
Citation: Nakhaei, M.; Ghazban, F.;

Nakhaei, P.; Gheibi, M.; Wacławek, S.;

Ahmadi, M. Successive-Station

Streamflow Prediction and

Precipitation Uncertainty Analysis in

the Zarrineh River Basin Using a

Machine Learning Technique. Water

2023, 15, 999. https://doi.org/

10.3390/w15050999

Academic Editor: Mustafa M. Aral

Received: 6 January 2023

Revised: 19 February 2023

Accepted: 25 February 2023

Published: 6 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Successive-Station Streamflow Prediction and Precipitation
Uncertainty Analysis in the Zarrineh River Basin Using a
Machine Learning Technique
Mahdi Nakhaei 1 , Fereydoun Ghazban 1,*, Pouria Nakhaei 2 , Mohammad Gheibi 3,4,* ,
Stanisław Wacławek 4 and Mehdi Ahmadi 5

1 Department of Environmental Engineering, University of Tehran, Tehran 14179, Iran
2 Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
3 Association of Talent under Liberty in Technology (TULTECH), 10615 Tallinn, Estonia
4 Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec,

Studentská 1402/2, 461 17 Liberec, Czech Republic
5 Department of Civil and Environmental Engineering, Amirkabir University of Technology (Tehran Polytechnic),

Tehran 15875, Iran
* Correspondence: fghazban@ut.ac.ir (F.G.); mohamadgheibi@ymail.com (M.G.)

Abstract: Precise forecasting of streamflow is crucial for the proper supervision of water resources.
The purpose of the present investigation is to predict successive-station streamflow using the Gated
Recurrent Unit (GRU) model and to quantify the impact of input information (i.e., precipitation)
uncertainty on the GRU model’s prediction using the Generalized Likelihood Uncertainty Estimation
(GLUE) computation. The Zarrineh River basin in Lake Urmia, Iran, was nominated as the case study
due to the importance of the location and its significant contribution to the lake inflow. Four stations
in the basin were considered to predict successive-station streamflow from upstream to downstream.
The GRU model yielded highly accurate streamflow prediction in all stations. The future precipitation
data generated under the Representative Concentration Pathway (RCP) scenarios were used to
estimate the effect of precipitation input uncertainty on streamflow prediction. The p-factor (inside
the uncertainty interval) and r-factor (width of the uncertainty interval) indices were used to evaluate
the streamflow prediction uncertainty. GLUE predicted reliable uncertainty ranges for all the stations
from 0.47 to 0.57 for the r-factor and 61.6% to 89.3% for the p-factor.

Keywords: GLUE; GRU; input data uncertainty; Zarrineh River; precipitation

1. Introduction

Efficient management of water resources requires precise prediction of river stream-
flow to evaluate the effect of climate and land-use alterations, as well as increased agricul-
tural irrigation, on regional aquatic systems [1]. Lake Urmia (LU), located in northwestern
Iran, has significant socio-economic importance. However, the water level of the lake has
decreased by up to 5 m over the past few decades due to the excessive use of available
water and climate changes [2,3]. The changes in river discharges flowing into the lake are
primarily responsible for the changes in its water level, since rivers contribute more to the
inflow of the lake than groundwater and precipitation [4]. Zarrineh River (ZR) basin is
the largest and most crucial sub-basin of the LU basin, providing more than 41% of the
environmental flow into LU [3]. Therefore, developing a dependable model to predict the
ZR streamflow is of great significance in assessing changes in LU’s water level. Neverthe-
less, the complex and non-linear behavior of the hydrological system’s components and
insufficient data in the region hinder streamflow prediction [5,6].

In recent years, there has been widespread research on river streamflow prediction
using process-driven and data-driven methods [7–9]. Process-driven methods are practi-
cal techniques for understanding fundamental mechanisms of hydrological phenomena,
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but they require a vast number of high-resolution inputs, including meteorological data,
hydrological data, vegetation coverage, soil characteristics, and topographic data [10,11].
Therefore, low computational capacity and regions with unreliable and scarce input data
often limit process-based model development.

