
Citation: Feng, Y.; Lin, I.-F.; Lu, C.-C.;

Lin, H.-H. The Impact of Water

Utilization on the Dynamic Total

Efficiency of China’s Agricultural

Production. Water 2023, 15, 1266.

https://doi.org/10.3390/w15071266

Academic Editors: Petr Novák and
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Abstract: Water resources are very important to agricultural production. In recent years, the change
rate of agricultural cultivated land area in China has been very low, so it is not easy to increase its area
and improve production capacity. To measure the impact of China’s water resources on agricultural
efficiency from 2012 to 2016, this research applies the dynamic SBM model, conceives agricultural
water as an external input, and uses the cultivated land area as an immutable intertemporal variable.
The empirical results show that (1) the agricultural efficiency of Beijing, Heilongjiang, Shanghai,
Jiangsu, Zhejiang, Fujian, Shandong, Sichuan, Qinghai, and Xinjiang are not affected by agricultural
water. (2) The average value of China’s overall agricultural efficiency increased from 0.834 to 0.910,
indicating that agricultural water is a positive efficiency factor. (3) Jilin, Chongqing, Inner Mongolia,
Shaanxi, and Hubei are the five administrative regions with the most improvement in agricultural
efficiency. (4) Insufficient agricultural productivity is the main factor affecting agricultural efficiency.

Keywords: SDGs; agriculture; water utilization; sustainable development; DSBM

JEL Classification: C67; O13; Q25

1. Introduction

FAO (Food and Agriculture Organization of the United Nations) released the global
overview report on agricultural water resources (FAO, 2020/11/26) [1], which pointed out
that agricultural water accounts for more than 70%. Figure 1 shows the global distribution
of water use from 1961 to 2014, in which irrigation water use has increased year by year,
ranking first among all types of water use.

Due to climate change, abnormal high temperatures around the world have led to
dwindling freshwater resources. Under the current shortage of water resources, agricultural
development will be seriously threatened (Porkka et al., 2016, Rosa et al., 2020) [2,3] and
this will indirectly affect human food security (Foley et al., 2011) [4].

China is the world’s second largest economy and a major agricultural country. Ac-
cording to the 2020 National Economic and Social Development Statistical Bulletin of the
National Bureau of Statistics of the People’s Republic of China, the annual grain planting
area in 2020 was 116.77 million hectares, an increase of 700,000 hectares over the previous
year [5]. The annual grain output was 669.49 million tons, an increase of 5.65 million tons
or 0.9% over the previous year. He et al. (2019) [6] pointed out that based on the current
eating habits of Chinese people, more arable land and irrigation water are needed to help
obtain food.
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Development Goals (Sustainable Development Goals, SDGs) announced by the United 
Nations in 2015, the second goal is to eliminate hunger and create sustainable food. Addi-
tionally, the sixth core goal is providing sanitation and sustainable management of water 
resources for all. Under extreme climates and limited arable land, how to manage water 
use to achieve sustainable agricultural development has attracted much attention. 
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Figure 1. Distribution of global water resources from 1961 to 2014.

Zongxing et al. (2016) and Sun et al. (2018) [7,8] found that China’s rivers are gradu-
ally disappearing under climate change, and Li et al. (2016) and Wang et al. (2019) [9,10]
also pointed out that the surviving rivers are also polluted due to economic development.
Wang, Y. (2019) and Li et al. (2020) [10,11] also stated that due to China’s industry, urban-
ization, and population expansion, the area of cultivated land is also gradually decreasing.

Agricultural development is the foundation of national livelihood and economy. As a
major food producer, China still faces food shortages. In relation to the 2030 Sustainable
Development Goals (Sustainable Development Goals, SDGs) announced by the United
Nations in 2015, the second goal is to eliminate hunger and create sustainable food. Addi-
tionally, the sixth core goal is providing sanitation and sustainable management of water
resources for all. Under extreme climates and limited arable land, how to manage water
use to achieve sustainable agricultural development has attracted much attention.

The paper is structured as follows: Section 2 presents the literature review, Section 3
discusses the research methodology, Section 4 presents the empirical analysis, and Section 5
provides conclusions and recommendations. This dossier includes a number of acronyms,
which are summarized in Table 1.

Table 1. Abbreviations used in full.

