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Abstract: This study was conducted to evaluate the management of smart irrigation in grain maize
production (KSC 715 cultivar) at the Seed and Plant Improvement Institute (SPII) located in Karaj,
Iran, in the year 2020. Irrigation was performed based on 40% moisture discharge farm capacity
and was compared with irrigation based on long-term meteorological statistics that have become
common in the field (drip irrigation system, type strip, and determining the irrigation time based
on the apparent reaction of the plant). The experimental results showed that under the conditions
of smart irrigation management, sensitive phenological stages of the plant occur earlier, and the
field is ready to be harvested approximately one month earlier; moreover, 35% of irrigation water
consumption can be saved. Water consumption decreased from 8839.5 to 5675.67 m3/ha; in addition,
grain yield and water productivity decreased. Although the moisture stress applied in the intelligent
irrigation system completed the plant phenology period faster and due to earlier harvest, irrigation
water consumption was decreased by 35%, water productivity was reduced. Finally, it seems that
by adjusting the drought stress application time in more tolerant stages of maize growth in future
studies and experiments, it will be possible to decrease irrigation water consumption while increasing
the physical productivity of water.

Keywords: smart irrigation system; moisture of soil; sustainable agriculture; corn; internet of things

1. Introduction

There is a growing concern regarding a lack of fresh water, especially in Mediterranean
and Middle Eastern countries, such as Iran [1]. Currently, one third of the world’s popu-
lation lives in water-stressed regions, particularly in semi-arid and arid regions of Asia,
the Middle East and North Africa, as well as Mediterranean countries [2]. Climate policies
and water management are interconnected. Accordingly, numerous variables can influence
water management, including water demand from different sectors and the effects of global
warming on hydrological resources [3]. Climate change and its impacts are one of the most
frequent topics in water resource and agricultural research. The possible consequences
of global warming have led to the development of water adaptation measures to ensure
the availability of water for food security and for humans as well as for preserving ecosys-
tems [4]. Furthermore, it is important to ensure the safety of water that is consumed by
humans and that is returned to the environment. There are many risks associated with
climate change, including water shortage, decreased water quality, increased salinity, loss
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of biodiversity, higher irrigation needs, as well as the possible cost of emergency and
corrective measures.

Irrigation is highly dependent on three main factors, including crop type, weather, and
soil, which significantly affect the irrigation scheduling criteria [5]. Irrigation and fertilizer
rates are determined by crop type and soil type; in turn, weather, soil moisture, moisture
level, and temperature determine irrigation schedules [6,7]. Finally, the irrigation demand
for crops changes dynamically every year [8].

Smart irrigation is emerging as a new scientific discipline that uses data-intensive meth-
ods to increase agricultural productivity while reducing its environmental impact. Smart
irrigation automates irrigation systems, decreases water consumption and increases perfor-
mance. Therefore, improving agriculture systems has become a necessity, and countries are
now looking to implement effective frameworks where systems can be adequately run [9].
Moreover, it is necessary to develop a crop irrigation strategy based on these real-time
parameters to ensure smart water management and high-quality crop production [10].

According to the Food and Agriculture Organization of the United Nations (FAO),
food production must increase by 70% by 2050 to meet the needs of the global population
of 9.6 billion people [11]. Several technologies have been adapted for the internet of things
(IoT) to meet this demand. This system refers to a network of objects that communicate
with each other over the internet without human intervention. IoT-based smart agriculture
can reduce losses, optimize fertilizer use, and increase product yields, thereby preventing
pollution. In addition, this technology can decrease agricultural costs, increase agricultural
productivity, and help conserve water considerably [12,13].

Generally, the IoT is associated with the objects and devices that are connected to the
internet and can be controlled as well as managed through the software on smartphones
and tablets. In other words, the IoT is the connection of sensors and devices to a network
through which they can interact with each other and with their users [13].