Data-driven methods of machine learning techniques can efficiently convert the nonlin-
earity of the input–output relationship with no familiarity of the physical procedures [12–15].
There are several machine learning techniques that can be used for river flow prediction,
including Artificial Neural Networks (ANNs) [16], Support Vector Machines (SVMs) [17],
Random Forests (RFs) [18], Gaussian Process Regression (GPR) [19], and Long Short-Term
Memory (LSTM) [20]. For instance, in [20] a Long Short-Term Memory (LSTM) is pro-
posed based on model for streamflow forecasting in a river with multiple dams. Moreover,
Xu et al. [19] proposed a hybrid model for river flow forecasting that combines Gaussian pro-
cess regression with an improved differential evolution algorithm. Similarly, Liu et al. [18]
evaluated the effectiveness of a Random Forest model for predicting daily streamflow.
However, the high nonlinear relationship among the inputs and model output limits these
data-driven models’ performance due to their simple structure [21,22].

Recently, deep learning (DL) techniques have been efficaciously utilized to address
time-series forecasting problems [23–25]. DL approaches are capable of simulating more
multidimensional purposes than non-deep neural networks by employing multiple neuron
layers in a neural network structure [26]. The Gated Recurrent Unit (GRU) was proposed
to simplify the structure of a Long Short-Term Memory model and solve the vanishing
gradient problem in RNNs [27]. The GRU can produce better results by improving the
prediction performance compared to other RNN networks by shortening the computation
time. GRU networks have demonstrated a significant performance in dealing with non-
linearity and huge quantities of data with a simpler structure and higher computational
speed than other variants of RNN [9,28]. The GRU has found many successful applications
in the hydrology field, particularly in river streamflow prediction [29,30].

Streamflow prediction models face significant uncertainties due to insufficient data
information and the complexity of the hydrological system. Uncertainties arise from non-
optimal model features that are difficult to detect, systematic errors or measurement errors
in initial data, and the calculation system due to simplification and assumption [11,31].
Several studies have evaluated and estimated the uncertainties in streamflow prediction [31–35]
concluded that input uncertainty is an essential factor affecting the correctness of the streamflow
estimation system. Since rainfall is the most essential input of the rainfall–runoff computa-
tion, its low spatial and temporal resolution or errors in the evaluation of precipitation data
lead to significant uncertainty in the streamflow prediction [31,36].

Several studies have quantified uncertainty in the streamflow prediction models
using various approaches [37–39]. Among these methods, the Generalized Likelihood
Uncertainty Estimation (GLUE) is a cutting-edge method used to estimate uncertainty in
prediction models [37]. Furthermore, the GLUE method is one of the most widely used
approaches used to analyze uncertainty due to its simple concept, low vulnerability to
model discontinuity, and easy implementation [11,31,33,40]. This method uses the Monte
Carlo (MC) approach coupled with Bayesian estimation to determine the “behavioral”
simulations based on the threshold value of the likelihood score.

This paper aims to predict the monthly streamflow of the Zarrineh River at successive
stations, from upstream to downstream, by employing the GRU network. To achieve
this goal, five model structures with different input variables and various time-lags were
considered for each station. The selected input variables include precipitation, temperature,
and streamflow with zero to four-month lag time. In addition, the GLUE method was used
to quantify precipitation uncertainty in model prediction. However, instead of using MC
simulation to produce random precipitation data series, the precipitation data were obtained
from General Circulation Models (GCMs) under different Representative Concentration
Pathways (RCPs) to avoid the stochastic errors caused by random data generation.
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2. Study Area

Lake Urmia, which has a total area of 5750 km2, is the largest lake in Iran and accounts
for 7% of the country’s surface water [4]. Zarrineh River (ZR) basin is the largest and
most crucial sub-basin of the LU basin, providing more than 41% (i.e., 1271 MCM) of the
environmental flow into LU [3]. ZR is situated to the southeast of Lake Urmia and covers
an area of about 12,025 km2 with a length of around 300 km, as depicted in Figure 1 [41].
However, the lake surface area has drastically decreased to one-tenth, to 500 km, with the
volume of half a billion cubic meters due to the unconventional use of available water and
climate changes [2,3]. The Boukan Dam is the largest and most significant dam operating
in the ZR basin with a live storage capacity of 650 MCM, storing water for drinking,
agricultural, and industrial uses [42]. The average annual precipitation over the basin
for the last four decades was 352 mm, which classifies the region as semi-arid with a
Mediterranean climate.
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Figure 1. Zarrineh River basin: Part (A) shows the location map of the Zarrineh River basin in the
northwest of Iran and part (B) shows the Zarrineh River basin and its rivers network along with
hydrometric and meteorological stations 1–4.

