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Abstract: To meet the requirements of trellis grape crop root irrigation, spraying pesticides on
branches and leaves, an integrated sprinkler was designed, which relies on the flow pressure to
change the irrigation water and spray pesticide working modes. The structural parameters that affect
the hydraulic performance were selected based on the working principle of the sprinkler. The key
parameters for the irrigation mode included diversion hole inclination angle, refractive cone angle,
refractive cone length, and cone hole distance. The key parameters for the spray pesticide mode
included diversion chute width, the number of diversion chutes, the diversion chute inclination
angle, the rotary acceleration chamber height, and the nozzle outlet cylindrical section length. The
central composite design response surface tests of the water–pesticide integrated sprinkler were
carried out; the analysis of variance and regression analysis were selected; the main influence rules
and interactions of key structural parameters on irrigation performance and pesticide spraying
performance of sprinkler irrigation system were obtained. The optimal parameters of the water–
pesticide integrated sprinkler were: the diversion hole inclination angle is 20.8◦, the refractive cone
angle is 123.7◦, the refractive cone length is 8.8 mm, the cone hole distance is 3.6 mm, the diversion
chute width is 2.5 mm, the number of diversion chutes is 2, the diversion chute inclination angle
is 10◦, the rotary acceleration chamber height is 1.3 mm, and the nozzle outlet cylindrical section
length is 0.7 mm. The irrigation hydraulic performance of the wetted radius is 3.4 m, the average
irrigation application rate is 0.65 mm/h, and the uniformity coefficient is 88%. The spraying pesticide
performance of the droplet volume mid-diameter is 200.2 µm, the droplet spectrum width is 2.2, and
the droplet coverage is 9.4%.

Keywords: water–pesticide; sprinkler; hydraulic performance; irrigation; pesticide application

1. Introduction

In recent years, China has increased its fruit production significantly [1]. In 2019,
China’s grape planting area was 726.2 hectares, accounting for 5.9% of the total orchard
planting area [2]. Most of grapes are planted using hedgerow trellis or pergola trellis.
The current irrigation methods for trellised grapes are drip irrigation or micro-sprinkler
irrigation. The pesticides spraying methods are mainly manual and sprayer. In the process
of spraying pesticides with a spray machine, a large amount of pesticides enter the air,
which not only wastes pesticides, but also pollutes the environment [3,4]. Manual spraying
is time consuming and labor intensive, and due to prolonged contact with pesticides by
sprayers, it is easy to cause poisoning and death [5,6]. These methods of applying pesticides
also have some problems, such as low pesticide utilization and pollution of the orchard
environment [7,8]. Therefore, new application methods need to be explored.

An effective way to solve the problem of excessive utilization of water and pesticides
in the current agricultural production process is to combine the functions of irrigation and
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pesticide application [9,10]. Water–pesticide integration technology have been applied
to drip irrigation. The specific practice is to deliver the desired chemicals to the root for
reducing diseases of the roots and improving the effective utilization of pesticides [11,12].
However, the common diseases of grapes are mainly in the leaves or branches of crops [13].
The water–pesticide integrated sprinkler irrigation technology directly acts on the surface
of crop leaves through the scattering and atomization of water flow. This can take into
account the irrigation water and the branches spraying function [14]. This requires that
the sprinkler can meet both irrigation and spraying pesticide performance. At present,
the commonly used sprinklers for fruit trees are centrifugal sprinklers, fan atomizing
sprinklers, and pneumatic electrostatic sprinklers, among others [15–17]. They do meet the
requirement of spraying pesticide on the branches and leaves of crops, but can not meet the
requirement of irrigating the roots of crops. Therefore, it is a great significance to develop
a dual function sprinkler that can spray pesticides on the branches and irrigate the roots
simultaneously.