Managing water is an important and effective way to meet the ever-increasing de-
mands of the world. Precision irrigation (PI) as an advanced concept in agriculture promises
to improve water use efficiency while preserving or improving crop performance. IoT,
wireless sensor networks (WSN), and cloud computing are all required for precise irri-
gation [14]. Thus, emerging technologies such as the IoT have the potential to provide
significant benefits to smart agriculture (SF) and precision agriculture (PA) applications,
as well as to provide access to environmental data at any time [15]. The adoption of these
technologies is expected to revolutionize the agriculture and irrigation sectors, shortening
management decisions from a few months or weeks to a few days or hours, while consider-
ably reducing costs and increasing performance. The use of such technologies enables the
efficient use of agricultural inputs and supports four pillars of precision agriculture, i.e.,
apply the right practice at the right place at the right time and with the right quantity. PA is
applying the right thing at the right time in the right amount in the right place [16].

Among the benefits of IoT in irrigation, smart irrigation systems use IoT-based sensor
units to accurately estimate irrigation needs and to prevent plants from becoming stressed
by recording product temperature and soil moisture. They provide maximized product
(with minimum water consumption) and sustainable development. Therefore, PI is an
efficient solution to address the shortage of basic resources such as food, water, land units,
and crop yields [17].

The effectiveness of irrigation depends on the monitoring of environmental conditions
and the needs of the plant. This is because plant water needs depend on such factors
as temperature, moisture, precipitation, and soil moisture. The sensors used in this field
should check for parameters such as temperature and moisture [18]. Figure 1 shows an
overview of a smart irrigation system based on different sensors. Sensors, microcontroller
units, and user units receive environmental information and process it. Then, the farmer is
informed through the cell phone communication network.



Water 2023, 15, 1394 3 of 12
Water 2023, 15, x FOR PEER REVIEW 3 of 13 
 

 

 

Figure 1. Overview of irrigation systems based on smart sensors. 

The availability of real-time weather and in situ soil data has revolutionized agricul-

tural decision making with the advent of the IoT. Monitoring and decision making based 

on wireless sensor networks and the IoT for irrigation systems has historically accurately 

predicted irrigation scheduling based on measured data, thereby increasing water 

productivity [19–22]. 

There is evidence that in the three methods of irrigation scheduling based on the 

gypsum block method, water balance, and plant cover temperature, the amount of con-

sumed water is significantly reduced in the plant cover temperature method compared to 

the other two methods [23]. About 30% of water consumption has been reduced by using 

tensiometers in irrigation planning [24]. The drip irrigation planning of different plants 

was carried out using tensiometers, hygrometers, and estimations of evapotranspiration. 

The results obtained revealed that compared to regular irrigation, these tools could reduce 

water consumption by 21–40%. Furthermore, the use of soil nutrients decreased by 39–

74%, which did not significantly affect plant growth and product quality [25]. 

A data collection system for monitoring soil moisture and transmitting data remotely 

was developed using digital sensors and computer software written in Python. To enable 

remote data access and transfer, the data were automatically collected and uploaded to 

the internet platform. The data were successfully recorded in real time within a week us-

ing this system. The volume content of water ranged from 0.03 to 0.23 m3, dielectric per-

mittivity from 3.3 to 18.9 (no unit), EC from 0.0 to0.3 decisiemens per meter (dS/m), and 

soil temperature from 44.8 to 20.7 °C. The data could be monitored remotely with a free 

online application [26]. In addition, other researchers have investigated the use of the in-

ternet of things in the intelligent irrigation of agricultural fields [27–31]. 

The literature review showed that irrigation scheduling methods and tools can re-

duce water use or increase its efficiency compared to traditional irrigation methods. More-

over, the use of intelligent systems will not only increase accuracy but will also facilitate 

monitoring and control. Although the use of these tools is essential in farming and agri-

cultural management, research is needed in different products and regions, which was 

investigated in corn in this study. Therefore, the aim of this study was the effect of smart 

irrigation methods on crop yield in different ripening periods and water consumption 

efficiency. The results of this study can provide an effective irrigation strategy for the pro-

duction of maize that can ensure the stable yield of maize, and even increase its yield, 

while reducing irrigation and successfully saving water. 

Figure 1. Overview of irrigation systems based on smart sensors.

The availability of real-time weather and in situ soil data has revolutionized agri-
cultural decision making with the advent of the IoT. Monitoring and decision making
based on wireless sensor networks and the IoT for irrigation systems has historically accu-
rately predicted irrigation scheduling based on measured data, thereby increasing water
productivity [19–22].