Abbreviations Full Name

FAO Food and Agriculture Organization of the United Nations
SDGs Sustainable Development Goals
DEA Date Envelopment Analysis
SBM Slacks-Based Measure
COD Chemical Oxygen Demand
GDP Gross Domestic Product
DMU Decision Making Unit
IRS Increasing Return of Scale
DRS Decreasing Return of Scale

DSBM Dynamic Slacks-Based Measure
PPS Possible Production Set

2. Literature Review

Cao et al. (2018) and Geng et al. (2019) [12,13] pointed out that improving water
efficiency can increase agricultural productivity and is an effective way to solve food
shortages. Regarding the measurement of water use efficiency, traditional evaluation
methods only consider the relationship between single water use and output GDP. This
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study believes that to explore the efficiency of agriculture, other variables may need to be
evaluated at the same time, which are more objective.

Data envelopment analysis (DEA) is a comprehensive efficiency index that can mea-
sure multiple inputs and outputs at the same time, and its results are easy to show perfor-
mance, so it is accepted by ordinary people.

For example, Bai et al. (2017) [14] applied DEA, input labor, fixed asset investment,
water consumption, output GDP, and chemical oxygen demand (COD) to evaluate the water
resources, environment, and economic efficiency of the Bohai Bay urban agglomeration in
China, and the empirical results show that the efficiency of water resource utilization in
the Bohai Bay area has improved, but pollution poses a serious threat to the rapid growth
of available water resource protection, and solving the pollution problem is the key to
preventing environmental degradation. Hu et al. (2018) [15] applied DEA, input domestic
water consumption, industrial and agricultural water consumption, fixed assets, labor
force, and GDP of output area, and evaluated the ecological efficiency of China’s water use
in 2014. The empirical results show that the overall water environment is poor, and China
needs to focus on reducing industrial waste water; there is a lot of room for improvement
in water consumption. Yan (2019) [16] evaluated the water use efficiency of 11 cities in
Shanxi in 2016. These studies on water use efficiency belong to single-period static analysis.

Since static analysis does not have a vertical link to measure the impact on the next
period of efficiency, it is easy to overestimate the efficiency. So, to measure the performance
of water efficiency over a period of time, scholars use dynamic analysis for evaluation,
such as Sun et al. (2014) [17] who applied the SBM model to explore the influence of
external adverse factors on water efficiency; the empirical evidence shows that there is a
significant spatial correlation between the output of considering and not considering the
adverse factors. Deng et al. (2016) [18] applied the SBM model to explore the influence of
external adverse factors on water efficiency; the empirical results show that economically
developed administrative regions have higher water efficiency, but lower sewage treatment
efficiency. Luo et al. (2018) [19] applied the SBM model, inputting industrial, agricultural,
and domestic water consumption and outputting wastewater discharge, and evaluated
water use efficiency in 12 provinces and cities in western China; the empirical results show
that technological progress has had a positive impact on water use efficiency. Ren et al.
(2016) [20] inputted water resource consumption, arable land area, output grain output,
livestock quantity, service industry gross production value, and existing research from 2003
to 2013 in Gansu Province (China Urban Water Efficiency).

Another study on the efficiency of water in agriculture, such as the work of Xue
and Zhou (2018) [21], applied the SBM model to evaluate the water use efficiency of rice
production in China from 2004 to 2014 by inputting fertilizer, water consumption, labor
force, planting area, and capital, and using the output as the output. The results showed that
the water use efficiency of rice in many regions did not reach the production frontier due to
pollution emissions, but the water use efficiency of rice in all regions gradually improved.

Wang et al. (2019) [22] evaluated the efficiency of agricultural water use in China from
2000 to 2015 based on investment capital, labor force, water consumption, net value of
agricultural fixed assets, and agricultural output value added. The results showed that the
efficiency of agricultural water use in various regions has gradually increased, and with
regard to rural residents, the proportion of household per capita disposable income with a
high school degree or above is a factor that affects agricultural water use efficiency.

Shi et al. (2020) [23] applied the SBM model, input agricultural water consumption,
agricultural employees, arable land area, fixed assets, output agricultural output value, and
crop disaster areas, and evaluated the impact of climate change on agricultural production
in 30 provinces of China from 2010 to 2017. The results show that China’s agricultural
production efficiency is unevenly distributed. The central and eastern regions have the
best agricultural production efficiency, while the western regions have low agricultural
production efficiency. The distribution difference in agricultural water resources across the
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country has gradually decreased, but due to extreme weather, agricultural water supply
and water-saving measures should be controlled.

Because water use is very important to agricultural production, there are few studies
on water use as an exogenous variable of agricultural production. This study observes
that the rate of change in China’s agricultural arable land area has been very small in
recent years. From the perspective of solving the food problem and sustainable agricultural
development, it is not easy to increase the arable land area to increase the production
capacity. After summarizing the above-mentioned literature, when discussing the issue of
water use efficiency in agriculture, the less-used agricultural land area and variables such
as chemical fertilizers are analyzed together.