At present, there are few pieces of research on the water–pesticide integrated sprinkler
which can realize the function of water–pesticide co-operative operation in the same sprin-
kler irrigation system. In 2021, Zhang Qing et al. [14] designed a water–pesticide integrated
sprinkler, in which the influence law of key structural parameters on the performance of
irrigation and pesticide spraying was studied. Their results provided a theoretical for the
design and development of a water–pesticide integrated sprinkler. The grape irrigation
cycle water demand is large and needs a sprinkler with a large flow rate. At the same time,
the quantity of grape pesticide spraying liquid is small and needs a sprinkler with a small
flow rate. However, this sprinkler has only one nozzle; there is a problem of unreasonable
spraying flow. In 2022, Wang et al. [18]. developed a water–pesticide integrated sprinkler;
the sprinkler needs to adjust the spraying mode manually. The multifunctional aspect of
the sprinkler needs to be improved to the automatic form.

In this paper, a new type of water–pesticide integrated sprinkler was developed. It
can meet the two working modes in the same system, with irrigation water at low pressure
and spraying pesticide at high pressure. The influence of the main structural parameters on
the performance of irrigation and pesticide spraying were explored. The optimal structural
parameters were obtained.

2. Materials and Methods
2.1. Structural Design and Working Principle

The structural design of the water–pesticide integrated sprinkler is shown in Figure 1.
The test prototype is shown in Figure 2.
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Figure 1. Schematic of the new type ofwater–pesticide integrated sprinkler structure. 1. Spinkler
body; 2. Deflection hole; 3. Refractive cone; 4. Compression spring; 5. Spinkler cap; 6. Spray
nozzle; 7. Rotary acceleration chamber; 8. Diversion chute; 9. Thread; 10. Runner; 11. Valve spool;
12. Square slot.
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Figure 2. Experiment prototype.

The working principle of the sprinkler is as follows: In low-pressure irrigation opera-
tion (100~200 kPa), the water pressure on the valve spool is less than the elastic force of
the spring. Water from the diversion hole encountered the refraction cone, forming a thin
fan-shaped layer of water on both sides of the jet. Under air resistance, the water breaks into
small droplets and falls on the ground, completing the irrigation function. In medium and
high spraying pesticide operation (100~200 kPa), the pressure on the valve spool is greater
than the spring elasticity. The valve spool moves up to close the diversion hole so that the
liquid can only flow into the diversion chute. The liquid is rotated into the cavity through
the diversion chute and is ejected from the nozzle in the shape of conical mist after vortex
motion is generated on the cavity wall. Small droplets of atomized liquid are sprayed
upward, acting on the back of the crop leaves, to complete the pesticide spraying function.

Select the key structure that affects the sprinkler’s irrigation and spraying performance,
as shown in Figure 3.
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Figure 3. The key hydraulic structure of the sprinkler. (a) Structure parameters of irrigation, (b) struc-
ture parameters of spraying pesticides. α: the diversion hole inclination angle; θ: the refractive cone
angle; h: the cone hole distance; l: the refraction cone length; b: the diversion chute width; n: the
number of diversion chutes; β: the diversion chute inclination angle; h1: the rotary acceleration
chamber height; h2: the nozzle outlet cylindrical section length.

Figure 3a shows the structure parameters associated with irrigation: the diversion hole
inclination angle α, the refractive cone angle θ, the refraction cone length l, and the cone
hole distance h were selected; these structures were impacted on irrigation performance.
The upper and lower limits value were: the diversion hole inclination angle is 10–20◦, the
refraction cone length is 7–11 mm, the refractive cone angle is 120–140◦, and the cone hole
distance is 2.5–4.5 mm.

Figure 3b shows the structure parameters associated with spraying pesticide: the
diversion chute width b, the number of diversion chute n, the diversion chute inclination
angle β, the rotary acceleration chamber height h1, and the nozzle outlet cylindrical section
length h2 were selected; these structures were impacted on pesticide spraying performance.
The upper and lower limits were: the diversion chute width is 1–2 mm, the number of
diversion chute is 2–4, the diversion chute inclination angle is 10–30◦, the rotary acceler-
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ation chamber height h1 is 2–4 mm, and the nozzle outlet cylindrical section length h2 is
0.1–0.5 mm.