There is evidence that in the three methods of irrigation scheduling based on the gyp-
sum block method, water balance, and plant cover temperature, the amount of consumed
water is significantly reduced in the plant cover temperature method compared to the
other two methods [23]. About 30% of water consumption has been reduced by using
tensiometers in irrigation planning [24]. The drip irrigation planning of different plants
was carried out using tensiometers, hygrometers, and estimations of evapotranspiration.
The results obtained revealed that compared to regular irrigation, these tools could reduce
water consumption by 21–40%. Furthermore, the use of soil nutrients decreased by 39–74%,
which did not significantly affect plant growth and product quality [25].

A data collection system for monitoring soil moisture and transmitting data remotely
was developed using digital sensors and computer software written in Python. To enable
remote data access and transfer, the data were automatically collected and uploaded to
the internet platform. The data were successfully recorded in real time within a week
using this system. The volume content of water ranged from 0.03 to 0.23 m3, dielectric
permittivity from 3.3 to 18.9 (no unit), EC from 0.0 to 0.3 decisiemens per meter (dS/m),
and soil temperature from 44.8 to 20.7 ◦C. The data could be monitored remotely with a
free online application [26]. In addition, other researchers have investigated the use of the
internet of things in the intelligent irrigation of agricultural fields [27–31].

The literature review showed that irrigation scheduling methods and tools can reduce
water use or increase its efficiency compared to traditional irrigation methods. Moreover,
the use of intelligent systems will not only increase accuracy but will also facilitate moni-
toring and control. Although the use of these tools is essential in farming and agricultural
management, research is needed in different products and regions, which was investigated
in corn in this study. Therefore, the aim of this study was the effect of smart irrigation
methods on crop yield in different ripening periods and water consumption efficiency.
The results of this study can provide an effective irrigation strategy for the production of
maize that can ensure the stable yield of maize, and even increase its yield, while reducing
irrigation and successfully saving water.
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2. Materials and Methods
2.1. Study Area

This study was carried out in the research farm of Karaj Seedling and Seed Breeding
Research Institute (35◦48′ N, 51◦E, 1321 m above sea level) in 2020. The area is categorized
as a semiarid climate with an average annual precipitation of 251 mm, an annual average
temperature of 13.5 ◦C, and a total annual class “A” pan evaporation of 2184 mm. Precip-
itation in the region averages 275 mm, which makes it one of the coldest and least rainy
regions in Iran.

Preparation of the seedbed included plowing with an iron plow, rotavator, disk, and
leveling in spring. Before sowing, urea and ammonium phosphate fertilizers were applied
based on the soil test (Table 1) and mixed into the soil with a disk. Finally, two plots of
3000 m2 each were established. To prevent the spread of weeds, the Aradikan herbicide
(6 L/ha) was applied before planting and the herbicide 2,4-D was applied after planting
(1.5 L/ha) when the plants were at the 4–6 leaf stage. This herbicide was used to control
broadleaf weeds. The diazinon insecticide was applied at a rate of two liters per hectare
to control corn pests. At the 4–6 leaf stage, 200 kg of urea fertilizer per hectare was used
as a top dressing, along with irrigation water in the tank strips and the water filtration
system. The plants were cultivated in furrows and stacks and immediately irrigated with
the micro-irrigation system. In the smart farm, irrigation was based on intelligent control,
while in the control farm, it was based on conventional plant needs and appearance, as well
as morphological characteristics. The distance between stacks was 75 cm, and the distance
between plants was 18 cm (with a cultivation density of 7.5 plants/m2).

Table 1. Physicochemical characteristics of the soil test.

Total
Nitrogen (%)

Absorbable
Phosphorus

Mg/Kg

Absorbable
Potassium

Mg/Kg

Field
Capacity (%)

Permanent
Wilting

Point (%)

Apparent
Specific
Gravity
(g/cm)

Electrical
Conductivity

(dS/m)
pH

0.06 37 290 25.85 11.07 1.36 0.7 7.5

2.2. Product Application Panel and Intelligent System

In general, the design and implementation of the intelligent irrigation system was
divided into two parts: the design of the central controller as well as the design and
selection of the network of operators and sensors (Figure 2). Implementation of this
project in the field involved using a temperature and moisture sensor (model AM2305)
and a soil moisture sensor (model WaterMark200-S), along with two 5-inch flow meters
(manufactured by Abban Company in Iran) to measure the amount of water. An operator
was also used to interrupt and connect the water flow.