Based on the discussion of the impact of water use on China’s agriculture, this study
took 30 regions in China as the research objects, applied the dynamic SBM model, selected
the agricultural labor force and agricultural chemical fertilizers as the inputs, and took
agricultural gross domestic product as the single output, using agricultural water use as
an external factor and agricultural land area as an immutable intertemporal variable, to
measure the impact of China’s water use on agricultural efficiency from 2012 to 2016. In the
future, through the empirical results, this work can provide references for relevant govern-
ment departments in formulating policies to achieve sustainable agricultural development.

3. Methods
3.1. Data Envelopment Analysis (DEA)

Proposed by Farrell (1957) [24], DEA is mainly based on the theory of the boundary
production function. After connecting the production set point with the most efficient
value into the equal output line, it uses the gap between the production point and the equal
output line distributed in the coordinates, and this gap between them represents the degree
of efficiency of the production point. In other words, the efficiency frontier formed by the
data of input variables and output variables selected by each DMU through the principle
of linear programming is called the efficiency index. The relative efficiency of each DMU
is determined and evaluated according to the moment distance between the generated
distribution points and the efficiency boundary.

Based on Farrell’s theoretical model of economic efficiency, Charnes et al. (1978) [25]
extended and improved it into the CCR model to analyze the characteristics of multiple
input and output variables under fixed scale returns and to analyze and evaluate the
efficiency value. In practice, a DMU may have the situation of increasing returns to scale
(IRS) or decreasing returns to scale (DRS). Therefore, Banker et al. (1984) [26] extended and
developed the BCC model after the works of Farrell and CCR. This BCC model assumes
that the production technology is a variable returns to scale, which can be measured by
input orientation or output orientation, and the calculated efficiency values are different.
The above three models usually only focus on a separate time period, thus belonging to the
realm of static analysis.

3.2. Dynamic Environmental Overall Efficiency Model

Considering the changes over time, a separate time period model is not suitable for
long-term performance assessment. Tone and Tsutsui (2010) [27] developed a long-term
perspective based on the slacks-based measure (SBM) framework, incorporating carry-over
activities into the model; this is called the dynamic slacks-based measure (DN-SBM) model.
The model is divided into three types, input, output, and non-oriented, and uses the SBM
model proposed by Tone (2001) [28] to find the optimal solution. The variables in this
model are also measured using difference variables as the basis, and the SBM efficiency
is evaluated in a non-ray mode with a single dataset, with efficiency values ranging from
0 to 1. The efficiency values calculated by this model have two advantages: they do not
change depending on the unit of measurement of the input and output variables, and the
difference between the input and output decreases over time.
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Figure 2 shows the model for this study with n DMUs through time. Each DMU has
input and output variables in period t linked to period t + 1 through a carry-over.
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Figure 2. Dynamic SBM basic model of this study.

The study is based on 30 administrative regions in China, i.e., 30 DMUs (j = 1, . . . ,
30); there are 3 inputs (i = k, l, m) in each of the 30 DMUs, where i is agricultural labor,
agricultural fertilizer, and agricultural water, and there is 1 output (j = o) of agricultural
GDP; and agricultural arable land area is the carry-over. Since arable land area is a non-
controllable factor, the carry-over (fix) non-variable model is used in this study.

The following is a linear programming equation for the basic DSBM model, where
PPS is the production set, and θ is the dynamic SBM efficiency value.

PPS : T = {(xiht, yjht , ekht)| xiht ≥ ∑n
d=1 xidt λ

t
d , ( i = 1, 2, . . . m; d = 1, 2, . . . n ; t = 1, 2, . . . T), yiht ≤ ∑n

d=1 yidt λ
t
d ( j =

1, 2, . . . o; d = 1, 2, . . . n ; t = 1, 2, . . . T)
(1)

z bad
`dt ≤ ∑n

d=1 z bad
`dt λt

d , ( d = 1, 2 . . . n; ` = 1, 2 . . . q; t = 1, 2, . . . T)

λt
d ≥ 0, ( d = 1, . . . , n; t = 1, . . . , 7)

∑n
d=1 λ

t
d = 1, (t = 1, . . . , T)

The equation below is mathematical and satisfies the inter-period variability condition
from period t to period t + 1 and is an important constraint on DSBM activity linking period
t to period t + 1. Here, α in (2) can be expressed as good.

∑n
j=1 zαijt λ

t
j = ∑n

j=1 zαijt λ
t+1
j , ∀i ; (t = 1, . . . , T− 1 ) (2)

x: inputs (i = k, l, m);
y: outputs (j = o);
z: carry-over connected to agricultural arable land area (` = 1, 2, . . . , q).