2.2. Experimental Setup

The experiments were carried out in the Sprinkler Irrigation Laboratory of Jiangsu
University (Zhenjiang, China). The irrigation performance system is shown in Figure 4 and
spraying pesticide performance is shown in Figure 5. The equipments for tests included
pipeline, centrifugal pump (CM1-7, Grund fu Corp., Shanghai, China), pressure gauge
(precision class is 0.4, Hongqi Corp., Xi’an, China), electromagnetic flowmeter (precision
class is 0.5, Shunlaida Corp., Xi’an, China), sprinkler, measuring tap, and catch cans. With
the sprinkler as the center, four lines with an angle of 30◦ were laid out for measuring data.
The diameter of the catch can is 20 cm, the interval of catch cans is 0.5 m [19–21]. When
the system working pressure was 200 kPa, the function for irrigation has been worked and
the test time is 30 min. Thirty-one groups of tests were carried out [22]. The wetted radius,
average irrigation application rate, and uniformity coefficient were selected to evaluate the
sprinkler irrigation performance [14].
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Water sensitive paper was used to detect the deposition and droplet distribution
during the performance tests of pesticide spraying. The grape leaf surface height of the
common trellis is 2 m [23] and the installation height of the sprinkler is 1.2 m. Therefore,
the data from grape leaves 80 cm above the sprinkler was simulated to collect. The center is
directly above the sprinkler, four sampling lines were arranged 80 cm above the sprinkler,



Water 2023, 15, 1486 5 of 15

the interval of each sampling lines was 30◦, and the interval of each water sensitive paper
was 10 cm. The spray liquid was water and the pressure was 400 kPa. The water sensitive
paper were collected and sealed immediately after test [24]. Droplets performance were
analyzed. The information from droplet deposition distribution, such as the middle droplet
volume diameter, the relative span of droplet spectrum, and the coverage rate of droplet
were obtained. The calculation method was detailed in References [25–29].

3. Results and Discussion
3.1. Influence of Different Structural Parameters on Irrigation Performance

Table 1 shows the results of the irrigation performance and the flow rate of each
sprinkle fluctuates 0.75~0.78 m3/h.

Table 1. The results of irrigation performance.

Serial
Number

Diversion
Hole

Inclination
Angle α/◦

Refractive
Cone Length

l/mm

Refraction
Cone Angle

θ/◦

Cone Hole
Dis-

tance/mm
Wetted

Radius/m

Average
Irrigation

Application
Rate/(mm/h)

Uniformity
Coefficient/%

1 10 7 120 2.5 2.93 0.56 83.10
2 20 7 120 2.5 3.54 0.50 86.28
3 10 11 120 2.5 2.53 0.61 87.13
4 20 11 120 2.5 2.85 0.60 85.58
5 10 7 140 2.5 3.13 0.69 80.45
6 20 7 140 2.5 3.18 0.58 86.76
7 10 11 140 2.5 3.03 0.73 75.87
8 20 11 140 2.5 3.10 0.78 74.93
9 10 7 120 4.5 3.80 0.49 83.99
10 20 7 120 4.5 3.70 0.48 85.26
11 10 11 120 4.5 3.28 0.55 89.91
12 20 11 120 4.5 3.26 0.65 82.02
13 10 7 140 4.5 3.60 0.49 82.26
14 20 7 140 4.5 3.50 0.47 84.16
15 10 11 140 4.5 3.68 0.51 77.37
16 20 11 140 4.5 3.52 0.70 72.99
17 5 9 130 3.5 3.53 0.57 82.50
18 25 9 130 3.5 3.83 0.56 85.26
19 15 5 130 3.5 3.30 0.47 84.08
20 15 13 130 3.5 2.58 0.59 80.72
21 15 9 110 3.5 3.13 0.68 86.39
22 15 9 150 3.5 3.21 0.87 75.64
23 15 9 130 1.5 2.55 0.58 84.13
24 15 9 130 5.5 3.53 0.40 81.25
25 15 9 130 3.5 3.10 0.72 88.21
26 15 9 130 3.5 3.10 0.72 88.21
27 15 9 130 3.5 3.10 0.72 88.21
28 15 9 130 3.5 3.10 0.72 88.21
29 15 9 130 3.5 3.10 0.72 88.21
30 15 9 130 3.5 3.10 0.72 88.21
31 15 9 130 3.5 3.10 0.72 88.21

