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Abstract: The presence of 220 emerging contaminants belonging to different classes (artificial sweet-
eners, personal care products, coffee and tobacco-related compounds, and industrial chemicals) was
investigated in hospital wastewater for the first time. Twenty samples were collected within two
sampling periods from two points of a Greek General Hospital. Target compounds were analyzed
using a solid-phase extraction protocol followed by UHPLC-ESI-QToF-MS analysis. Analytical re-
sults showed that 23 micropollutants were detected at least once in hospital wastewater samples
in Period 1, while 27 compounds were detected at least once in Period 2. The coffee and tobacco-
related compounds were the most frequently detected substances, followed by artificial sweeteners,
parabens, and industrial chemicals. The highest mean concentrations were recorded for the artificial
sweeteners cyclamic acid (377 µg/L) and saccharine (295 µg/L), followed by caffeine (193 µg/L),
nicotine (162 µg/L), and the industrial chemical lauryl diethanolamide (153 µg/L). The group of
artificial sweeteners contributed up to 55.1% (Point A/Period 1) to the total concentration of studied
chemicals. The detection of high concentrations of artificial sweeteners in hospital effluents reveals
that hospitals should be considered as important point-sources of these contaminants.

Keywords: monitoring; hospital wastewater; emerging contaminants; parabens; artificial sweeteners;
personal care products; coffee and tobacco-related compounds; industrial chemicals; target analysis;
LC-QToF-MS

1. Introduction

The management of hospital wastewater (HWW) is a matter of important concern
both due to the produced volume as well as their characteristics. According to Eurostat [1],
in 2019, there were 2.38 × 106 hospital beds in EU countries, while the HWW production
rate ranged between 400 and 1000 L per hospital bed and day [2]. HWW is characterized by
concentrations of major pollutants (COD, BOD, TSS, TN, TP) that are close to the concentra-
tions found in municipal wastewater. However, additional to these pollutants, HWW may
contain hazardous materials such as various groups of pharmaceuticals, radioactive sub-
stances, different types of pathogens, antibiotic-resistant bacteria, and antibiotic resistance
genes [3–5].

Regarding the occurrence of organic micropollutants in HWW, so far, most published
papers have focused on the analysis and presence of pharmaceuticals highlighting hospitals
as important point-sources of these contaminants [6–9]. In addition to pharmaceuticals,
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some other groups of synthetic organic chemicals can also be found in HWW. Artificial
sweeteners are used as excipients in drug manufacturing to mask the taste of medications.
In a previous study related to the excipients contained in medications marketed in Brazil,
it was found that saccharine and sorbitol were contained in 38.3% and 36.9% of the stud-
ied pharmaceuticals, respectively, while sodium cyclamate and aspartame were found in
others [10]. In the same study, methylparaben and propylparaben were also found in 33
and 26 out of 73 pharmaceutical formulations. It is worth mentioning that parabens are
used during pharmaceutical production as antimicrobial preservatives. In another study
conducted in Italy for the excipients contained in oral medicinal products used for gastroin-
testinal indications, the use of sweeteners such as saccharine, aspartame, sorbitol, mannitol
as well as parabens was revealed [11], while a recent study conducted in Japan reported
that parabens were the most commonly used potentially harmful excipients in enteral,
parenteral, and topical formulations [12]. Despite the extended use of the aforementioned
compounds in drug manufacturing, to the best of our knowledge, there are no studies
investigating their concentration levels in HWW. Taking into account that parabens act as
weak endocrine disrupter chemicals [13] while concern has been raised for the potential
ecotoxicity of artificial sweeteners [14], the analysis of these groups of contaminants in
HWW could allow for better identification of their sources to the environment.

Scarce information also exists in the literature for the occurrence of other organic
industrial chemicals as well as tobacco-related compounds in HWW. For instance, triethyl
citrate is used in the pharmaceutical industry for coating [15], while benzododecinium is
used as antiseptic and disinfectant compound [16]. As far as we know, no published data
are available for their occurrence in HWW. Benzotriazoles and benzothiazoles are widely
used in corrosion-inhibiting products and dishwashing detergents [17]. In a recent study,
Gönder et al. [18] determined mean concentration of benzotriazole equal to 24.8 µg/L in
HWW originated from a Turkish hospital which is much higher than the few ppbs that are
commonly detected in municipal wastewater [19]. Concerning tobacco-related compounds,
few data are also available for the occurrence of nicotine and its metabolites in HWW. In
a recent study, Ekpeghere et al. [20] reported the occurrence of nicotine or its metabolites
in all samples collected from three Korean hospitals at concentrations that ranged up to
some ppbs.