2.3. Determination of Irrigation Timing

The irrigation timing in the smart farm was determined by soil moisture drainage from
field capacity using a moisture sensor in the field. Accordingly, the plants were irrigated
from planting to before corolla emergence (0–800◦ growing degree-days (GDD)) based on
40% of field capacity moisture drainage. In addition, before the appearance to the milking
stage (800–1200 GDD), the plants were irrigated based on 30% of field capacity moisture
drainage, and from seed milking to physiological maturity (1200–1400 GDD), the plants
were irrigated based on 40% of field capacity moisture drainage [32].
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Figure 2. Overview of the intelligent system components.

Growth degree day was calculated based on Equation (1):

GDD =
Tmax + Tmin

2
− Tb. (1)

where GDD is the growing degree day in ◦C, Tmax is the maximum daily temperature in
◦C, Tmin is the minimum daily temperature in ◦C, and Tb is the base temperature, which is
considered to be 10 ◦C. In this equation, the minimum and maximum daily temperatures
for corn growth were considered between 10 and 30 ◦C, and temperatures higher and lower
than 30 and 10 ◦C were considered as 30 and 10 ◦C, respectively.

Irrigation time was determined in the control field (drip irrigation system) with an
irrigation cycle of three days after planting and plant establishment based on their apparent
response. At harvesting time, 40 plants were randomly harvested, and several parameters
were measured. The plant height was determined after the appearance of silk (in cm) on
each experimental plot using a wooden ruler (from the ground (stack height) to the base
of the corolla). In addition, the stem diameter was measured at the internode above the
highest bud. The cob length and diameter of each plant were determined in centimeters at
the post-emergence silk stage. Moreover, the number of leaves remaining at the post-silking
stage was counted.

2.4. Statistical Analysis

The data were analyzed using SAS software version 9.1. In addition, experimental
factors were compared using Student’s t test.

3. Results and Discussion

The results indicate that the number of days until maturity in the control and the
smart farms was 171 and 141 days after planting (DAP), respectively (Table 2). With the
one-month reduction in the growing season under smart irrigation conditions, it seems
possible to cultivate corn in seed form in areas with a limited growing season by controlling
the field moisture.

Plants can mature one month earlier as a result of moisture stress caused by smart
irrigation treatments, because plants have to complete their life cycle earlier and survive
under these conditions [33]. According to the national water document, the net requirement
for irrigation of grain maize in Karaj is 7000 m3/ha [34]. Therefore, at least 20% less
irrigation was applied in the smart farm. The results of the experiment showed that the
moisture stress applied in the intelligent irrigation system completed the phenological
period of the plant faster, and due to the earlier harvest of the field, irrigation water
consumption was reduced by 35%, but water productivity decreased. As a result, it can be
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argued that by applying drought stress at more tolerant stages of corn growth, in future
studies and experiments, irrigation water consumption will be reduced, while physical
productivity will be increased.

Table 2. Different experimental factors under the influence of different forms of irrigation manage-
ment in the control and smart fields (based on whole field harvest or estimation).

Experimental Parameters Control Farm Smart Farm

Days to corolla appearance 64 63
Days to pollination 64 65

Days to the silk emergence 71 69
The interval between pollination and

silk emergence 5 4

Days to harvest 171 141
Seed moisture (%) 40.15 33.8
Hectoliter (g/cm3) 722 717

Water consumption (m3/ha) 8839.50 5676.67
Water efficiency (kg/m3) 0.86 0.66

3.1. Morphological Features

The difference in morphological traits in the smart and control fields was significant
for plant height and comb diameter (p < 0.01) as well as the number of leaves (p < 0.05)
(Table 3). By contrast, no significant difference was observed in stem diameter and comb
length (Table 3).

Table 3. Different experimental factors under the influence of different forms of irrigation manage-
ment in control and smart farms using t test.

