreme El Niño conditions. These rainfall
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scenarios were used in turn to drive a hydrological watershed model in Guanacaste and
allowed projection of surface water and groundwater supplies under different ENSO
conditions [28]. The results were used to inform sustainable water management in the
region and support local decision makers in preparing, for instance, for drier El Niño
conditions. The extension of the model developed in the present paper will presumably
allow refinements of these management strategies. Furthermore, we have shown that when
ONI projections (which are typically available 3–6 months in advance) are incorporated, our
models can provide substantially more accurate forecasts of spring, summer, and annual
totals than naive methods. These forecasts can provide valuable planning information to
local water managers.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w15040700/s1, Supporting Information for “Statistical Modelling
of the Annual Rainfall Pattern in Guanacaste, Costa Rica”.

Author Contributions: Conceptualization, R.M.A., O.H. and D.S; methodology, R.M.A., O.H., N.M.
and D.S.; software, R.M.A., O.H. and N.M.; formal analysis, R.M.A., O.H., N.M. and D.S.; data
curation, N.M.; writing–original draft preparation, R.M.A., O.H. and D.S.; writing—review and
editing, R.M.A., O.H., N.M. and D.S.; funding acquisition, R.M.A. and D.S.; project administration,
D.S. All authors have read and agreed to the published version of the manuscript.

Funding: D.S. secured funding for the FuturAgua project from NSERC through an International
Opportunities Fund within the G8 Research Councils Initiative on Multilateral Research Funding and
Belmont Forum Grant opportunity. R.A. was funded by NSERC grant number RGPIN-2018-04304.
O.H. was funded by CANSSI. N.M. was funded by the FuturAgua grant.

Data Availability Statement: Code and data will be made available on GitHub.

Acknowledgments: We are extremely grateful to IMN for giving us access to station data. This access
was facilitated by an important Futuragua collaborator, Área de Conservación Tempisque. We also thank
William Welch of the University of British Columbia for his helpful input to this project.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Magaña, V.; Amador, J.A.; Medina, S. The midsummer drought over Mexico and Central America. J. Clim. 1999, 12, 1577–1588.

[CrossRef]
2. Hund, S.V.; Grossmann, I.; Steyn, D.G.; Allen, D.M.; Johnson, M.S. Changing water resources under El Niño, climate change, and

growing water demands in seasonally dry tropical watersheds. Water Resour. Res. 2021, 57, e2020WR028535. [CrossRef]
3. Waylen, P.R.; Caviedes, C.; Quesada, M. Interannual variability of monthly precipitation in Costa Rica. J. Clim. 1996, 9, 2606–2613.

[CrossRef]
4. Waylen, P.R.; Quesada, M.E.; Caviedes, C.N. Temporal and spatial variability of annual precipitation in Costa Rica and the

Southern Oscillation. Int. J. Climatol. 1996, 16, 173–193. [CrossRef]
5. Portig, W. The Climate of Central America. In World Survey of Climates; Schwerdtfeger, W., Ed.; Elsevier: Amsterdam, The Nether-

lands, 1976; pp. 405–478.
6. Enfield, D.B.; Alfaro, E.J. The dependence of Caribbean rainfall on the interaction of the tropical Atlantic and Pacific Oceans.

J. Clim. 1999, 12, 2093–2103. [CrossRef]
7. Wu, R.; Zhang, L. Biennial relationship of rainfall variability between central America and Equatorial South America. Geophys.

Res. Lett. 2010, 37, L08701. [CrossRef]
8. Wang, L.; Yu, J.Y.; Paek, H. Enhanced biennial variability in the Pacific due to Atlantic capacitor effect. Nat. Commun. 2017,

8, 14887. [CrossRef] [PubMed]
9. Peña, M.; Douglas, M.W. Characteristics of wet and dry spells over the Pacific side of Central America during the rainy season.

Mon. Weather Rev. 2002, 1998, 3054–3073. [CrossRef]
10. Karnauskas, K.B.; Seager, R.; Giannini, A.; Busalacchi, A. A simple mechanism for the climatological midsummer drought along

the Pacific coast of Central America. Atmósfera 2013, 26, 261–281. [CrossRef]
11. Waylen, P.R.; Quesada, M. The Effect of Atlantic and Pacific Sea Surface Temperatures on the Mid-Summer Drought of Costa

Rica. In Environmental Change and Water Sustainability; García-Ruiz, J., Jones, J., Arnáez, J., Eds.; Instituto Pirenaico de Ecología,
Consejo Superior de Investigaciones Científicas: Zaragoza, Spain, 2002; pp. 197–209.