Based on the above, the main objective of this article was to study the occurrence of arti-
ficial sweeteners, parabens, personal care products, coffee and tobacco-related compounds,
and other industrial chemicals in HWW. For this reason, 20 samples were collected in total
during two sampling periods from two different points of a Greek General Hospital, ana-
lyzed by LC-QToF-MS, and screened for the presence of 220 emerging contaminants. The
differences in the frequency of detection and the concentration levels of the 27 compounds
during different sampling periods and sampling points were discussed. The observed con-
centrations were compared to those determined in municipal wastewater to show whether
hospitals act as hot spots for these compounds.

2. Materials and Methods
2.1. Standards and Chemicals

The analytical standards of the quantified 27 compounds were of >99% purity and were
supplied by Sigma-Aldrich Company (Taufkirchen, Germany). The main chemical-physical
characteristics of the target analytes, including their molecular formulas, molecular weight,
pKa, logKow, and CAS numbers are provided in Table S1. The list was comprised of 4 artifi-
cial sweeteners, 6 personal care products, 5 coffee and tobacco-related compounds, and
12 compounds belonging to industrial chemicals. Individual stocks of standard solutions
(1 mg/mL) were prepared in methanol and stored in the dark at −18 ◦C. Then, working
standard solutions of all analytes were prepared, stored at 4 ◦C, and renewed monthly.

Acetonitrile (ACN), methanol (MeOH), and isopropanol were LC-MS grade and sup-
plied from Merck (Darmstadt, Germany). Ammonium acetate (LC-MS grade), ammonium
formate, and formic acid (purity 99%) were supplied by Sigma-Aldrich (Germany), while
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ammonia solution (25%, for analysis) was obtained from CHEM-LAB NV (Zedelgem, Bel-
gium). RC syringe filters (4 mm diameter, 0.2 µm pore size), empty solid phase extraction
(SPE) propylene tubes (6 mL), and frits (20 µm, 6 mL) used, were supplied by Phenomenex
(Torrance, CA, USA). The sorbent materials Sepra ZT (Strata-X), Sepra ZT-WCX (Strata-X-
CW), and ZT-WAX (Strata-X-AW) were purchased by Phenomenex (USA), while Isolute
ENV+ was supplied from Biotage (Hengoed, UK). Ultrapure water was taken from a
Milli-Q system (Millipore Direct-Q UV, Bedford, MA, USA).

2.2. Study Site and Sample Collection

HWW samples were collected from a General Hospital located on Creta Island (Greece).
It has a capacity of 440 beds and serves more than 40,000 hospitalized patients yearly, provid-
ing a full spectrum of health services. The following departments are found in the studied
hospital: Internal Medicine, Cardiology, Intensive Care Unit, Hematology, Endocrinology,
Family Planning Unit, Oncology, Gastroenterology, Neurology, Ophthalmology, Pediatric
Clinic, Outpatient Clinic, Radiology, Physiotherapy, and Sterilization.

Composite 24-h raw wastewater samples were taken from two discharge points (Points
A and B) in November 2020 (Period 1) and February 2021 (Period 2) with the aid of an
automatic sampler. The mean daily HWW volume was 10 m3/d in Point A, which serves
the Internal Medicine, Hematology, and Oncology departments, and 60 m3/d in Point B,
which services the entire hospital. Each sampling campaign was carried out over a period
of five consecutive days. In total, twenty (20) HWW samples were collected in pre-cleaned
high-density polyethylene bottles. Samples were immediately transferred to the laboratory
in portable coolers for conventional physico-chemical and emerging contaminants analysis.
Table S2 summarizes the abbreviations of sampling points, the locations, and the exact
dates of sampling.