θ∗dt = min

1
T ∑T=7

t=1 wt
[

1− 1
m+p

(
∑m

i=1
w−i s−it

xiht

)]
1
T ∑T=7

t=1 wt
[

1 + 1
o+q

(
∑o

j=1
w+

j s+jt
yjht

+ ∑
q
`=1

s+bad
lt

zlht
bad

)]

= min
∑T=7

t=1 wt
[

1− 1
m+p

(
∑m

i=1
w−i s−it
xiht

)]
∑T=7

t=1 wt
[

1 + 1
o+q

(
∑0

j=1
w+

j s+jt
yjht

+ ∑
q
`=1

s+bad
`t

z`ht
bad

)] (3)

S.t.



Water 2023, 15, 1266 6 of 16

xiht =
n
∑

d=1
xidt λ

t
d + s−it , (i = 1, 2, . . . , m; d = 1, 2, . . . , n; t = 1, 2, . . . , 5)

yjht ≤ ∑n
d=1 yjdt∗λ

t
d + s−jt , (j = 1, 2, . . . , o; d = 1, 2, . . . , n; t = 1, 2, . . . , 5)

zbad
`dt =

n
∑

d=1
zbad
`dt λ

t
d + sbad

`t , (` = 1, 2, . . . , q; d = 1, . . ., n ; t = 1, 2, . . ., 5)

∑n
d=1 λt

j = 1, (d = 1, . . . , n; t = 1, 2, . . . , 5) VRS

λt
d ≥ 0 , s−it ≥ 0, s+jt ≥ 0, sbad

`t ≥ 0 , (4)

The most efficient value available (overall efficiency of the dynamic environment) is
as follows:

θht =

1− 1
m + p

(
∑m

i=1
w−i s−it

xiht

)
1 + 1

o + q

(
∑o

i=1
w+

j s+jt
yjht

) (t = 1, . . ., 7) (5)

Equations (3)–(5) represent a multi-period dynamic agricultural efficiency measure-
ment model for the 30 administrative regions in China.

4. Results

We applied a dynamic SBM model to measure the impact of water resources on
agricultural efficiency in China. We based this on the completeness and availability of
research data collected, using 30 administrative regions in China over the period of 2012–
2016 and collecting all of the data from the National Bureau of Statistics of China. We
selected agricultural labor and fertilizer as the input variables, gross domestic product
(GDP) in agriculture as a single output variable, arable land area as a non-variable inter-
period variable, and irrigation water in agriculture as an exogenous variable. Table 2
presents a description of the input, output, and inter-period variables

Table 2. Descriptions of the variables included.

Selection of Variables Unit Description Expected Trend

Inputs

Agricultural labor people Population over 16 years of age involved
in agricultural activities. Down

Agricultural fertilizer ton Refers to the amount of fertilizer actually
used in agricultural production. Down

Water for agriculture m3

Water used for irrigation of agricultural
land, irrigation of forest and fruit land,
irrigation of grassland, and recharge of

fish ponds.

Down

Output Agricultural GDP RMB

It is based on the production of
agricultural products and their

by-products multiplied by the price per
unit of product.

Up

Carry-over Arable land area hectare Area of land that has been reclaimed for
growing crops and is regularly cultivated. Non-controllable

Note: Data source: own compilation.

4.1. Statistical Analysis

Table 3 shows the overall input and output variable statistics for the 30 administrative
regions of the country of China from 2013 to 2016. The maximum value of labor force in
agriculture is Henan in 2014 and the minimum value is Shanghai in 2014. The maximum
value of chemical fertilizer in agriculture is Henan in 2015 and the minimum value is
Qinghai in 2016. The maximum value of water use in agriculture is Xinjiang Uygur
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Autonomous Region in 2012, and the minimum value is Shanghai in 2016. The maximum
value of agriculture is Shandong in 2015, and the minimum value is Qinghai in 2012. The
maximum value of arable land area is Henan in 2015, and the minimum value is Beijing
in 2016.

Table 3. Input and output statistics: 2012 to 2016.

Variable Mean Max. Min. St. Dev.

Agricultural labor (M peoples) 9.211 26.517 0.448 6.449
Agricultural fertilizers (M tons) 1.98 7.16 0.0876 1.49

Agricultural water (B m3) 12.784 56.17 0.6 11.038
Agricultural GDP (B RMB) 170.14 466.261 11.709 116.301

Cultivated area (sq. km) 54.864 148.797 1.209 38.943
Note: Data source: own compilation.