3.1.1. The Response Surface of Variance and the Regression Analysis

The analysis of variance (ANOVA) was used to analyze the influence of different
structural parameters on sprinkler performance [30]. Wetted radius, average irrigation
application rate, and uniformity coefficient were analyzed. The ANOVA of the uniformity
coefficient was shown in Table 2. Where Adj SS is the sum of the squares of deviation
from the mean, Adj MS is mean square, F represents the significance of the whole fitted
equation, and p is an index to measure the difference between the control group and the
experimental group.

The ANOVA of the response regression determines whether the influence of each item
on the response variable y is significant through the range of the model p. If p ≤ 0.05, it
shows that the influence of this term on the response variable y is significant. If p > 0.05,
it shows that the influence of this term on the response variable y is insignificant [31]. As
shown in Table 3, model p ≤ 0.01 indicates that the regression equation established by the
response regression model has a good fit.
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Table 2. ANOVA of uniformity coefficient.

Project Freedom Adj SS Adj MS F p

Model 14 601.618 42.973 65.21 0.000
Linear 4 258.748 64.687 98.15 0.000

α 1 1.307 1.307 1.98 0.178
l 1 39.117 39.117 59.35 0.000
θ 1 216.961 216.961 329.21 0.000
h 1 1.363 1.363 2.07 0.170

Suqare 4 184.974 46.243 70.17 0.000
α 1 33.084 33.084 50.20 0.000
l 1 61.635 61.635 93.52 0.000
θ 1 91.816 91.816 139.32 0.000
h 1 53.916 53.916 81.81 0.000

Two-factor
interaction 6 157.896 26.316 39.93 0.000

α × l 1 39.816 39.816 60.42 0.000
α × θ 1 2.031 2.031 3.08 0.098
α × h 1 12.110 12.110 18.38 0.001
l × θ 1 103.327 103.327 156.79 0.000
l × h 1 0.221 0.221 0.34 0.571
θ × h 1 0.391 0.391 0.59 0.453
Error 16 10.545 0.659

The p values of l, θ, α2, l2, θ2, h2, α × θ, α × h, and l × θ are less than 0.05, which
belonged to the significant influencing factors. Removing insignificant terms, the response
regression model of each influencing factor to the uniformity coefficient was calculated
as follows:

Cu = −405 + 3.366α + 24.85l + 5.502θ + 11.98h − 0.04302α2 − 0.367l2 − 0.01792θ2 − 1.373h2 − 0.1578α × l
− 0.1740α × h − 0.1271l × θ

(1)

Similarly, the wetted radius and average irrigation application rate were analyzed;
this analysis process was the same as the uniformity coefficient. The factors with little influ-
ence were ignored; the regression equations for the wetted radius and average irrigation
application intensity were obtained.

r = 7.56 + 0.0375α − 0.875l − 0.0334θ + 0.5185h + 0.006334α2 − 0.001188α×θ − 0.01787α × h + 0.0061l × θ (2)

ρ = −0.766 + 0.00418α + 0.2025l − 0.0151θ + 0.7240h − 0.001633α2 − 0.01265l2 + 0.000115θ2−0.06058h2+
0.003208α × l + 0.00485α × h − 0.003207θ × h

(3)

where r is the wetted radius, m, ρ is the average irrigation application rate, mm/h.
The maximum wetted radius, average irrigation application rate, and uniformity

coefficient were taken as the target value; the optimal parameter combination of the key
hydraulic structures were obtained by multi-response optimization [32]. The structures
values were: the diversion hole inclination angle was 20.8◦, the refractive cone angle was
123.7◦, the refractive cone length was 8.8 mm, and the cone hole distance was 3.6 mm. The
hydraulic performance of the sprinkler was: the wetted radius was 3.4 m, the average
irrigation application rate was 0.65 mm/h, and the uniformity coefficient was 88%.
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Table 3. The results of spraying pesticide performance.