2.3. Conventional Physico-Chemical Analyses

Conventional physico-chemical parameters such as pH, Biochemical Oxygen Demand
(BOD), Chemical Oxygen Demand (COD), Total Suspended Solids (TSS), Total Nitrogen
(TN), and Total Phosphorus (TP) were quantified following Standard Methods, as described
by Arvaniti et al. [4].

2.4. Extraction and Analysis of Contaminants

The contaminants were extracted from the wastewater matrix following a validated
analytical protocol, previously published by Gago-Ferrero et al. [21]. In brief, after pH
adjustment to 6.5 with HCl, and cartridge equilibration with MeOH and water, 100 mL
of HWW were passed through in-house cartridges packed with four sorbent materials
(200 mg Oasis HLB, 150 mg Isolute ENV+, 100 mg Strata-X-AW, and 100 mg Strata-X-CV).
The elution was conducted with 4 mL of MeOH/ethyl acetate (50/50, v/v) containing
2% ammonia, followed by 2 mL of MeOH/ethyl acetate (50/50, v/v) containing 1.7% formic
acid. The eluent was evaporated to dryness under a stream of N2 at 45 ◦C, and the final
extract was reconstituted to 0.5 mL with MeOH/water (50/50, v/v) and filtered through
0.2 µm RC filter. A thorough quality assurance and quality control (QA/QC) protocol was
followed during the sample preparation and instrumental analysis to assure the efficient
recovery of the tested compounds, the separation efficiency of the analytes of interest, and
the good operation of the HRMS system. Detailed information on the applied QA/QC
steps are provided in the Supplementary Materials (Section A).

The instrumental analysis was performed using an Ultra-High Performance Liquid
Chromatography (UHPLC) system (UltiMate 3000 RSLC, Thermo Fisher Scientific, Dreie-
ich, Germany) coupled to a Quadrupole-Time of Flight Mass Spectrometer (QToF-MS)
(Maxis Impact, Bruker Daltonics, Bremen, Germany). An Acclaim RSLC C18 column
(2.1 × 100 mm, 2.2 µm) from Thermo Fisher Scientific, connected to an ACQUITY UPLC
BEH C18 1.7 µm, VanGuard pre-column from Waters, thermostated at 30 ◦C, was used
for the chromatographic separation of the analytes, while electrospray ionization (ESI)
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was employed in both positive and negative polarities. Full scan MS data were recorded
(m/z range: 50–1000 Da), whereas both data-dependent and data-independent MS/MS
acquisition modes were applied for every sample. Detailed information on the gradient
elution program and the applied ESI and MS parameters have been reported in a previous
study [22], and summarized in the Supplementary Materials (Table S3).

2.5. Data Treatment and Statistical Analysis

The frequency of appearance of each contaminant was calculated as the ratio of
the number of samples with a concentration higher than the detection limit for a given
contaminant over the total number of samples.

Generally, for undetected compounds and compounds below LOQ, several strategies
are commonly applied to calculate the mean concentrations of micropollutants in a group
of samples [23,24]. In this study, if the minimum value of the target compounds was below
the method’s LOQ, it was given the corresponding LOQ/2 value, according to Directive
2009/90/EC [25]. Additionally, a zero value was considered when calculating the mean
concentration for the samples in which target compounds were not detected [26,27].

Statistical analysis was conducted using the t-test at p-value < 0.05 to assess the statis-
tical differences in the major pollutants’ concentrations between each sampling campaign.

The acquired HRMS chromatograms were screened using a dataset of 220 artificial
sweeteners, personal care products, industrial chemicals, coffee and tobacco-related com-
pounds and their metabolites/transformation products, included in the wide-scope target
database of the National and Kapodistrian University of Athens [28]. This database was
built through the analysis of the respective reference standards and includes information on
the precursor and fragment ions and retention time. The identification data for the detected
compounds are listed in Table S4 and the respectively extracted ion chromatograms of their
precursor ions are presented in Figure S1. For reporting a positive hit in the tested samples,
the following thresholds should be met for the screened compounds: mass accuracy of the
precursor ion < 2 mDa, retention time shift ± 0.2 min, good isotopic fitting, and detection
of qualifier ions (adduct and fragment ions ± 5 mDa).