3. Data Collection

In this study, four hydrological stations were considered for the streamflow prediction
of successive stations in the Zarrineh River basin: Safakhaneh (station #1), Boukan reservoir
(station #2), Qezkorpi (station #3), and Nezamabad (station #4) (see Figure 1B). Available
measured monthly streamflow and reservoir outflow data for 1974–2014 were obtained
from (www.yekom.com, accessed on 1 February 2023) and (www.dams.wrm.ir, accessed on
1 February 2023), respectively. In addition, the meteorological data introduced into the GRU
network, including the precipitation, maximum temperature, and minimum temperature
dataset for 1974–2014, were collected from Iran Meteorological Organization. A total of
17 well-spread meteorological stations were considered in the basin (Figure 1B) for reliable
streamflow predictions.

The projected precipitation data from GCMs under different RCPs were used in the
GLUE method to estimate precipitation input uncertainty. Future precipitation data from
2025 to 2060 was collected from all the available models and RCP scenarios in the region.
In total, 93 precipitation datasets under RCP6.0, RCP2.6, RCP8.5, and RCP4.5 scenarios were
obtained from the Climate Change, Agriculture and Food Security (CCAFS) data portal
(www.ccafs-climate.org, accessed on 1 February 2023). The RCPs represent greenhouse gas
(GHG) concentration trajectories used to understand the climate change in future, and vary from
very low (RCP2.6) to very high (RCP8.5) future concentrations [43]. Because the GCM projected
data contain systematic errors in their rough 3D resolution, they cannot directly be applied in

www.yekom.com
www.dams.wrm.ir
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climate models [44]. Hence, raw climate model outputs require bias correction to improve the
fit of the projected data to the observations. Mengistu in [45] compared the raw regional climate
model (RCMs) and bias-corrected RCMs against observed climate data. Bias-corrected RCMs
performed better in reproducing rainfall, minimum temperature, and maximum temperature
than raw RCMs, which demonstrated obvious biases in estimating climate data.

4. Model Description
4.1. Gated Recurrent Unit (GRU) Cell Structure

GRU is an advanced variant of a RNN developed to deal with the vanishing gradient
problem [27]. Several studies showed that RNNs have higher performance compared to
feedforward networks (FFNs) because they predict better and more stable streamflows [46,47].
Compared to other RNN networks, the GRU has a faster training process for multistep-
ahead prediction without affecting its prediction performance. Thus, it is a commonly
used deep learning technique, which has been utilized in many hydrological investigations,
particularly streamflow forecasting.

The typical GRU cell structure is demonstrated in Figure 2. It has a memory (ht),
a candidate hidden layer (h′t), and two controlling gates: the reset gate (rt) and the update
gate (zt). The memory of the current t and the previous time steps t − 1 is calculated using
the reset and update gates. The update gate controls how much state information ht−1
(h
′
t−1) is transferred to the up-to-date time step from the earlier one. More state data from

the prior time step is produced by the greater number of update gates. The reset gate
is applied to determine the degree to which the information from the previous state is
forgotten. The lesser the reset gate, the more state information is forgotten. The update
equations in the GRU cell structure are computed as per Equations (1)–(4):

rt = σ(Wrxt + Urht−1) (1)

zt = σ(Wzxt + Uzht−1) (2)

h′t = tan h(Whxt + rtUhht−1) (3)

ht = (1− zt)h′t + ztht−1 (4)
where W and U are the networks’ weights matrices. The sigmoid function (σ) and the tanh
function limits the output range from 0 to 1 and −1 to 1, respectively.
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Figure 2. Schematic of a GRU cell.

4.2. GLUE Theory

The GLUE is a statistical technique for uncertainty quantification of forecasting com-
putation [37]. The GLUE method uses different variables to make numerous simulations
in a model in order to describe the behavioral/non-behavioral models. The generalized
likelihood function is used to identify the behavioral simulations. A higher likelihood value
represents a better correlation between observed and simulated values. The behavioral
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models are used to quantify the model uncertainty after discarding the non-behavioral
simulations. The term “behavioral” signifies the accepted models based on the available
data and knowledge.

5. Methodology
5.1. GRU Model Development

Figure 3 demonstrates the GRU modeling steps undertaken in this study. The GRU
network was used to predict successive-station streamflow in the Zarrineh River basin.
Therefore, monthly streamflow, precipitation, reservoir outflow, and maximum and mini-
mum temperature of 1979 to 2000 (427 data points), 2000 to 2003 (50 data points), and 2003
to 2014 (127 data points) were considered as training, validation, and testing sample data,
respectively. The validation dataset was used to find the optimum model factors and avoid
overfitting, and the testing dataset comprised the unseen data in the training procedure to
evaluate the calculative algorithm efficiency.