Experimental
Parameters Control Farm Smart Farm Standard

Error
Probability

Level

Height (cm) 163.22 183.30 7.06 **
Stem diameter (cm) 1.44 1.56 0.07 ns

Leaf number 13.97 14.55 0.27 *
Comb length (cm) 18.53 18.51 0.63 ns

Comb diameter (cm) 4.71 4.42 0.10 **
Number of seed rows 17.7 17.45 0.39 ns

The number of seeds in
the row 40.15 33.8 1.38 **

Note: **, *, and ns indicate significance at the probability level of 0.01 and 0.05 and non-significance, respectively.

Plant height increased by 12.30% in the smart farm, from 163.22 to 183.30 cm (Table 3).
Since there is a slight lack of irrigation in the vegetative growth stage, the corn plant
tolerates relative water stress at this stage. In other words, a reduction in irrigation interval
based on 40% field capacity drainage compared to irrigation under normal conditions
improves moisture availability for cell division and plant height increase [35]. Under these
conditions, the comb diameter decreased from 4.71 to 4.42 cm (Table 3). According to the
potential of comb diameter after pollination, it seems that the moisture conditions after
pollination were better in the control field than in the smart field.

Furthermore, the average number of leaves in the smart field was 14.55 and in the
control field, 13.97 (Table 3). The higher number of leaves in the smart farm conditions
might indicate that the moisture conditions in the vegetative growth stage were better in
the smart farm.

3.2. Irrigation Water

As compared to the control farm, the average irrigation water consumption of the
smart farm decreased by 35.78%, from 8839.5 to 5675.67 m3/ha (Table 2). Under smart
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irrigation conditions, irrigation water productivity decreased from 0.86 to 0.66 kg/m3.
To save costs, both pilot and control farms directly measured the growth indicators of
the crop to monitor plant growth and production levels. Water usage and soil moisture
were monitored intelligently, and the notifications indicating the minimum as well as
maximum soil moisture points were sent to the user via mobile devices. Moreover, the user
could control the soil moisture before and after irrigation according to the notifications
received regarding minimum moisture (start of irrigation) and maximum moisture (end
of irrigation). On the basis of the superiority of the plant growth indicators in the pilot
farm compared to the control, the user did not consider it necessary to control soil moisture
through direct measurement (sampling) when starting and stopping irrigation. Hence,
there are no control data (it was not necessary). However, sampling was conducted during
the reproductive period, and the obtained values were confirmed as a function of soil
moisture. Soil moisture monitoring data were displayed in one-hour periods (Figure 3).
The amount of water delivered to the farm was also measured by flowmeters and was
made available to users. Figure 3 shows soil moisture during the three stages of growth
before and after irrigation. This figure exhibits that the moisture sensor worked well; in
addition, it controlled the minimum and maximum time of soil moisture according to the
moisture changes.
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The results of the smart irrigation system in this figure indicates that the smart farm
was irrigated about every 3–4 days and 15 times during the growing season, each time for
about 4 h and 30 min, for a total of 67 h and 30 min. In contrast, this plot in the reproductive
stage was irrigated less than once every 4 days and 11 times, each time for about 3 h for a
total of 33 h and 45 min. From the milking stage until physiological maturity, the plot was
irrigated once every 7 days and three times, for an average of 4 h and a total of 12 h and
45 min. Figure 4 depicts the status of water delivered to the farm after conversion to the
amount of water delivered to the farm per hectare.
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3.3. Savings in the Water Balance Used

The processed data of the intelligent system and their conversion into units per hectare
revealed that in the two-week irrigation period of June, the amount of water delivered
to the intelligent farm was 5675 m3/ha. The same value was 8839 m3/ha compared to
the control farm, where irrigation continued until October. Thus, the savings in irrigation
water was 35.8% (according to the soil moisture data, irrigation was stopped when the
water reached the limit of field capacity (FC) and the penetration depth was zero). The
graph of water delivery to the farm, for each period and per hectare, is shown in Figure 5.