Test
Number

Diversion
Chute
Width
b/mm

Number of
Diversion
Chutes n

Diversion
Chute

Inclination
Angle β/◦

Rotational
Accelera-

tion
Chamber

Height
h1/mm

Length of
Cylindri-

cal Section
at Nozzle

Outlet
h2/mm

Droplet
Volume

Mid-
Diameter/µm

Droplet
Spectral
Width

Droplet
Coverage/%

1 1.0 2 10 2 0.5 289.36 1.93 7.49
2 2.0 2 10 2 0.1 307.11 2.52 7.03
3 1.0 4 10 2 0.1 289.3 4.13 6.40
4 2.0 4 10 2 0.5 127.17 1.94 2.97
5 1.0 2 30 2 0.1 240.17 1.44 2.21
6 2.0 2 30 2 0.5 315.22 1.96 7.66
7 1.0 4 30 2 0.5 309.03 1.41 6.78
8 2.0 4 30 2 0.1 231.57 3.59 6.78
9 1.0 2 10 4 0.1 245.78 3.30 7.91
10 2.0 2 10 4 0.5 172.76 2.85 4.71
11 1.0 4 10 4 0.5 300.52 2.87 6.01
12 2.0 4 10 4 0.1 241.11 4.08 11.77
13 1.0 2 30 4 0.5 227.72 1.57 1.89
14 2.0 2 30 4 0.1 295.92 2.83 8.87
15 1.0 4 30 4 0.1 250.56 2.36 11.81
16 2.0 4 30 4 0.5 188.98 2.54 4.01
17 0.5 3 20 3 0.3 248.49 1.24 3.22
18 2.5 3 20 3 0.3 157.81 2.65 3.03
19 1.5 1 20 3 0.3 272.51 1.32 6.19
20 1.5 5 20 3 0.3 201.30 3.23 6.15
21 1.5 3 0 3 0.3 229.30 3.48 7.55
22 1.5 3 40 3 0.3 251.64 1.12 4.86
23 1.5 3 20 1 0.3 284.64 1.62 5.24
24 1.5 3 20 5 0.3 240.93 2.20 7.19
25 1.5 3 20 3 0.1 266.32 3.06 7.87
26 1.5 3 20 3 0.7 322.12 2.19 7.33
27 1.5 3 20 3 0.3 175.51 2.50 6.01
28 1.5 3 20 3 0.3 175.51 2.50 6.01
29 1.5 3 20 3 0.3 175.51 2.5 6.01
30 1.5 3 20 3 0.3 175.51 2.5 6.01
31 1.5 3 20 3 0.3 175.51 2.5 6.01

3.1.2. Analysis of Main Effect and the Interaction Effect

Figure 6 shows the main effect plot of irrigation performance.
As shown in Figure 6a, the wetted radius increased first and then decreased as the

refractive cone angle increased. It is negatively correlated with the refractive cone length
and positively correlated with the cone hole distance. The refractive cone angle is less
insignificant to the wetted radius than other factors. As shown in Figure 6b, average
application rate has a quadratic function relationship with the diversion hole inclination
angle, the refractive cone length, and the cone hole distance, which increases slowly with the
increase in the refractive cone angle. As shown in Figure 6c, with each structural parameter,
the uniformity coefficient initially shows an increasing and then decreasing trend.