The standard addition method using also representative structurally related isotope-
labeled compounds was performed for the quantification of the detected compounds,
whereas method performance criteria, including limits of detection and quantification,
repeatability (expressed as % relative standard deviation (RSD), % recovery, and matrix
effect, are provided in Table S5.

3. Results and Discussion
3.1. Conventional Physico-Chemical Parameters

Several conventional physico-chemical parameters were monitored at each point
during the two campaigns to estimate the water quality characteristics of the HWW. Their
minimum, median, mean, and maximum values for all 20 HWW samples are presented
in Table 1. The mean pH value was significantly higher at Point A compared to Point B
(p < 0.05) at both sampling periods. Moreover, significantly higher concentrations of TN
and TP were found in Point A compared to Point B during the second sampling campaign.
Average TN and TP values were equal to 173 and 9.1 mg/L in Point A, and 89 and 6.0 mg/L
in Point B, respectively. TSS, COD, and BOD concentrations were relatively comparable
between the two points and no significant differences were observed. A similar range of
values has been reported for BOD, COD, TSS, and TP in various studies performed on
HWW [29,30].
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Table 1. Conventional physico-chemical parameters measured in HWW of Point A and Point B during two different sampling campaigns.

Parameters

Period 1 Period 2

Point A Point B Point A Point B

Min Median Mean Max Min Median Mean Max Min Median Mean Max Min Median Mean Max

pH
(Consort C932) 8.6 8.7 8.7 * 8.8 7.4 8.0 7.9 * 8.0 8.3 9.0 8.8 * 9.0 7.7 7.8 7.8 * 7.9

BOD5 (mg/L)
(AQUALITIC sensor

system)
220 240 276 360 280 330 330 380 290 300 316 370 250 330 338 410

COD (mg/L)
(APHA (2005) 5220—D) 677 804 770 823 656 669 760 1042 490 535 585 731 379 494 487 640

TSS (mg/L)
(APHA (2005) 2540—D) 48 57 81 163 73 90 132 288 83 120 131 200 107 120 127 150

TN (mg/L)
(LCK 238) 211 228 235 289 178 198 197 218 134 157 173 * 222 69 91 89 * 110

TP (mg/L)
(APHA (2005) 4500-P-B, E) 8.5 10.7 10.9 13.4 9.0 10.7 10.4 11.5 6.0 8.2 9.1 * 13.2 4.8 5.6 6.0 * 7.9

Note: * statistical significant difference (p < 0.05).
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3.2. Occurrence and Concentrations of Contaminants in Hospital Wastewater

Figure 1 summarizes the frequency of appearance (FoA) of the detected target com-
pounds in the HWW samples at both sampling campaigns. In Period 1 (Figure 1),
23 compounds were found at least once in HWW samples. Out of 23 compounds, four
were artificial sweeteners, four were personal care products, five were coffee and tobacco-
related compounds, and 10 belonged to industrial chemicals. In addition, 16 compounds,
including acesulfame, cyclamic acid, saccharine, methylparaben, propylparaben, caffeine,
theobromine, nicotine, cotinine, hydroxycotinine, benzododecinium, lauryl diethanolamide,
N,N-Dimethyldodecylamine, N,N-dimethyltetradecylamine, N-methyldodecylamine, and
triethyl citrate were detected in all HWW samples, i.e., 100% FoA. Notably, 3 out of
16 compounds (theobromine, nicotine, cotinine, hydroxycotinine) belonging to caffeine
and nicotine metabolites, were omnipresent in the tested samples (100% FoA). In Period 2
(Figure 1), all 27 target compounds were detected at least once in wastewater samples. Eigh-
teen out of 27 compounds were detected in all samples, while the remaining 9 compounds
were found in more than 40% of the collected samples. It is also important to note that
transformation products (TPs)/metabolites of caffeine and nicotine were also detected in all
samples of this period, whereas galaxolidone, a TP of galaxolide, was detected in more than
80% of the collected samples. This observation demonstrates the importance of monitoring
TPs in conjunction to their parent compounds in wastewater. Additionally, as observed in
both sampling campaigns, the most predominant compounds were from the group of coffee
and tobacco-related compounds (5 out 5 with 100% FoA), followed by the group of artificial
sweeteners (3 out 4 with 100% FoA). From all other categories of emerging contaminants,
2 out of 6 personal care products, methylparaben and propylparaben, were detected in
all analyzed samples, while the other four were detected occasionally (ranging from not
detected to 90% FoA). From industrial chemicals, 5 out of 12 compounds presented 100%
FoA in both sampling campaigns (Figure 1). Notably benzophenone-3 and galaxolidone,
which belong to personal care products, as well as N,N-dimethyldodecylamine-N-oxide
and N,N-dimethyltetradecylamine-N-oxide, which belong to industrial chemicals were
detected only in the second sampling period (Period B). Details regarding the number of
detected compounds in each sampling site and period are provided in the Supplementary
Materials (Figure S2).
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Figure 1. Frequency of appearance (FoA%) of detected emerging contaminants in HWW for
Period 1 and 2.