Zia, Rehman, Harris, Fatima and Khurram [10] compared flood irrigation with IoT-
based and traditional irrigation in a lime farm and found that the IoT-based irrigation
method saved 52,280 L of water in the field. In contrast, this irrigation system increased
production by 1680 kg/ha, i.e., it achieved 35% greater production while saving 50%
water. Gong et al. [36] used an IoT-based smart irrigation system with data combination
and a large self-recharging network. According to the results, they achieved average
water savings of 94.74% with the proposed system compared to conventional manual
adjustment solutions. Similarly, another study aimed to use cloud IoT solutions to control an
advanced subsurface irrigation system to improve the irrigation management of date palms
in drylands. The researchers found that sensor-based irrigation scheduling (S-BIS) and time-
based irrigation scheduling (T-BIS) of the controlled subsurface irrigation system (CSIS)
reduced the amount of irrigation water applied by 64.1 and 61.2%, respectively, compared
to traditional surface irrigation (TSI). Water productivity in CSIS using S-BIS methods
was significantly higher at 1.783 kg/m and T-BIS at 1.44 kg/m compared to TSI at 0.531
kg/m [27]. Thus, controlled water use increases fruit yield and quality, leading to changes
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in the stages of vegetative and productive growth as well as in the intensity and duration
of water deficit [37]. Cheng et al. [29] investigated the effects of soil water deficiency in
different stages of corn growth. They used two irrigation methods, i.e., conventional
irrigation (CI) and alternate partial root zone irrigation (APRI). The results showed that
APRI and CI reduced total water consumption by 34.7% and 23.8%, respectively, compared
to the control treatment. In addition, deficit irrigation at the milking stage produced a
longer tip length, resulting in a lower grain yield. Their results are very consistent with the
results of this research. In another study that was conducted on the response of summer
corn growth and water consumption to different irrigation regimes, researchers reported
that when irrigation decreased, grain yield decreased, and water use efficiency increased,
whereas water deficit at the tasseling stage had the greatest effect on yield and water use
efficiency [30]. Smart irrigation systems were investigated for four crops: wheat, corn,
sunflower and rapeseed. Their results showed that average water-use productivity rose
from 4.09% to 9.8% for wheat and sunflower. In addition, an increase in yields varied from
5.72% to 13.42% for wheat and corn [31].
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According to the network planner’s irrigation schedule and based on long-term data
as well as prediction of the plant’s water needs, the control farm was irrigated twice per
week during the growing season, for a total of 16 times, each time for six hours, for a total
of 96 h. In the reproductive phase, this farm was irrigated three times per week, each time
for about five hours, for a total of 60 h. Moreover, in the maturity stage, it was irrigated
once per week and five times, each time for about four hours, for a total of 20 h (Figure 6).
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3.4. Time Monitoring of Decision Data

Figure 7 illustrates the final state of the decision data after a given monitoring period.
Compared to the plot of the proposed algorithm, this graph stopped growing at 1400 GDD.
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Figure 7. Time monitoring of decision data over time (GDD in three growth periods).

3.5. Analysis of the Number of Moisture Sensors

Smart irrigation systems rely on soil moisture to develop appropriate systems. There
are several environmental variables that can affect this parameter, including air temperature,
moisture, ultraviolet radiation, soil temperature, etc. [19]. One sensor was sufficient in
meeting the needs of the system so that the plant received sufficient moisture. A clear
recommendation is to use two sensors (instead of one sensor) to allow for intelligent control
of possible errors. In the farms larger than five hectares, the use of at least two sensors
is recommended, because soils can be heterogeneous. The intelligence of the proposed
system depends on the accuracy of the predicted soil moisture.
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4. Conclusions

In this study, the effect of two different irrigation methods on the physiological per-
formance of corn and water consumption was determined. According to the results, the
reduction in irrigation water consumption corresponded to the stages of corn plant growth.
This can be attributed to the creation of water stress, resulting in a shorter growth period
and reduced water consumption through decreased transpiration. Even though the mois-
ture stress applied by the smart irrigation system resulted in faster completion of plant
phenology, and owing to earlier harvesting under smart irrigation conditions in this study,
the consumption of irrigation water decreased from 8839.5 to 5675.67 m3/ha; in addition,
grain yield and water productivity were reduced. Overall, it can be concluded that ad-
justing the timing of drought stress application at more tolerant stages of corn growth can
reduce irrigation water use while increasing the physical productivity of water in future
studies and experiments.
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