Figures 7–9 show the two-factor interaction diagram of the response variable between
the wetted radius, average application rate, uniformity coefficient, diversion hole incli-
nation angle, refractive cone angle, refractive cone length, and cone hole distance. The
contour map is the projection of the response surface on the horizontal plane. Each group
of two-factor interaction diagrams is the interaction between two independent variables
when other variables are regarded as zero level.
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0.1740α × h − 0.1271l × θ  (1) 

Similarly, the wetted radius and average irrigation application rate were analyzed; 
this analysis process was the same as the uniformity coefficient. The factors with little 
influence were ignored; the regression equations for the wetted radius and average irri-
gation application intensity were obtained. 

r = 7.56 + 0.0375α − 0.875l − 0.0334θ + 0.5185h + 0.006334α2 − 0.001188α×θ − 0.01787α × h + 0.0061l × θ (2)𝜌= −0.766 + 0.00418α + 0.2025l − 0.0151θ + 0.7240h − 0.001633α2 − 0.01265l2 + 0.000115θ2 − 0.06058h2 + 
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where r is the wetted radius, m,  𝜌 is the average irrigation application rate, mm/h. 
The maximum wetted radius, average irrigation application rate, and uniformity coef-

ficient were taken as the target value; the optimal parameter combination of the key hydrau-
lic structures were obtained by multi-response optimization [32]. The structures values were: 
the diversion hole inclination angle was 20.8°, the refractive cone angle was 123.7°, the re-
fractive cone length was 8.8 mm, and the cone hole distance was 3.6 mm. The hydraulic 
performance of the sprinkler was: the wetted radius was 3.4 m, the average irrigation appli-
cation rate was 0.65 mm/h, and the uniformity coefficient was 88%. 

3.1.2. Analysis of Main Effect and the Interaction Effect 
Figure 6 shows the main effect plot of irrigation performance. 
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As shown in Figure 7a,c, the interaction between the diversion hole inclination angle,
the refractive cone angle, and the cone hole distance is significant. When the diversion hole
inclination angle range is (5◦~18◦), the refractive cone angle is negatively correlated with the
wetted radius within the range. At the upper limit of the cone hole distance (5.5 mm), the
maximum wetted radius is 4.42 m. As shown in Figure 7b, when the refractive cone angle
is (110◦~140◦), the wetted radius decreases with the increase in the refractive cone length,
and the range gradient of the decreasing process is large, indicating that the refractive cone
length has a significant influence on the wetted radius.

As shown in Figure 8a,b, the average irrigation application intensity increases first
and then decreases as the diversion hole inclination angle and the refractive cone length
increase, inside which the area of high efficiency is large. Figure 8c shows that, at upper
limit of the refractive cone angle (150◦) and when the range of the cone hole distance is
2.5~3.5 mm, the maximum average irrigation application intensity is 0.894 mm/h.

As shown in Figure 9a,b, when the diversion hole inclination angle is 25◦, the unifor-
mity coefficient changes obviously with the refractive cone length, which shows that the
refractive cone length has a significant influence on the uniformity coefficient; the unifor-
mity coefficient increases first and then decreases as the diversion hole inclination angle
and the cone hole distance increase. When the range of cone hole distance is 2.5~3.5 mm
and the range of the diversion hole inclination angle is 13◦~21◦, the uniformity coefficients
reach the maximum value of 87.3%. As shown in Figure 9c, the contour plot shows that
under the interaction between the diversion hole inclination angle and refractive cone
length, the high-efficiency area of uniformity coefficient is more significant. When the range
of the refractive cone angle is (110◦~115◦) and the refractive cone length is (9~12 mm), the
uniformity coefficients reach the maximum value.
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3.2. Influence of Different Structural Parameters on Spraying Pesticide Performance

Table 3 shows the results of the performance of spraying pesticide and the flow rate of
each sprinkler fluctuates 0.15~0.2 m3/h.

3.2.1. The Response Surface of Variance and the Regression Analysis

Droplet volume mid-diameter, droplet spectral width, and droplet coverage were
analyzed. The ANOVA of the droplet volume mid-diameter was shown in Table 4.

Table 4. ANOVA of droplet volume mid-diameter.