Water 2023, 15, x FOR PEER REVIEW 6 of 17 
 

 

Table 1. The model structures used in the GRU network. 

Name Model Structure 
S1 𝑄 = 𝑓(𝑄 , 𝑃 , 𝑇 , 𝑇 , 𝑇 ) 
S2 𝑄 = 𝑓(𝑄 , 𝑄 , 𝑄 , 𝑃 , 𝑃 , 𝑇 , 𝑇 , 𝑇 , 𝑇 , 𝑇 , 𝑇 ) 

S3 𝑄 = 𝑓(𝑄 , 𝑄 , 𝑄 , 𝑄 , 𝑄 , 𝑃 , 𝑃 , 𝑃 , 𝑇 , 𝑇 , 𝑇  𝑇 , 𝑇 , 𝑇 , 𝑇 , 𝑇 , 𝑇 ) 

S4 𝑄 = 𝑓(𝑄 , 𝑄 , 𝑄 , 𝑄 , 𝑄 , 𝑄 , 𝑄 , 𝑃 , 𝑃 , 𝑃 , 𝑃 , 𝑇  𝑇 , 𝑇 , 𝑇 , 𝑇 , 𝑇 , 𝑇 , 𝑇 , 𝑇 , 𝑇 , 𝑇 , 𝑇 ) 

S5 
𝑄 = 𝑓(𝑄 , 𝑄 , 𝑄 , 𝑄 , 𝑄 , 𝑄 , 𝑄 , 𝑄 , 𝑄 , 𝑃 , 𝑃  , 𝑃 , 𝑃 , 𝑃 , 𝑇 , 𝑇 , 𝑇 , 𝑇 , 𝑇 , 𝑇 , 𝑇 , 𝑇  , 𝑇 , 𝑇 , 𝑇 , 𝑇 , 𝑇 , 𝑇 , 𝑇 ) 

Tuning the hyper-parameters in the GRU network is an essential step in achieving 
accurate prediction results [48]. However, there is no specific method available to select 
and optimize these parameters; therefore, the trial-and-error technique is used to discover 
the hyper-parameters with the best model performance on the validation dataset [49]. 
Therefore, a large number of experiments was performed by considering a wide range for 
each parameter.  

Considering that the stochastic gradient descent optimization algorithm is applied to 
train the DL networks, a loss function is defined to repeatedly estimate the current model 
state. Then, the network’s weights are updated to increase the model performance on the 
subsequent evaluation. The present study used mean squared error (MSE) as the loss func-
tion MSE (Equation (11)): 

𝑀𝑆𝐸 = (𝑄 − 𝑄 )  (5)

where Q0 and Qs are the observed and estimated streamflow at time t, correspondingly. 

 
Figure 3. Flowchart of GRU modeling procedure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Start 

Splitting data into train, validation and test 

Normalizing data between 0 and 1 

Considering different model structures with  
various input variables and lag-time 

Developing the GRU network to predict streamflow 

Model 
performance 

Good 

Poor 

End 

Figure 3. Flowchart of GRU modeling procedure.

The process of finding essential input variables with the most influence on the model’s
output requires a trial-and-error procedure since there are no unified methods to determine
them. Therefore, five model structures with different input variables and up to a four-
month lag time were considered to find the structure with the best performance (see Table 1).
In Table 1, f represents the GRU networks; Qt and Qt

us represent the streamflow of the
current and upstream station at month t, respectively; Pt is the precipitation at month t;
Tt

max, Tt
min, and Tt

avg are the maximum, minimum, and average temperature at month t,
correspondingly; t − 1, t − 2, t − 3, and t − 4 illustrate one- to four-month lag times in the
model structure. Structure S1 and S2 consider all the features, except the current station’s
streamflow with zero- and one-month lag times, respectively. However, S3, S4, and S5
structures contain all the input variables with two- to four-month lag times. A total of five
model structures were used to simulate all hydrometric stations, except for the first station
(Safakhaneh station), which does not include the streamflow from the upstream station.
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Table 1. The model structures used in the GRU network.