The average concentrations of measured substances, along with the minimum and
maximum values for all monitored sites and periods, are presented in Table 2.
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Table 2. Minimum, maximum, and average concentrations (µg/L) of detected emerging contaminants in the HWW at both sampling sites and periods.

Compounds

Period 1 Period 2

Point A Point B Point A Point B

Min Max Average Min Max Average Min Max Average Min Max Average

Artificial sweeteners

Acesulfame 108 279 201 38.7 161 115 18.3 72.2 36.7 7.69 24.1 14.9

Cyclamic acid 346 782 579 204 512 412 103 271 174 29.3 114 68.4

Saccharine 163 787 491 34.5 189 130 23.2 233 98.9 6.53 29.4 13.5

Sucralose <LOD 24.2 9.38 <LOD 8.16 3.24 1.21 8.23 4.56 1.21 7.97 3.57

Personal care products

Benzophenon 3 <LOD <LOD <LOD <LOD <LOD <LOD <LOD 0.978 0.481 <LOD 0.142 0.0284

Galaxolide <LOD 0.209 0.0759 <LOD <LOD <LOD <LOD 0.0915 0.0540 0.0170 0.0170 0.0170

Galaxolidone <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD

Ethylparaben 0.472 2.13 1.16 <LOD <LOD <LOD 0.095 1.61 0.560 0.0397 0.158 0.0986

Methylparaben 72.7 168 133 32.2 135 87.2 20.8 56.2 36.8 1.05 27.8 15.2

Propylparaben 41.6 108 76.6 17.5 70.6 43.9 11.8 21.9 16.2 4.82 12.3 7.57

Coffee and tobacco-related compounds

Caffeine 198 433 279 130 404 213 82.4 143 108 36.0 85.1 65.7

Theobromine 33.8 108 67.2 55.1 129 81.6 10.6 33.6 21.4 9.29 14.6 11.5

Nicotine 97.9 250 144 71.2 543 179 10.4 58.2 31.1 2.32 21.9 11.2

Cotinine 10.6 14.8 12.7 8.75 17.8 11.9 0.600 4.20 2.84 0.782 4.05 2.52

Hydroxycotinine 34.3 66.3 47.8 27.3 78.7 41.8 21.2 31.7 27.0 7.34 16.3 12.7
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Table 2. Cont.

Compounds

Period 1 Period 2

Point A Point B Point A Point B

Min Max Average Min Max Average Min Max Average Min Max Average

Industrial chemicals

Benzododecinium 5.88 88.3 29.8 4.24 28.0 19.5 <LOD 17.9 8.51 <LOD 9.05 4.39

2-Hydroxybenzothiazole (2-OH-BTH) <LOD 7.71 2.02 <LOD <LOD <LOD <LOD 0.259 0.0517 <LOD 0.259 0.155

Benzotriazole (BTR) <LOD <LOD <LOD 4.46 15.6 10.4 <LOD <LOD <LOD 0.0881 2.20 0.885

Lauryl diethanolamide (Lauryl-DEA) 0.668 444 181 15.7 364 204 1.87 18.6 9.99 5.52 9.88 8.20

N,N-Dimethyldecylamine
(N,N-diMe-DA) <LOD <LOD <LOD 0.0473 0.095 0.0735 <LOD 0.0443 0.0133 0.0111 0.37 0.153

N,N-Dimethyldodecylamine
(N,N-diMe-DDA) 0.275 2.56 1.09 5.98 17.7 11.5 0.738 2.76 1.89 0.609 1.41 0.986