Project Freedom Adj SS Adj MS F p

Model 20 86,113.0 4305.6 11.12 0.000
Linear 5 16,156.0 3652.1 9.43 0.001

b 1 8587.4 8587.4 22.18 0.001
n 1 3706.4 3706.4 9.57 0.010
β 1 712.2 712.2 1.84 0.202
h1 1 3105.3 3105.3 8.02 0.016
h2 1 44.7 2149.3 5.55 0.038

Suqare 5 36,060.3 7212.1 18.63 0.000
b × b 1 6.4 77.2 0.20 0.664
n × n 1 2182.9 2982.6 7.70 0.018
β × β 1 3077.9 3535.6 9.13 0.012

h1 × h1 1 8622.0 8055.2 20.81 0.001
h2 × h2 1 22,171.1 22,171.1 57.27 0.000

Two-factor
interaction 10 33,896.7 3389.7 8.76 0.001

b × n 1 12,574.9 12,574.9 32.48 0.000
b × β 1 4935.8 4935.8 12.75 0.004
b × h1 1 27.5 27.5 0.07 0.795
b × h2 1 8668.1 8668.1 22.39 0.001
n × β 1 110.1 110.1 0.28 0.604
n × h1 1 3415.6 3415.6 8.82 0.013
n × h2 1 0.5 0.5 0.00 0.971
β × h1 1 400.4 400.4 1.03 0.331
β × h2 1 2922.3 2922.3 7.55 0.019
h1 × h2 1 841.4 841.4 2.17 0.168
Error 11 4258.4 387.1

The following regression equations for the droplet volume mid-diameter, droplet
spectral width, and droplet coverage were obtained.

Dv0.5 = 599.5 + 129.9b − 31.7n − 11.08β − 153.6h1 − 375h2 + 9.93n × n + 0.1082β × β + 16.40h1×h1 + 892 h2 × h2
− 56.07b × n + 3.513b × β − 232.8b × h2 + 14.61n × h1 + 6.76β × h2

(4)

S = 2.891 − 0.732b+ 0.687n − 0.1377β + 0.1928h1 − 2.53h2 + 5.98h2 × h2 + 0.0622b × β − 1.131n × h2 (5)

Deposits = −7.73 + 14.19b + 0.943n − 0.3156β + 0.839h1 + 23.39h2 − 2.806b × b + 25.01h2 × h2 − 1.777b × n +
0.0742b × β − 5.59b × h2 + 0.0546n × β + 0.728n × h1 − 3.979n × h2 − 8.196 h1 × h2

(6)

where Dv0.5 is droplet volume mid-diameter, µm, S is droplet spectral width, and Deposits
is droplet coverage, %.

The droplet volume medium diameter of 200 µm, the droplet spectral width of 1,
and the droplet coverage were taken as the target value. The structures values were: the
diversion chute width was 2.5 mm, the number of diversion chutes was 2, the diversion
chute inclination angle was 10◦, the rotary acceleration chamber height was 1.3 mm, and
the nozzle outlet cylindrical section length was 0.7 mm. The droplet volume mid-diameter
was 200.2 µm, the droplet spectrum width was 2.2, and the droplet coverage was 9.4%.
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3.2.2. Analysis of Main Effect and the Interaction Effect

Figure 10 shows the main effects diagram of the diversion chute width, the number
of diversion chutes, the diversion chute inclination angle, the rotary acceleration chamber
height, the nozzle outlet cylindrical section length on the droplet volume mid-diameter,
droplet spectral width, and droplet coverage.
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As shown in Figure 10a, the droplet volume mid-diameter is negatively correlated
with the diversion chute width; the other factors have a quadratic function relationship
with the volume diameter of the spray head, and the wave troughs exist. As shown in
Figure 10b, the droplet spectral width is positively corrected with the diversion chute width,
the number of diversion chutes n, and the rotary acceleration chamber height. Moreover,
the droplet spectral width is negatively corrected with the diversion chute inclination
angle and the nozzle outlet cylindrical section length. As shown in Figure 10c, the droplet
coverage increases as the number of diversion chutes and the rotary acceleration chamber
height increase.