According to Table 4, the agricultural labor force in China has been decreasing year
on year during the study period, with an overall decrease of 6.0%, while the highest and
lowest average values are 9.52 M peoples in 2012 and 8.95 M peoples in 2016. The overall
increase in agricultural fertilizer was 2.47%, with the highest and lowest average values
being 2.01 M tons in 2015 and 1.95 M tons in 2012. Agricultural water use as a whole
decreased by 3.48%, with the highest and lowest average values being 12.980 B m3 in
2013 and 12.47 B m3 in 2016. Single output agricultural GDP, on the other hand, showed a
year-on-year increase of 24.15% overall, with little variation in the area of arable land by
year, but it was also up by 2.61%.

Table 4. Means and trend scenarios for each variable in each year.

Variable 2012 2013 2014 2015 2016 Average Diff. (%)

Agricultural labor (M peoples) 9.52 9.34 9.20 9.05 8.95 9.21 −6.00%
Agricultural fertilizers (M tons) 1.95 1.97 2.00 2.01 1.99 1.98 2.47%

Agricultural water (B m3) 12.92 12.98 12.80 12.75 12.47 12.78 −3.48%
Agricultural GDP (B RMB) 149.31 162.95 172.63 180.46 185.36 243.79 24.15%

Cultivated area (sq. km) 53.95 54.49 54.99 55.53 55.36 54.86 2.61%

Note: Data source: own compilation.

4.2. Efficiency Analysis
4.2.1. Agricultural Efficiency

The results (Table 5) show that the annual efficiency and overall efficiency of agricul-
ture excluding agricultural water in the 30 administrative regions of China from 2012 to
2016 are 0.834. The average annual efficiency of each sub-region was maintained between
0.763 and 0.896, with the efficiency of 2013 and 2015 being higher than average, which was
the best performing year.

The efficiency values of 10 administrative regions, including Beijing, Heilongjiang,
Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Sichuan, Qinghai, and Xinjiang, are at the
forefront of efficiency and have the best agricultural efficiency performance. The efficiency
values of six administrative regions, including Tianjin, Liaoning, Guangdong, Henan,
Hainan, and Guizhou, are above the level of 0.834, but are not at 1. The efficiencies of
Guangdong and Henan remain stable at 0.999. In addition, 14 regions, including Hebei,
Shanxi, Inner Mongolia, Jilin, Anhui, Jiangxi, Hubei, Hunan, Guangxi, Chongqing, Yunnan,
Shaanxi, Gansu, and Ningxia (see Figure 3), are below the level of efficiency, of which
Yunnan (0.5598), Jilin (0.5449), and Ningxia (0.5275) have the lowest efficiency.
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Table 5. Agricultural efficiency performance in China’s 30 administrative regions.

DMU
Efficiency without Water Efficiency of Water Resources

2012 2013 2014 2015 2016 Overall
Score Rank 2012 2013 2014 2015 2016 Overall

Score Rank

Beijing 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Tianjin 0.527 0.686 1 1 1 0.831 16 1 1 1 1 1 1 1

Hebei Province 0.777 0.820 0.715 0.9990 0.590 0.769 17 1 1 0.961 1 0.818 0.952 21
Shanxi Province 0.521 1.000 0.471 1 0.418 0.612 27 0.757 0.999 0.703 1 0.581 0.775 24

Inner Mongolia Autonomous Region 0.675 0.621 0.622 1 1 0.757 19 1 1 1 1 1 1 1
Liaoning Province 0.819 0.842 0.754 1 0.818 0.846 15 0.989 0.916 0.897 1 0.985 0.957 20

Jilin Province 0.549 1 0.528 0.452 0.405 0.544 29 1 1 1 1 1 1 1
Heilongjiang Province 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Shanghai 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Jiangsu Province 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Zhejiang Province 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Anhui Province 0.494 0.999 0.464 0.513 1 0.639 23 0.627 0.999 0.596 0.572 1 0.713 26
Fujian Province 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Jiangxi Province 0.562 0.652 0.524 0.894 0.62 0.636 24 0.59 0.58 0.541 0.788 0.66 0.621 29

Shandong Province 0.999 1 1 1 0.999 1 1 1 1 1 1 1 1 1
Henan Province 0.999 0.999 0.999 0.999 0.999 0.999 12 1 1 1 1 1 1 1
Hubei Province 0.621 0.62 0.582 0.67 0.599 0.618 26 0.753 0.77 0.723 0.921 0.815 0.792 22
Hunan Province 0.711 0.767 0.656 1 0.603 0.74 20 0.806 0.743 0.7 1 0.688 0.779 23

Guangdong Province 0.999 1 1 0.999 0.999 0.999 11 0.999 0.999 1 0.999 1 0.999 18
Guangxi Zhuang Autonomous Region 0.573 0.535 1 1 0.566 0.71 21 0.6 0.588 1 1 0.644 0.744 25