N,N-Dimethyldodecylamine N-oxide
(N,N-diMe-DDA-N-oxide) <LOD <LOD <LOD <LOD <LOD <LOD 0.493 15.2 8.42 0.0596 3.94 1.10

N,N-Dimethyltetradecylamine
(N,N-diMe-TDA) 12.3 176 63.0 24.0 126 94.6 1.40 7.96 5.18 0.987 4.93 2.80

N,N-Dimethyltetradecylamine-N-
oxide

(N,N-diMe-TDA-N-oxide)
<LOD <LOD <LOD <LOD <LOD <LOD <LOD 6.65 2.70 <LOD 0.765 0.219

N-Methyldodecylamine (N-Me-DDA) 0.0907 0.652 0.315 0.655 1.86 1.35 0.100 1.01 0.541 0.0511 0.326 0.124

Triethylphosphate <LOD 3.04 0.607 <LOD 12.7 2.54 0.0480 1.29 0.706 0.00 0.533 0.250

Triethylcitrate 1.05 5.07 2.83 0.976 3.39 2.22 0.0804 0.847 0.423 0.173 0.392 0.258
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More details about the found concentrations of the emerging contaminants during
different days of monitoring are reported in the Supplementary Materials (Table S6). Among
all analytes, the highest concentrations were found for the artificial sweetener saccharine
(787 µg/L; Point A, Period 1) and cyclamic acid (782 µg/L; Point A, Period 1), followed
by the stimulant nicotine (543 µg/L; Point B; Period 1), and the industrial chemical lauryl
diethanolamide (444 µg/L; Point A; Period 1). Overall, considering all sampling campaigns,
the observed concentrations were higher in Point A compared to Point B and for Period 1
compared to Period 2. More specifically, the highest sum concentration was calculated for
Point A and Period 1 (2322 µg/L), followed by Point B and Period 1 (1665 µg/L), Point A
and Period 2 (597 µg/L), and Point B and Period 2 (247 µg/L). The contributions of each
category of emerging contaminants to the total concentration are presented in Figure 2.
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Artificial sweeteners added the most to the total concentration of emerging con-
taminants with percentages ranging between 39.6% (Point B/Period 1) and 55.1% (Point
A/Period 1). Additionally, a high percentage of the total concentration was attributed
to the presence of the group of coffee and tobacco-related compounds which ranged be-
tween 23.7% (Point A/Period 1) and 42.1% (Point B/Period 2). As regards personal care
products and industrial chemicals, these compounds contributed similarly to the total
amount, generally not exceeding 10%. However, in sampling Point B (Period 1), a higher
contribution of the industrial chemicals (20.8%) was observed, which is attributed to the
elevated concentrations of some compounds such as benzotriazole, lauryl diethanolamide,
and N,N-Dimethyltetradecylamine. In Figure 3, Box and Whiskers graphs represent the
concentration of target detected analytes in µg/L for Points A and B of each sampling
period, where concentration levels ranged from some ng/L to a few mg/L.
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Figure 3. Box-whisker plots of the average measured concentrations for each sampling site and
period. Data for Point A/Period 1 (a), Point B/Period 1 (b), Point A/Period 2 (c), and Point B/Period
2 (d) are shown. Boxes represent lower (25%) and upper quartiles (75%). The line inside the box
represents the median, while square points inside the box represent the mean values, and whiskers
represent 1.5× interquartile range.

The 10 most abundant compounds are depicted in Figure 4. Taking into account
both sampling periods, the highest mean concentrations were recorded for cyclamic acid
(377 µg/L, Point A), saccharine (295 µg/L, Point A), caffeine (193 µg/L, Point A), acesul-
fame (119 µg/L, Point A), lauryl diethanolamide (153 µg/L, Point B), nicotine (162 µg/L,
Point B), methylparaben (85.0 µg/L, Point A), propylparaben (46.4 µg/L, Point A), caffeine
metabolites, theobromine, (46.6 µg/L, Point B), and nicotine metabolite, hydroxycotinine,
(37.4 µg/L, Point A).

