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Abstract: In the treatment of drinking water, the ibuprofen (IBP) disinfection by-products, toxicity,
and its impact on drinking water safety have caused widespread attention in domestic and overseas
research areas. We studied the removal efficiency of IBP under the following conditions: combination
of good catalytic activity of a silicate-based microfiltration membrane with the strong oxidizing ability
of ozone in the continuous flow experiment mode and various influencing factors. This research
revealed that with the increase of pH and hydraulic retention time, the removal efficiency of IBP
exhibited an increasing trend; with the increase of alkalinity and humic acid concentration in water,
the removal efficiency of IBP was obviously inhibited. Free radical inhibitors and electron spin
resonance (ESR) analysis demonstrated that hydroxyl radical (·OH) is an important active species
during the reaction of ozone-catalyzed IBP with the silicate-based microfiltration membrane.

Keywords: silicate-based microfiltration membrane; catalytic ozonation; ibuprofen; continuous flow
experiment; influencing factors

1. Introduction

Ibuprofen (IBP), chemically known as 2-methyl-4-(2-methyl-propyl) phenylacetic acid,
is a typical nonsteroidal anti-inflammatory drug (NSAID) with anti-inflammatory and an-
tipyretic effects and has a good effect on muscle pain and rheumatic diseases [1]. Compared
with other anti-inflammatory and pyrolytic drugs, such as aspirin and acetaminophen, IBP
shows superior performance with low toxicity, high efficacy, and minimal side effects [2].
As a result, IBP is widely used around the world. Because of the formation of the false
persistent phenomenon, the wide application of IBP has caused great harm to the aquatic
ecosystem of plants and animals. IBP, as an important PPCPs pollutant, may cause diges-
tive tract infections and weaken the immune ability of the human body after long-term
drinking of water contaminated by IBP and long-term exposure to such drugs [3,4]. IBP
has been detected in the Pearl River, Haihe River, and Yellow River in China [5,6]—it is
present in surface water in the amount of up to 0.4 µg L−1 and in drinking water up to
1.3 µg L−1 [7,8]. Studies have shown that the conventional biological treatment process
has a good removal effect on IBP with a removal efficiency of 70%, but the products of
the conventional biological treatment process have biological toxicity similar to IBP [9].
However, it is important to note that complete removal may not always be possible, and
efforts to reduce the amount and concentration of these compounds can still be effective in
reducing harm to the environment and public health.

IBP presence in water sources can have negative effects on aquatic organisms, as
well as on human health through contaminated water supplies. Therefore, it is important
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to increase efforts to remove these compounds from natural waters and wastewater to
minimize their negative effects. He et al. [10] synthesized the MnO2 nanocrystals catalytic
ozonation for ibuprofen. They found that the active species in this oxidation system playing
conspicuous roles in IBP degradation were ·OH, ·O2−, and 1O2. However, the catalyst
MnO2 is difficult to be separated from the solution after the reaction. Quero et al. [11]
used 12 g/L O3 to degrade IBP. In the experiment, when pH was 9 and hydraulic retention
time was 20 min, 1 mg/L IBP could basically be all removed, but IBP did not achieve
good mineralization. Moreover, through the detection of oxidation products after the
reaction, it was found that intermediate compounds with greater toxicity were generated.
Méndez-Arriaga et al. [12] used ultrasound to degrade IBP. Ultrasound increased the
degradation of IBP from 30 to 98% within 30 min. Although ultrasound could efficiently
remove IBP and convert it into biodegradable intermediates degraded in a subsequent
biological step, it required high power consumption and generated noise. Liu et al. [13]
discovered that 93% of IBP photodegradation can be achieved by prepared photocatalyst
with a degradation rate constant at 0.011 min−1 with ·OH being the dominant active species
in the photodegradation of IBP by g-C3N4/Bi2WO6/rGO under visible light. However,
due to the high cost of these catalysts or the cumbersome catalytic process, it is necessary to
develop an economical, inexpensive, and easily separable catalyst to use in the advanced
oxidation techniques for catalyzing ozone by removing IBP in water.

Silicate cement is a cost-effective and widely utilized construction material. Silicate-
based materials’ strength and durability come from both cement’s workability and its
hydration reaction with water [14,15]. Silicate cement has the potential to react with water
at ambient temperature, resulting in sufficient strength and enhanced durability. This
not only makes it more eco-friendly but also prolongs its life span. Our team mixed
silicate cement and quartz particles evenly with deionized water in a certain proportion
and synthesized a silicate-based microfiltration membrane by the extrusion method [16].
Because there are metal oxides and alkaline substances in silicate cement, the silicate-based
microfiltration membrane has the potential to catalyze the ozonation of organic matter.