Figures 11–13 show the two-factor interaction diagram of the response variable be-
tween droplet volume diameter, droplet spectral width, droplet coverage and the diversion
chute width, the number of diversion chutes, the diversion chute inclination angle, the
rotary acceleration chamber height, and the nozzle outlet cylindrical section length.
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As shown in Figure 11a–c, under the interaction effect between the diversion chute
width and the diversion chute inclination angle, the droplet volume mid-diameter changes
more significantly when the diversion chute width is 0.5 mm, the diversion chute inclination
angle is 0◦, and the droplet volume mid-diameter reaches the maximum value 326 µm; the
diversion chute width has a significant influence on the droplet volume mid-diameter when
the diversion chute is less than 1.5 mm, and the droplet volume mid-diameter is positively
corrected with the nozzle outlet cylindrical section length. This change is the opposite
when the diversion chute is greater than 1.5 mm. As shown in Figure 11e, which is the
same as Figure 11d, the diversion chute inclination angle and the nozzle outlet cylindrical
section length significantly influence the droplet volume mid-diameter.
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As shown in Figure 12a, the 3D curved surface of the diversion chute width and the
diversion chute inclination angle on t response variable droplet spectral width is “saddle-
like”. When the diversion chute inclination angle is less than 20◦, the diversion chute width
has an insignificant influence on the droplet spectral width;As shown in Figure 12b, when
the nozzle outlet cylindrical section length and the number of diversion chutes are fixed,
the droplet spectrum width is positively correlated with the number of diversion chutes.

As shown in Figure 13, for the response variable droplet coverage, there are more
significant terms of the two-factor interaction; the diversion chute width significantly
influences the droplet coverage. As shown in Figure 13a–c, when the lower limit values
are taken separately by the diversion chute width and the number of diversion chutes, the
droplet coverage is negative. When the diversion chute width is less than 1.25 mm, the
droplet coverage decreases as the diversion chute inclination angle increases. As shown in
Figure 13d–f, when the number of diversion chutes are less than three, the droplet coverage
is negatively corrected with the rotary acceleration chamber height. Under the interaction
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effect between the number of diversion chutes and the nozzle outlet cylindrical section
length, the droplet coverage changes are more significant, as the maximum is 10.76% and
the minimum is 4.94%. As shown in Figure 13g, when the rotary acceleration chamber
height is 5 mm, the nozzle outlet cylindrical section length is 0.1mm and the response
surface diagram reaches the maximum value of 12.85%.

4. Conclusions

A new water and pesticide integrated sprinkler was designed. The ANOVA and
the regression analysis of the response surface were used to analyze the influence of key
structural parameters on the performance of a water–pesticide integrated sprinkler. The
conclusions were as follows:

(1) The influences of key structural parameters, such as the diversion hole inclination
angle, the refractive cone angle, the refractive cone length, and the cone hole distance
on sprinkler irrigation performance were revealed. The influence laws of key struc-
tural parameters of different diversion chute widths, the number of diversion chutes,
the diversion chute inclination angle, the rotary acceleration chamber height, and the
nozzle outlet cylindrical section length on sprinkler spraying pesticide performance
were revealed, respectively.

(2) Taking the wetted radius, average irrigation application rate, and uniformity coeffi-
cient as the parameters of irrigation performance and droplet volume mid-diameter,
droplet spectral width, and droplet coverage as the parameters of spraying pesticide
performance, the proposed design values of key structural parameters with better per-
formance are obtained: the diversion hole inclination angle was 20.8◦, the refractive
cone angle was 123.7◦, the refractive cone length was 8.8 mm, the cone hole distance
was 3.6 mm, the diversion chute width was 2.5 mm, the number of diversion chutes
was 2, the diversion chute inclination angle was 10◦, the rotary acceleration chamber
height was 1.3 mm, and the nozzle outlet cylindrical section length was 0.7 mm. The
performance parameters of the sprinkler can meet the needs of grape irrigation and
pesticide spraying, thereby improving the utilization rate of water and pesticides in
the agricultural production process.
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