In addition to the wide use of artificial sweeteners as excipients in medications [10,11],
this is the first time that their concentrations are determined in HWW. Similarly, there
is no study for lauryl diethanolamide which is used in cosmetics as foam booster and
foam stabilizer. On the other hand, there is a recent article on the presence of parabens in
HWW. Arfaeinia et al. [31] detected six different parabens in raw wastewater of two Persian
hospitals at median concentrations that ranged up to 674 ng/L (for methylparaben). It is
worth mentioning that the average concentrations of methylparaben and propylparaben
found in the current study were up to 200 times higher (Table 2). Concerning the existence
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of nicotine and its metabolites in HWW, Ekpeghere et al. [20] collected samples from two
Korean hospitals and determined mean concentrations of nicotine, hydroxycotinine, and
cotinine equal to 29.4, 34.6, and 15.0 µg/L, respectively, which are similar or lower than
those determined in the current study (Table 2). Finally, there are various studies on the
presence of caffeine in HWW. In addition to coffee drinks and beverages, this compound is
contained in several prescription and non-prescription medications. The concentrations of
caffeine that have been reported in the literature for HWW range from some tens to some
hundreds of ppbs [7,32,33].
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Figure 4. The 10 most abundant emerging contaminants in the HWW at Points A and B.

The occurrence of parent compounds and their associated TPs was also investigated
in HWW, and the results are depicted in Figure 5.

Galaxolide, a personal care product compound, was detected mainly in Point A, while
its transformation product (galaxolidone) was present at trace concentration levels at both
sampling sites. As mentioned above, caffeine and caffeine metabolites were found in all
samples. It is well-known that caffeine is excreted by humans in urine [16]. The mean
concentration of caffeine metabolite, theobromine, was approximately 45 µg/L at both
sampling sites. Nicotine and its metabolites were also detected in all samples. About 10%
of the absorbed nicotine is excreted in its original form in urine [16], however, nicotine is
extensively metabolized in the liver and forms a wide variety of metabolites, including
cotinine and hydroxycotinine [34]. Based on our results, hydroxycotinine was the major
metabolite of nicotine, with a mean concentration of 37.4 µg/L and 27.2 µg/L for Points A
and B, respectively. In addition, the mean concentration of cotinine reached almost 8 µg/L.
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Figure 5. Average concentrations of the parent compounds and their associated transformation
products in HWW samples of each sampling site (results as mean ± sd).

3.3. Comparison with Literature Data Originated from Greek Municipal Wastewater

To investigate whether hospitals act as important pollution point-sources for these
contaminants, literature data were collected for the occurrence of the studied compounds
in Greek municipal wastewater and compared with the findings of the current study.
According to the literature, relevant data were found for the group of artificial sweeteners,
caffeine, benzotriazole, and hydroxybenzothiazole (Table 3).

On the subject of artificial sweeteners, Kokotou et al. [35] analyzed eight sweeteners in
influent samples collected from a Sewage Treatment Plant (STP) located in the city of Athens.
Concentrations ranged between 12–25 µg/L, 6–58 µg/L, 15–46 µg/L, and 6–25 µg/L for
acesulfame, cyclamic acid, saccharine, and sucralose, respectively. Except for sucralose,
the levels of sweeteners detected in the present study were higher in comparison to the
previous report [35] by many orders of magnitude.
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Table 3. Comparison of the concentration levels of the studied emerging contaminants in Greek raw
municipal wastewater with those found in HWW.

Compounds Concentrations
(µg/L) References

Artificial Sweeteners

Acesulfame
18.3–279 This study

11.9–25.3 Kokotou et al. [35]

Cyclamic acid
29.3–782 This study

6.04–57.8 Kokotou et al. [35]

Saccharine
6.53–787 This study

15.0–46.0 Kokotou et al. [35]

Sucralose
n.d.–24.2 This study

6.25–25.4 Kokotou et al. [35]

Coffee and tobacco-related compounds

Caffeine

36.0–433 This study

n.d.–96.6 Kosma et al. [36]

45.9–92.0 Ofrydopoulou et al. [37]

0.860–6.68 Stamatis et al. [38]

0.100–5.40 Papageorgiou et al. [39]

n.d.–222 Papageorgiou et al. [32]