12. Curtis, S. Diurnal cycle of rainfall and surface winds and the mid-summer drought of Mexico/Central America. Clim. Res. 2004,
27, 1–8. [CrossRef]

https://www.mdpi.com/article/10.3390/w15040700/s1
https://www.mdpi.com/article/10.3390/w15040700/s1
http://doi.org/10.1175/1520-0442(1999)012<1577:TMDOMA>2.0.CO;2
http://dx.doi.org/10.1029/2020WR028535
http://dx.doi.org/10.1175/1520-0442(1996)009<2606:IVOMPI>2.0.CO;2
http://dx.doi.org/10.1002/(SICI)1097-0088(199602)16:2<173::AID-JOC12>3.0.CO;2-R
http://dx.doi.org/10.1175/1520-0442(1999)012<2093:TDOCRO>2.0.CO;2
http://dx.doi.org/10.1029/2010GL042732
http://dx.doi.org/10.1038/ncomms14887
http://www.ncbi.nlm.nih.gov/pubmed/28317857
http://dx.doi.org/10.1175/1520-0493(2002)130<3054:COWADS>2.0.CO;2
http://dx.doi.org/10.1016/S0187-6236(13)71075-0
http://dx.doi.org/10.3354/cr027001


Water 2023, 15, 700 21 of 21

13. Rauscher, S.A.; Giorgi, F.; Diffenbaugh, N.S.; Seth, A. Extension and intensification of the Meso-American mid-summer drought
in the twenty-first century. Clim. Dyn. 2008, 31, 551–571. [CrossRef]

14. Small, R.J.O.; de Szoeke, S.P.; Xie, S.P. The Central American midsummer drought: Regional aspects and large-scale forcing.
J. Clim. 2007, 20, 4853–4873. [CrossRef]

15. Maldonado, T.; Rutgersson, A.; Alfaro, E.; Amador, J.; Claremar, B. Interannual variability of the midsummer drought in Central
America and the connection with sea surface temperatures. Adv. Geosci. 2016, 42, 35–50. [CrossRef]

16. Cowpertwait, P.; Isham, V.; Onof, C. Point process models of rainfall: Developments for fine-scale structure. Proc. R. Soc. A Math.
Phys. Eng. Sci. 2007, 463, 2569–2587. [CrossRef]

17. Burton, A.; Kilsby, C.G.; Fowler, H.J.; Cowpertwait, P.; O’Connell, P. RainSim: A spatial-temporal stochastic rainfall modelling
system. Environ. Model. Softw. 2008, 23, 1356–1369. [CrossRef]

18. Lettenmaier, D. Stochastic modeling of precipitation with applications for climate model downscaling. In Analysis of Climate
Variability; von Storch H., Navarra, A., Eds.; Springer: Berlin/Heidelberg, Germany, 1995; pp. 197–212.

19. Steyn, D.; Moisseeva, N.; Harari, O.; Welch, W.J. Temporal and Spatial Variability of Annual Rainfall Patterns in Guanacaste,
Costa Rica. Technical Report, The University of British Columbia, 2016. Available online: https://hdl.handle.net/2429/59971
(accessed on 8 February 2023).

20. Giannini, A.; Kushnir, Y.; Cane, M.A. Interannual variability of Caribbean rainfall, ENSO, and the Atlantic Ocean. J. Clim. 2000,
13, 297–311. [CrossRef]

21. Davis, R.A.; Dunsmuir, W.T.; Wang, Y. On autocorrelation in a Poisson regression model. Biometrika 2000, 87, 491–505. [CrossRef]
22. Box, G.E.P.; Jenkins, G. Time Series Analysis, Forecasting and Control; Holden-Day, Incorporated: San Francisco, CA, USA, 1990.
23. Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice, 2nd ed.; OTexts: Melbourne, Australia, 2013.
24. Hasan, M.T.; Yan, G.; Ma, R. Analysis of periodic patterns of daily precipitation through simultaneous modeling of its serially

observed occurrence and amount. Environ. Ecol. Stat. 2014, 21, 811–824. [CrossRef]
25. Jørgensen, B. The Theory of Dispersion Models; Monographs on Statistics and Applied Probability, Chapman & Hall: London,

UK, 1997.
26. Pace, L.; Salvan, A. Principles of Statistical Inference from a Neo-Fisherian Perspective; Advanced Series on Statistical Science and

Applied Probability, World Scientific: Singapore, 1997.
27. McCulloch, C.E.; Searle, S.R. Generalized, Linear, and Mixed Models; John Wiley & Sons: Hoboken, NJ, USA, 2001.
28. Hund, S.V. Community-Based Stream and Groundwater Monitoring and Future Change Impact Modelling of a Socio-

Ecohydrological System to Inform Drought Adaptation in the Seasonally-Dry Tropics. Ph.D. Thesis, The University of British
Columbia, Vancouver, BC, Canada, 2018.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s00382-007-0359-1
http://dx.doi.org/10.1175/JCLI4261.1
http://dx.doi.org/10.5194/adgeo-42-35-2016
http://dx.doi.org/10.1098/rspa.2007.1889
http://dx.doi.org/10.1016/j.envsoft.2008.04.003
http://xxx.lanl.gov/abs/https://hdl.handle.net/2429/59971
https://hdl.handle.net/2429/59971
http://dx.doi.org/10.1175/1520-0442(2000)013<0297:IVOCRE>2.0.CO;2
http://dx.doi.org/10.1093/biomet/87.3.491
http://dx.doi.org/10.1007/s10651-014-0284-5

	Introduction
	Station Data and Preliminary Analyses 
	Statistical Models and Estimation of the ONI Effect and Long-Term Time Trend
	Double-Gaussian Model
	Regression Model with ARMA Errors
	Tweedie Model
	Summary of Models and Inferential Results

	Rainfall Forecasting 
	Double-Gaussian Model
	Regression Model with AR(1) Errors
	Tweedie Model
	Summary of Models' Predictive Performance

	Discussion and Conclusions
	References