Hainan 0.792 1 1 1 1 0.958 13 0.838 1 1 1 1 0.967 19
Chongqing 0.624 0.704 0.68 0.658 0.738 0.679 22 1 1 1 1 1 1 1

Sichuan Province 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Guizhou Province 0.551 1 1 1 1 0.897 14 1 1 1 1 1 1 1
Yunnan Province 0.462 0.638 0.556 0.692 0.449 0.559 28 0.623 0.673 0.684 0.999 0.606 0.7 27
Shaanxi Province 0.638 1 0.755 0.754 0.666 0.759 18 1 1 1 1 1 1 1
Gansu province 0.532 0.997 0.53 0.672 0.516 0.629 25 0.616 0.996 0.582 0.583 0.578 0.65 28

Qinghai Province 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Ningxia Hui Autonomous Region 0.45 0.572 0.478 0.58 0.557 0.527 30 0.441 0.474 0.432 0.503 0.506 0.469 30

Xinjiang Uygur Autonomous Region 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Average 0.762 0.881 0.81 0.896 0.818 0.823 0.888 0.924 0.894 0.945 0.896 0.904

Note: Data source: compiled by this study.
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During the five-year period, the annual efficiencies of Tianjin were 0.527, 0.686, 1, 1,
and 1, respectively, and the overall efficiency increased by 89.75%, indicating that Tianjin
adopted effective resource allocation to improve efficiency. In addition, the annual efficien-
cies of Jilin were 0.549, 1, 0.528, 0.452, and 0.405. Except for the best resource allocation
in 2013, the resource allocation in the other years did not improve significantly, and so
it has a lot of room to adjust resource allocation to improve agricultural efficiency. The
overall efficiency of China’s agriculture after the input of agricultural water is 0.910, and
the average annual efficiency value of each sub-point is between 0.88 and 0.946. Its overall
efficiency and annual efficiency are better than the efficiency performance of unused agri-
cultural water. The overall efficiency values of 17 administrative regions, including Beijing,
Tianjin, Inner Mongolia, Jilin, Heilongjiang, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong,
Henan, Chongqing, Sichuan, Guizhou, Shaanxi, Qinghai, and Xinjiang, are at the forefront
of efficiency, and they have the best agricultural efficiency performance (see Figure 4).

The efficiency values of four administrative regions, including Guangdong, Hainan,
Liaoning, and Hebei, are higher than the level of 0.910, whereby Hainan increased its
efficiency by 19.33% in 2016 compared with 2012, indicating that the province’s effective
management of resource allocation has improved. In addition, there are nine administrative
regions with lower efficiency values: Shanxi, Hubei, Hunan, Guangxi, Anhui, Yunnan,
Gansu, Jiangxi, and Ningxia, of which Gansu (0.671), Jiangxi (0.632), and Ningxia (0.471)
are the least efficient administrative regions. The annual efficiency of Gansu has decreased
by 6.17%, showing that there has been no improvement in resource allocation.
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4.2.2. Sensitivity Analysis

From Figure 5, we can see that the difference in agricultural efficiency in China between
2012 and 2016 is better than that of the annual rate after agricultural water was used (0.888,
0.925, 0.894, 0.946, and 0.896, respectively), which was better than the efficiency of unused
agricultural water (0.763, 0.882, 0.811, 0.896, and 0.818, respectively).
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After the input of agricultural water, the overall average efficiency of agriculture
increased from 0.834 to 0.910. The overall efficiency value of the 10 administrative regions
of Beijing, Heilongjiang, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Sichuan, Qing-
hai, and Xinjiang has always been 1, and their efficiency performance is not affected by
agricultural water use. They still have the best agricultural efficiency performance (see
Appendix A).

After the input of agricultural water, the agricultural efficiency of the 17 administrative
regions of Tianjin, Hebei, Shanxi, Inner Mongolia, Liaoning, Jilin, Anhui, Henan, Hubei,
Hunan, Guangxi, Hainan, Chongqing, Guizhou, Yunnan, Shaanxi, and Gansu was seen
to have increased. The agricultural efficiency value of Jilin rose from 0.545 to 1, or an
increase of 83.52%, and Chongqing, Inner Mongolia, Shaanxi, and Hubei also increased
by 47.21%, 32.10%, 31.72%, and 28.15%. They are the five administrative districts with the
most efficiency gains, indicating that agricultural water use is positive for their efficiency.
However, the agricultural efficiency of Jiangxi and Ningxia declined by 2.42% and 10.49%,
and it is necessary to manage agricultural water in particular to improve their overall
efficiency of agriculture (see Figure 6).
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4.2.3. Adjust the Margin Range

We forecasted the adjustment balance of the total factors measuring China’s agricul-
tural efficiency from 2012 to 2016 (see Appendix B). The adjustment range is the difference
in the effective boundary between input and output variables. When the adjustment rate is
0, it means that input or output does not need to be changed. When the adjustment range
is greater than 0, it indicates that input or output should be increased. Conversely, when
the adjustment range is less than 0, it means that the input or output should be reduced.