In this study, IBP was removed by using the advanced oxidation technology of ozone
oxidation catalyzed by the flat-plate and low-cost silicate-based microfiltration membrane.
This research was focused on the parameters of the heterogeneous catalytic ozonation of IBP
in order to address the need for higher catalytic efficiency with the low-cost membrane. In
particular, key factors affecting the catalytic process, such as pH, alkalinity, natural organic
matter (NOM), hydraulic residence time, and reactive species, were analyzed. Finally, the
active species of ozone catalyzed by the membrane were investigated.

2. Materials and Methods
2.1. Materials

IBP (analytically pure) was purchased from Sahn Chemical Technology (Shanghai,
China) Co., LTD. Analytical grade reagents of humic acid and sodium bicarbonate were
obtained from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). All solutions
were prepared with Milli-Q ultrapure water. The synthesized process of silicate-based
microfiltration membrane is in the Supplementary Materials. The appearance and mi-
cromorphology of silicate-based microfiltration membranes are shown in Figure 1. The
technical parameters of the silicate-based microfiltration membrane are listed in Table 1.

Table 1. The technical parameters of silicate-based microfiltration membrane.

Project Technical Parameters

Diameter (mm) 50
Thickness (mm) 3

Mean pore size (µm) 2.2
Porosity (%) 31

Effective contact area (cm2) 7.0
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Figure 1. The appearance and micromorphology of silicate-based microfiltration membrane.

2.2. Experimental Equipment

The experimental device is a self-designed organic glass reactor. The continuous
flow test process is as follows: After the ozone generator (CF-G-3-010g, Qingdao Guolin
Equipment Co., LTD, Qingdao, China) is turned on and stabilized for a period of time, the
mixture of ozone and oxygen is continuously injected into the reactor. At the same time,
deionized water is injected using the peristaltic pump (YZ1515X, Lange constant-current
Pump Co., LTD, Baoding, China) into the reaction tower at a certain velocity. The effluent
is no longer returned to the reaction tower for direct discharge. By controlling the gas flow
and the working current of the ozone generator, the desired initial ozone concentration
is achieved after stabilization. After the system is stable for 1 h, the deionized water is
switched to an IBP solution containing a certain concentration for water distribution, and
then samples are taken at certain intervals to measure the concentration of residual ozone
in the water and the concentration of residual IBP after oxidation. The reaction device is
shown in Figure 2.
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Figure 2. The schematic of experimental equipment: 1—oxygen cylinder, 2—ozone generator,
3—valve, 4—reactor, 5—distribution tank, 6—peristaltic pump, 7—pressure gauge, 8—air inlet,
9—quartz plate, 10—silicate-based microfiltration membrane, 11—water inlet, 12—water outlet (and
sampling outlet), 13—air outlet, and 14—exhaust absorption bottle.

In the experiment of catalytic ozonation, a G3-type quartz plate (average pore size
2.2 µm) is used at the bottom of the reactor for aeration, and a silicate microfiltration
membrane is used at the top for the catalytic reaction. In the process of sole ozonation
experiment, a quartz plate of the same size in G3 type is used to replace the silicate-based
microfiltration membrane in the reactor.



Water 2023, 15, 2184 4 of 11

2.3. Analysis

The concentration of IBP was detected by 1200LC high-performance liquid chromato-
graph (HPLC) from Agilent. The determination was performed on Agilent C18 column
(Zorbax Eclipse XDB-C18, 4.6 × 150 mm, 5 µm) with mobile phase consisting of acetonitrile,
0.3% formic acid solution = 70:30 (V:V), at a flow rate of 0.8 mL/min. The sample size
was 100 µL. The UV detector was used for detection, and the detection wavelength was
222 nm. The concentration of dissolved ozone in the solution was detected by the indigo
method [17]. The inlet ozone concentration ([O3]0) was the dissolved ozone concentration
after the steady operation of the device with deionized water used as the medium with a
mixture of oxygen and ozone injected. The total organic carbon (TOC) was tested by the
total organic carbon tester (TOC-VCPH, Shimazu Company, Kyoto, Japan).

In the process of sole ozonation and catalytic ozonation of IBP, the obtained sam-
ples were filtered by 0.45 µm hydrophilic filtration membrane before HPLC and tested
within 1 day after the end of the experiment to ensure the validity and accuracy of the
experimental data.

3. Results and Discussions
3.1. Influence of Ibuprofen Concentration

The initial concentration of IBP varied from 2 mg/L to 20 mg/L, and the removal
efficiencies of IBP, TOC, and residual ozone concentration were selected as the investigation
indexes. The experimental results are shown in Figure 3. When the initial concentration of
IBP increases from 2 mg/L to 20 mg/L, the removal efficiency of IBP in the single ozone
process decreases from 77.4% to 50.1%. In the ozone-membrane process, the removal
efficiency of IBP decreases from 97.0% to 81.1%. Compared with the single ozone process,
the combined process can improve the removal of the target by more than 20 percentage
points. In the combined process, when dissolved ozone passes through a silicate inorganic
membrane, alkaline substances and some metal oxides in the pore of the silicate microfil-
tration membrane promote the decomposition of ozone into free radicals with the strong
oxidizing ability and react with the target, thus improving the removal efficiency of IBP.
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Figure 3. The removal efficiency of IBP under the following conditions: [O3]0 = 2.5 mg/L, gas flow
0.2 L/min, liquid flow 25 mL/min, and HRT 10 min, pH 6.5.