Name Model Structure

S1 Qt = f (Qt
us, Pt, Tt

max, Tt
min, Tt

avg)

S2 Qt = f
(

Qt−1
us , Qt

us, Qt−1, Pt−1, Pt, Tt−1
max, Tt

max, Tt−1
min , Tt

min, Tt−1
avg , Tt

avg

)
S3

Qt = f (Qt−2
us , Qt−1

us , Qt
us, Qt−2, Qt−1, Pt−2, Pt−1, Pt, Tt−2

max, Tt−1
max, Tt

max
Tt−2

min , Tt−1
min , Tt

min, Tt−2
avg , Tt−1

avg , Tt
avg)

S4
Qt = f (Qt−3

us , Qt−2
us , Qt−1

us , Qt
us, Qt−3, Qt−2, Qt−1, Pt−3, Pt−2, Pt−1, Pt, Tt−3

max
Tt−2

max, Tt−1
max, Tt

max, Tt−3
min , Tt−2

min , Tt−1
min , Tt

min, Tt−3
avg , Tt−2

avg , Tt−1
avg , Tt

avg)

S5

Qt = f (Qt−4
us , Qt−3

us , Qt−2
us , Qt−1

us , Qt
us, Qt−4, Qt−3, Qt−2, Qt−1, Pt−4, Pt−3,

Pt−2, Pt−1, Pt, Tt−4
max, Tt−3

max, Tt−2
max, Tt−1

max, Tt
max, Tt−4

min , Tt−3
min , Tt−2

min ,
Tt−1

min , Tt
min, Tt−4

avg , Tt−3
avg , Tt−2

avg , Tt−1
avg , Tt

avg)

Tuning the hyper-parameters in the GRU network is an essential step in achieving
accurate prediction results [48]. However, there is no specific method available to select
and optimize these parameters; therefore, the trial-and-error technique is used to discover
the hyper-parameters with the best model performance on the validation dataset [49].
Therefore, a large number of experiments was performed by considering a wide range for
each parameter.

Considering that the stochastic gradient descent optimization algorithm is applied to
train the DL networks, a loss function is defined to repeatedly estimate the current model
state. Then, the network’s weights are updated to increase the model performance on
the subsequent evaluation. The present study used mean squared error (MSE) as the loss
function MSE (Equation (11)):

MSE =
n

∑
t=1

(Qo −Qs)
2 (5)

where Qo and Qs are the observed and estimated streamflow at time t, correspondingly.

5.2. Data Normalization

Normalizing raw data is an important pre-processing step in training ML approaches.
Mapping all the attribute data to the same scale avoids numerical difficulties of the model
and enhances the speed and accuracy of the modeling. Zhu in [5] suggested normalizing
data into the range of [0, 1] for ML techniques, specifically ANN networks. The following
equation (Equation (6)) was applied in the present research for the data normalization:

Xnorm =
Xi − Xmax

Xminmax
(6)

where Xi and Xnorm denote the raw and normalized data, correspondingly. Xmax and Xmin
represent the maximum and minimum of raw dataset, respectively.

5.3. Model Evaluation Criteria

The accuracy and reliability of streamflow prediction were evaluated using four
statistical measures. The Nash Sutcliffe coefficient (NSE) (Equation (7)) is a reliable and
widely used criterion for assessing the hydrological models’ performance, and indicates
the ratio of the modeled data variance to the observed data variance. The range of NSE
is [−∞, 1], with values closer to 1 indicating better performance [46]. The coefficient of
determination (R2) (Equation (8)), which has a range of [0, 1], represents the linear relation
between the observed and predicted data. The prediction model shows more reliable
results if the value of R2 is closer to 1. The root mean square error (RMSE) (Equation (9))
evaluates the magnitude of the difference between the observed and predicted values. The
closer the value of RMSE to 0, the higher the accuracy of the prediction.

NSE = 1− ∑t=1 (Qm −Qo)
2

∑t=1 (Qo −Qo)
2 (7)
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R2 = 1− ∑ (Qm −Qo)
2

∑ Q2
m

(8)

RMSE =

√
∑ (Qm −Qo)

2

n
(9)

where n is the number of data points. Qm and Qo are the predicted and observed values,
respectively. Qo is the average value of the observations.

5.4. Bias Correction Method

The bias modification method enhances the reliability of climate model simulations
by adjusting projected precipitation and temperature data to the observations [50]. Thus,
simulated raw climate data are corrected based on the alterations in the mean and variability
among the climate model outputs and observed data in a reference period. The general
procedure of the bias correction approach is illustrated in Figure 4.
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The general form of the bias modification method uses observations to correct the
mean and temporal variability of the climate prediction technique outputs. This bias
correction is performed by the following equation:

TBC(t) = OREF +
σo,REF

σT,REF

(
TRAW(t)− TREF

)
(10)

where TBC is the bias-corrected GCM output, TRAW is the raw GCM output for the histor-
ical or future period, TREF is the GCM output from the historical reference period, and
σT,REF and σo,REF are the standard deviation of GCM output and the standard deviation of
reference observations from the reference period, respectively.