According to the results, from 2012 to 2016, the agricultural labor force, agricultural
fertilizer, agricultural water, and agricultural GDP of 30 administrative regions in China
needed to be reduced by 2.651%, 1.099%, 6.258%, and 9.685% on average. The 16 adminis-
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trative regions of Beijing, Tianjin, Inner Mongolia, Jilin, Heilongjiang, Shanghai, Jiangsu,
Zhejiang, Fujian, Shandong, Henan, Chongqing, Guizhou, Shaanxi, Qinghai, and Xinjiang
do not need to adjust their variables. The input and output variables of Hebei, Shanxi,
Liaoning, Anhui, Jiangxi, Hubei, Hunan, Guangdong, Guangxi, Hainan, Sichuan, Yunnan,
Gansu, and Ningxia all need to be adjusted (see Figure 7).
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In terms of input, the three regions with the worst agricultural labor efficiency are
Gansu, Jiangxi, and Yunnan, which need to reduce their input by 18.132%, 14.368%, and
13.924%, respectively. The three administrative regions with the worst agricultural fertilizer
efficiency are Hubei, Ningxia, and Hebei, which need to reduce their input by 9.668%,
−8.442%, and 5.280%, respectively. The three regions with the worst agricultural water use
efficiency are Ningxia, Guangxi, and Hunan, which need to reduce their input by 44.386%,
26.304, and 25.112%, respectively. Ningxia, Jiangxi, and Anhui are the three regions with
the worst efficiency in agricultural output and need to increase their output by 74.144%,
43.818%, and 39.406%, respectively.

On the whole, excessive agricultural water consumption and insufficient agricultural
output are the reasons affecting agricultural efficiency. Jiangxi and Ningxia should not
only manage agricultural water consumption, but also increase agricultural output value
to improve their overall agricultural efficiency.

5. Conclusions and Suggestions
5.1. Conclusions

This research takes agricultural water as an exogenous variable to analyze the agricul-
tural efficiency of 30 administrative regions in China and further examines the sensitivity
and suggests an adjustment range.

The average changes of input and output variables from 2012 to 2016 are summarized
in Appendix C. The policy implications for the 30 administrative regions in China are
as follows.

(1) The average value of agricultural water use efficiency without agricultural water
use is 0.834, and the average value of agricultural water use efficiency with agricul-
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tural water use is 0.910, indicating that agricultural water use does affect the overall
performance of agricultural efficiency.

(2) From 2012 to 2016, the efficiency of agricultural production in Jiangxi and Ningxia
changed from high to low after the input of agricultural water. This means that these
two regions need to effectively manage water resources and adjust their utilization to
improve efficiency.

(3) During the study period, the labor force in agriculture decreased by 5.99%, and the
fertilizer increased by 2.48%. The total area of arable land increased by 2.61%, water
consumption decreased by 3.48%, and the gross production value increased by 24.14%.
The empirical results of this study show that agriculture in all administrative regions
of China is moving forward toward the policy implementation goals.

(4) We forecasted the adjustment range of China’s agricultural efficiency from 2012 to
2016, such as a 2.651% reduction in agricultural labor force, a 1.099% reduction in
agricultural fertilizer, a 6.258% reduction in agricultural water, and a 9.685% increase
in agricultural GDP. It can be seen that excessive agricultural water use and insufficient
agricultural output are the reasons affecting agricultural efficiency, indicating that
there is still room for efforts in the effective utilization of agricultural irrigation water
in the 12th five-year water conservancy reform and development goal.

(5) Overall, the utilization of agricultural water resources in China presents a trend
toward higher efficiency, but in the face of more severe natural environment changes
in the future, existing resources should be used more carefully to make water resources
more beneficial to agricultural production efficiency. In particular, Jiangxi and Ningxia,
which are severely short of water in north China, went from having a high efficiency
value to a low efficiency value after adding agricultural water into the non-agricultural
production efficiency variable from 2012 to 2016. Therefore, better management is
needed to improve the efficiency of agricultural water resources.

5.2. Suggestions

This study took China as the research object and collected all quantifiable information
from the National Bureau of Statistics of China, but the difficulty of collecting data on
relevant variables led to limitations in the study. In the future, scholars can further refine
and add variables related to external impacts on water into the discussion, extend the
research time, cover a greater time period, or use other research methods for evaluation to
make the evidence more complete.
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Appendix A

Table A1. Sensitivity analysis of overall agricultural efficiency in China’s administrative regions from
2012 to 2016.