Industrial Chemicals

2-Hydroxybenzothiazole
(2-OH-BTH)

n.d.–7.71 This study

0.256–0.958 Stasinakis et al. [19]

Benzotriazole (BTR)
n.d.–15.6 This study

0.516–2.63 Stasinakis et al. [19]

As regards coffee and tobacco-related compounds, caffeine has been investigated in
many studies. Kosma et al. [36] detected caffeine in more than 80% of the collected samples
from eight Greek STPs and the highest concentration reached 97 µg/L. Papageorgiou
et al. [32] found caffeine in raw wastewater of four STPs and reported concentrations up
to 222 µg/L. In a recent study by Ofrydopoulou et al. [37], caffeine was also monitored
in two Greek STPs in the region of Thessaloniki and it was detected in all samples with
a maximum concentration of 92 µg/L. Other studies reported lower concentrations of
caffeine [38,39]. Stamatis et al. [38] detected caffeine in all analyzed samples collected
from the STP of Agrinio with mean and maximum concentration levels of 3 µg/L and
7 µg/L, respectively. Papageorgiou et al. [39] also detected caffeine in the influents of
Volos STP, and they reported mean and maximum concentration of 4 µg/L and 6 µg/L,
respectively. Compared to previous Greek findings, the measured caffeine levels in this
study are noticeably higher. Specifically, our results showed that its concentrations ranged
between 36 and 433 µg/L.

Concerning industrial chemicals, Stasinakis et al. [19] studied the occurrence and fate
of benzotriazoles and benzothiazoles in raw wastewater from an STP located in Athens.
Concentrations in wastewater influents were below 3 µg/L for 2-hydroxybenzothiazole
and benzotriazole. The determined levels of these substances in the present study are
similar to those previously reported [19].

It is worth mentioning that the concentration levels of emerging pollutants reported
above for Greek municipal wastewater are, in most cases, in agreement with previously
published studies conducted in other areas (Europe, USA, Asia, etc.) [40–46].
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4. Conclusions

The occurrence of different groups of emerging contaminants as well as their metabo-
lites were investigated in a Greek General Hospital. Twenty-seven compounds were
detected at least once during both sampling periods. The most predominant compounds
were from the coffee and tobacco-related group (5 out 5 with 100% FoA), followed by
artificial sweeteners (3 out 4 with 100% FoA), personal care products (2 out of 6 with 100%
FoA), and industrial chemicals, (5 out of 12 with 100% FoA). However, artificial sweeteners
added the most to the total concentration of emerging contaminants followed by coffee
and tobacco-related compounds. On the other hand, industrial chemicals contributed
similarly to the group of personal care products in both examined points for Periods 1 and
2. Considering all sampling campaigns, the observed concentrations were higher in Point
A compared to Point B and for Period 1 compared to Period 2. The three highest mean
concentrations were recorded for cyclamic acid (377 µg/L, Point A), saccharine (295 µg/L,
Point A), and caffeine (193 µg/L, Point A). The findings of the current article indicate
that, in addition to pharmaceuticals, hospitals are a significant source for other groups of
emerging pollutants, such as artificial sweeteners, parabens, and stimulants.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/w15050936/s1, Figure S1: Extracted Ion Chromatograms for the detected compounds:
(a) artificial sweeteners by LC-ESI(-)-QToF-MS, (b) personal care products by LC-ESI(+)-QToF-MS,
(c) personal care products by LC-ESI(-)-QToF MS, (d) coffee and tobacco-related compounds by
LC-ESI(+)-QToF-MS, and (e) industrial chemicals by LC-ESI(+)-QToF-MS, Figure S2: % Frequency of
appearance (% FoA) of the detected ECs in Building A (Point A) and entire hospital (Point B) of the
two studied periods, Table S1: CAS number, chemical formula, molecular weight, pKa, and log Kow
values of 27 detected and quantified emerging contaminants, Table S2: Information on the samples
collected in this study (dates, sampling points), Table S3: The gradient elution program of LC-HRMS
analysis, Table S4: UHPLC-ESI-QToF MS identification data for the detected compounds, Table S5:
Performance of method applied for the analyses of emerging contaminants, Table S6: Results of
wide-scope target screening in HWW (µg/L) at both sampling sites.
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