5.5. Quantification of Input Data Uncertainty Using GLUE

In the present paper, the general concept of the GLUE method used is shown in
Figure 5. The first step in quantifying input data uncertainty is generating random sets
of data. While previous studies have used MC simulation for this purpose [11,31,40], this
study used projected precipitation data from GCMs under different RCPs for the period
of 2025–2060. In total, 93 precipitation datasets were acquired from GCMs. Then, the
likelihood value ( L(P|Q) ) was obtained after applying each dataset to the GRU network.
The widespread likelihood quantity is defined as NSE equation (Equation (11)) [31,33]:

L(P|Q) = 1− ∑t=1 (Qo −QS)
2

∑t=1 (Qo −Q)
2 (11)

where Qo is the observed streamflow, QS is the simulated streamflow, and Q is the average
of observed streamflow dataset.
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Figure 5. General concept of GLUE method.

The comparison of the chosen threshold value α = 80% and likelihood value L(P|Q)
specifies the behavioral (L(P|Q) ≥ 80%) and non-behavioral (L(P|Q) < 80%) datasets.
Then, the non-behavioral datasets are discarded and the behavioral ones determine the uncer-
tainty interval using the greater (UL, Equation (12)) and lower boundaries (LL, Equation (13))
equations. Furthermore, the streamflow of the upper and lower limits is obtained using
Equations (14) and (15).

UL =
1 + α

2
× 100% (12)

LL =
1− α

2
× 100% (13)

QUL = Qmax +
PUL − Pmax

Pmin − Pmax

(
QPmin −Qpmax

)
(14)

QLL = Qmin +
PLL − Pmax

Pmin − Pmax

(
QPmin −Qpmax

)
(15)

where QUL and QLL are the upper and lower limits of the predicted streamflow, correspond-
ingly; Qmin and Qmax are the minimal and maximal amounts of streamflow, respectively;
Pmin and Pmax are the precipitation data consistent with Qmin and Qmax , respectively; and,
PLL and PUL are the precipitation data associated to the minor and higher boundaries
likelihood values, correspondingly.

The p- f actor and r- f actor are applied to quantify the strength of the simulation and
evaluate the predicted streamflow uncertainty. The p- f actor is the percentage of observed
data in the uncertainty interval (95PPU) (Equation (16)). The r- f actor reflects the average width
of the 95 PPU band (Equation (17)). Theoretically, the prediction is a perfect fit with the observed
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data if p- f actor and r- f actor are 1 and 0, respectively. A p- f actor larger than 50% depicts low
uncertainty and a low value of r- f actor shows lower uncertainty in the model prediction.

p- f actor = ∑n
t=1 l(Qo(t))

n
(16)

with l(Qo(t)) =
{

1 i f QLL < Qo < QUL
0 otherwise

r- f actor =
1
n ∑n

t=1(QUL −QLL)

σo
(17)

where Qo(t) is the experiential streamflow at time t and σo is the standard deviation of the
declared streamflow.

6. Results
6.1. Evaluation of GRU Networks

The hyper-parameters that require tuning include the optimizer, activation function,
learning rate, number of epochs, and batch size. The epoch is a process of sending the entire
dataset into the network only once to complete an iterative calculation. Each epoch contains
large amounts of data; thus, they are split into small batches. The epoch and batch sizes are
set to 64 and 1000, respectively. Although a significant number of epochs is selected, the
callback is applied to stop the training process if the validation period performance starts
to decrease. The optimization is limited in the stochastic gradient descent algorithm by
using a similar learning rate for each feature. Furthermore, the Adam algorithm automatically
adapts the learning rate by using the applied gradient for the variable. However, the algorithm
may not locate the optima by using a small learning rate for each variable. Nevertheless, the
Root Mean Squared Propagation (RMSprop), an extension of previous algorithms, uses the
decaying moving average of partial gradients to focus on the most recently seen partial gradients
and forget early gradients [51,52]. The RMSprop optimizer with a learning rate of 0.001 was
selected. Moreover, the activation function was set to “Tanh”. Note that the GRU model with
various structures uses the same hyper-parameters.