Term Efficiency

Without Water With Water Use
Sensitivity
AnalysisDMU Overall

Score Rank Overall
Score Rank

Beijing 1 1 1 1 0%
Tianjin 0.831 16 1 1 20.28%
Hebei 0.770 17 0.953 21 23.76%
Shanxi 0.613 27 0.775 24 26.54%

Inner Mongolia 0.757 19 1 1 32.10%
Liaoning 0.847 15 0.958 20 13.12%

Jilin 0.545 29 1 1 83.52%
Heilongjiang 1 1 1 1 0%

Shanghai 1 1 1 1 0%
Jiangsu Province 1 1 1 1 0%

Zhejiang 1 1 1 1 0%
Anhui 0.639 23 0.713 26 11.59%
Fujian 1 1 1 1 0%
Jiangxi 0.637 24 0.621 29 −2.42%

Shandong 1 1 1 1 0%
Henan 0.999 12 1 1 0.10%
Hubei 0.619 26 0.793 22 28.15%
Hunan 0.741 20 0.780 23 5.29%

Guangdong 0.999 11 0.999 18 0%
Guangxi 0.710 21 0.744 25 4.77%
Hainan 0.958 13 0.968 19 0.95%

Chongqing 0.679 22 1 1 47.21%
Sichuan 1 1 1 1 0%
Guizhou 0.897 14 1 1 11.46%
Yunnan 0.560 28 0.701 27 25.15%
Shaanxi 0.759 18 1 1 31.72%
Gansu 0.629 25 0.651 28 3.47%

Qinghai 1 1 1 1 0%
Ningxia 0.528 30 0.470 30 −10.94%
Xinjiang 1 1 1 1 0%
Average 0.824 0.904

Note: Sources: compiled by this study.

Appendix B

Table A2. Average adjustment range of input and output variables.

DMU
Agricultural

Labor (%) Fertilizer (%) Water (%) GDP (%)

Beijing 0 0 0 0
Tianjin 0 0 0 0
Hebei 0 −5.280 −2.106 2.380
Shanxi −0.586 −1.362 −7.970 24.710

Inner Mongolia 0 0 0 0
Liaoning −2.580 0 −7.282 0.988

Jilin 0 0 0 0
Heilongjiang 0 0 0 0

Shanghai 0 0 0 0
Jiangsu 0 0 0 0

Zhejiang 0 0 0 0
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Table A2. Cont.

DMU
Agricultural

Labor (%) Fertilizer (%) Water (%) GDP (%)

Anhui 0 0 −1.628 39.406
Fujian 0 0 0 0
Jiangxi −14.368 −0.018 −17.622 43.818

Shandong 0 0 0 0
Henan 0 0 0 0
Hubei −7.632 −9.668 −21.934 9.664
Hunan −4.552 0 −25.112 15.566

Guangdong −0.006 −0.002 −0.006 0
Guangxi −12.256 −2.092 −26.304 16.16
Hainan −3.768 −4.350 −1.416 0.070

Chongqing 0 0 0 0
Sichuan 0 0 −0.002 0
Guizhou 0 0 0 0
Yunnan −13.924 −1.76 −10.546 30.256
Shaanxi 0 0 0 0
Gansu −18.132 0 −21.432 33.386

Qinghai 0 0 0 0
Ningxia Hui −1.738 −8.442 −44.386 74.144

Xinjiang 0 0 0 0
Average −2.651 −1.099 −6.258 9.685

Note: Sources: compiled by this study.

Appendix C

Table A3. Variables and average values and fluctuations in China’s agricultural efficiency for
2012–2016.

Variable 2012 2013 2014 2015 2016 Average Diff. (%)

Agricultural labor (M peoples) 9.52 9.34 9.20 9.05 8.95 9.21 −6.00%
Agricultural fertilizers (M tons) 1.95 1.97 2.00 2.01 1.99 1.98 2.47%

Agricultural water ( B m3) 12.92 12.98 12.80 12.75 12.47 12.78 −3.48%
Agricultural GDP (B RMB) 149.31 162.95 172.63 180.46 185.36 243.79 24.15%

Cultivated area (sq. km) 53.95 54.49 54.99 55.53 55.36 54.86 2.61%
Efficiency without water 0.763 0.882 0.811 0.896 0.818 0.834 7.21%

Water efficiency 0.888 0.925 0.894 0.946 0.896 0.91 0.90%

Note: Sources: compiled by this study.
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