Numerous experiments were performed on the chosen range for hidden layers, neu-
rons, and drop-out values for each structure of the GRU network in each hydrometric
station. The hidden layers, neurons, and drop-out values varied between 1–5, 5–500, and 0.3–0.7,
respectively. For instance, the outlet station of the Zarrineh River basin (Nezamabad station)
has two hidden layers with 100 and 120 neurons in each layer, and a drop-out value of 0.4 in the
S3 model structure. The GRU network might reach sub-optimal solutions using a random start
point. Therefore, ten identical runs were performed for each structure, and the final model was
selected based on the replication with the best performance in the testing period.

Table 2 lists the results of the GRU network with five model structures for each hydro-
metric station. The best model structure was determined based on the statistical criteria of
NSE, R2, and RMSE in the validation and testing phases to obtain high and comparable per-
formance and avoid model overfitting. The S1 structure with no lag time shows the poorest
performance among the other models in that station. However, introducing antecedent
streamflow of the station and a one-month lag time of other input parameters in the S2
model increases the model performance significantly compared to the S1 structure. The S2,
S3, S4, and S5 model structures have the same input variables with a one- to four-month lag
time. All the available climate data with various lag times were considered in the model
structures to obtain the best combination of these inputs and their period. In addition, lag
times were chosen in order to analyze how temporal variations in inputs affect the results.
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Table 2. Performance of GRU-based streamflow forecasting models for five station structures in the
Zarrineh River basin with varying monthly lag time.

Training Phase Validation Phase Testing Phase

Station Structure NSE R2 RMSE NSE R2 RMSE NSE R2 RMSE

Safakhaneh (#1)

S1 0.34 0.35 13.9 0.49 0.34 15.1 0.46 0.29 12.3
S2 0.53 0.66 10.2 0.52 0.63 11.1 0.54 0.57 8.1
S3 0.74 0.8 7.5 0.73 0.69 5.8 0.69 0.71 6.6
S4 0.75 0.86 5.8 0.75 0.78 6.7 0.8 0.8 5.3
S5 0.73 0.81 7.7 0.79 0.75 6.6 0.75 0.78 5.7

Boukan dam (#2)

S1 −7.9 0.79 23.4 −10.8 0.82 27.4 −12.6 0.85 20.7
S2 0.79 0.89 35.1 0.83 0.88 31.5 0.75 0.92 28.1
S3 0.8 0.81 35.5 0.73 0.76 27.7 0.78 0.81 25.9
S4 0.84 0.84 31.3 0.78 0.88 28.5 0.81 0.83 24.2
S5 0.88 0.89 26.8 0.88 0.89 23.5 0.85 0.86 20.7

Qezkorpi (#3)

S1 0.94 0.96 15.2 0.86 0.84 18.6 0.95 0.99 12.7
S2 0.93 0.96 19.2 0.93 0.95 16.5 0.94 0.99 13.4
S3 0.95 0.96 15.9 0.92 0.94 11.4 0.96 0.99 10.2
S4 0.96 0.96 15.1 0.97 0.98 7.6 0.98 0.99 8.2
S5 0.94 0.95 18.7 0.91 0.94 14.1 0.94 0.99 12.6

Nezamabad (#4)

S1 0.72 0.72 42.3 0.66 0.72 34.7 0.71 0.77 27.7
S2 0.81 0.85 34.8 0.84 0.87 26.3 0.79 0.82 23.7
S3 0.95 0.95 18.1 0.85 0.89 17.6 0.87 0.88 18.3
S4 0.94 0.94 18.7 0.89 0.93 22.4 0.85 0.88 19.8
S5 0.84 0.87 31.7 0.84 0.87 24.4 0.82 0.83 21.3

In the first station of the Zarrineh River basin, i.e., Safakhaneh, the models’ perfor-
mance is enhanced with the increase in the lag time, except for the S5 model, which showed
lower results than the S4 model. This indicates that the model’s performance declines
when complicating the model with excessive inputs. Overall, the S4 structure shows the
best performance among the other models, with NSE, R2, and RMSE of 0.75, 0.78, and
5.7, respectively, in the testing phase. While the streamflow of an upstream station is
not considered in the model structures of this station, the downstream stations of the
Safakhaneh benefit from the upstream streamflow. The monthly inflow to the Boukan dam
was predicted using five structures, in which S1 presents inferior performance compared
to the other models. However, applying the station’s streamflow and various lag times
substantially improves the statistical criteria of the model. The S5 structure with all the
input variables and a four-month lag time shows the best output results, with NSE, R2, and
RMSE of 0.85, 0.86, and 20.7, respectively.

Considering that the Qezkorpi station is located downstream of the Boukan dam,
the measured monthly outflow of the dam is used as the upstream outflow in the GRU
network. All the structures depict high performance with comparable results, but with a
slight improvement in the S4 model composed of all the input variables and a three-month
lag time. The evaluation criteria for the S4 model are 0.98, 0.99, and 8.2 for NSE, R2, and
RMSE, respectively, demonstrating the most accurate model. The most critical station in
the Zarrineh River basin is the outlet station, i.e., Nezamabad, which yields the outflow
to Lake Urmia. The model illustrates satisfactory output results in all the structures with
the highest model performance in the S3 model, with NSE, R2, and RMSE of 0.87, 0.88,
and 18.3, respectively. Thus, the GRU network shows a significant capability to predict
the successive-station monthly streamflow of the basin, particularly at the outlet station
contributing to the Lake Urmia inflow.

The observed and predicted hydrograph and the scatter plot of the structure with
the best performance for each hydrometric station in the training, validation, and testing
phases are shown in Figure 6. The hydrographs show that the model accurately predicted
the streamflow fluctuations in all the stations. In addition, the scatter plots illustrate that
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the streamflow is predicted with high R2 in each station. Although the model shows some
inconsistencies at high flows at the Safakhaneh station and Boukan dam, they performed
reasonably for the low- and medium-range flows. The GRU model generally performed
significantly for all the flows at the Qezkorpi and Nezamabad stations. Various climate
data, the land use, and the location of stations are responsible for the inconsistency in the
results for the same model structure in different stations. The results demonstrate that
the model performed better for downstream stations compared to the upstream stations
considering that the calibrated river flow reaches the downstream stations.
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6.2. Uncertainty

The projected precipitation data from 93 GCMs were used to determine the uncertainty
in the input data. The projected datasets were obtained from 2025 to 2060 and applied to the
best GRU model of each station to predict ensemble streamflow. The 95 PPU plots derived
from 93 precipitation datasets for each station are presented in Figure 7. The likelihood
value L(P|Q) was obtained by using the confidence level of α = 80%. The results indicate
that more than 92%, 96%, 98%, and 91% of the precipitation datasets satisfied the L(P|Q)
at the Safakhaneh, Boukan dam, Qezkorpi, and Nezamabad stations, respectively. These
precipitation datasets are called behavioral and were retained to estimate the uncertainty
of the input data in the GRU network (see Table 3). The calculated p-factor represents the
number of observed streamflows falling inside the 95 PPU. The uncertainty is lower if
the p-factor and r-factor are closer to 1 and zero, respectively [53]. The p-factor of all the
stations is greater than 50%, showing low uncertainty in the retained datasets. The stations
have a similar r-factors, but the p-factors of Boukan dam and Qezkorpi stations are higher,
indicating lower uncertainty than the other stations.
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Table 3. Input uncertainty estimation of the GRU model for the Zarrineh River basin.

Station Names L(P|Q) p-Factor (%) r-Factor

Safakhaneh 86 78.5 0.53
Boukan dam 89 89.3 0.57

Qezkorpi 91 86.6 0.52
Nezam Abad 85 61.6 0.47
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7. Conclusions

The environmental studies in water related subjects are increasing in developing
countries due to its vitality [54–56]. In Iran as a developing country, the alternation in the
Zarrineh River streamflow is primarily responsible for the changes in the water level of
Lake Urmia. This study uses a reliable machine learning method, i.e., GRU, to predict
the successive-station monthly streamflow of the Zarrineh River basin. Through five
model structures defined for each station, the structure with the most accurate results was
obtained based on the three statistical criteria. The input variables in the model structures
include streamflow of the current and upstream station, precipitation, and maximum,
minimum, and average temperature, with a lag time of up to four months, excluding
the Safakhaneh station which had no upstream streamflow. The GRU network presented
significant performance in predicting streamflow, particularly at the basin’s outlet station,
Nezamabad station. Furthermore, the GLUE method was applied to assess the effect of
precipitation uncertainty in streamflow prediction. Therefore, ensemble streamflows were
obtained by applying 93 GCM projected precipitation datasets to the GRU network. The
results indicate the capability of this method to include the precipitation input uncertainty
in the streamflow prediction. Most of the precipitation datasets satisfied the likelihood
value considering the selected high confidence level. Furthermore, the p-factor and r-factor
were used to estimate the input uncertainty by comparing the observed streamflow with
the ensemble predicted streamflow. The p-factor of all the stations is greater than 50% and
the r-factor is around 0.5, showing low uncertainty in the retained datasets.
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