As can be seen from Figure 4, the TOC removal efficiency decreases with the increase
of the initial concentration of IBP in the sole ozone process and the combined process.
Compared with ozone oxidation alone, TOC removal efficiency could be increased by
20 percentage points. The TOC removal efficiency of IBP is also significantly increased in
the ozone/membrane combined process.
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Figure 4. The TOC removal efficiency at different concentrations of IBP.

To further confirm the performance of the ozone/membrane system for removing
IBP, those reported various catalysts under similar reaction conditions are compared and
summarized in Table 2. The degradation efficiency and TOC removal efficiency of IBP are
in the high-performance category in previously reported literature, suggesting that the
ozone/membrane system exhibits efficient catalytic performance and a significant degree
of mineralization toward IBP.

Table 2. Comparisons of degradation of IBP by various catalysts with ozone.

Catalysts IBP
(mg/L) Ozone Degradation

Efficiency
TOC

Removal References

α-MnO2 10.0 0.5 mg/min 99.5% 32.3% [10]
Fe/Mn co-doped

biochar 50.0 4.93 mg/min 95.4% 80.5% [18]

Ferrosilicon 10.0 9.0 mg/L 75.0% 68.0% [19]
Fe/CNT 20.0 50.0 mg/L 100% 50.0% [20]

Membrane 10.0 2.5 mg/L 87.6% 43.6% This study

3.2. Influence of Ozone Concentration

It can be seen from Figure 5 that the removal efficiency of IBP by a single ozone
process and combined ozone-membrane process increases with the increase of ozone
concentration in the reaction tower. When the concentration of ozone in the reaction
tower was 2.0 mg/L, the IBP removal efficiency was 61.8% by ozone-alone process and
89.7% by the ozone-membrane combined process. When the concentration of ozone in the
reactor was increased to 2.5 mg/L, the removal efficiency of IBP by ozone-alone process
was 72.4%, while that by the ozone-membrane combined process was 95.2%. When the
ozone concentration of the reaction tower was increased to 3 mg/L, the IBP removal
efficiency of the ozone-alone process was 85.3%, while that of the ozone-membrane process
was 97.8%. In view of the above studies, the removal efficiency of IBP was higher when
the ozone concentration is above 2.5 mg/L in the ozone-membrane process. The IBP
removal efficiency at 3 mg/L ozone concentration was not significantly higher than that
at 2.5 mg /L ozone concentration. Therefore, 2.5 mg/L ozone concentration was selected
during the experiment.
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Figure 5. The effect of ozone concentration ([O3]0) on IBP removal efficiency under the following
conditions: [IBP]0= 5 mg/L, gas flow 0.2 L/min, liquid flow 25 mL/min, and HRT 10 min, pH 6.5.

3.3. Influence of Solution pH

In the study of ozone removal efficiency of organic matter, solution pH is a decisive
factor. The OH- in the solution can react with ozone, promote the decomposition of ozone,
increase the decomposition rate of ozone, and increase the formation rate of ·OH. Therefore,
the dissolution of ozone dissolved in water leads to the enhancement of decomposition
and the generation of more hydroxyl radicals with the increase of the concentration of OH-

ions in the reacting water.
As can be seen from Figure 6, with the increase of solution pH, the removal efficiency of

IBP in the ozone-membrane process gradually increased. When the pH of the solution was
3.5, the removal efficiency of IBP was only 83.2%. When the pH of the solution was 8.5, the
removal efficiency of IBP increased to 97.7%. The concentration of residual ozone tended to
be stable when the pH of the solution was acidic. When the pH of the solution was basic,
the concentration of residual ozone dropped sharply. When the pH of the solution was 8.5,
the IBP removal efficiency reached 97.7%, and the residual O3 concentration reached the
lowest value of 1.2mg/L. When the pH of the solution was 6.5, the IBP removal efficiency
was 95.2%, which is a high removal efficiency. When the pH value of the solution was
6.5, the removal efficiency of IBP did not increase significantly with the increase in pH.
Considering all factors comprehensively, the pH of the solution was selected as 6.5 in the
continuous flow test.
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3.4. Influence of Alkalinity

The alkalinity content of natural water is very high, and the reaction rate of HCO−
3

with ·OH is very fast. The reaction of HCO−
3 with hydroxyl radical generates carbonate

radicals which inhibit the decomposition of ozone and the generation of free radicals. The
reaction rate is constant at 8.5 × 106 L·M−1·s−1 [21]. The concentration in surface water
and underground water is about 50–200 mg/L [21]. Therefore, the effect of bicarbonate
alkalinity on IBP removal should be considered.

It can be seen from Figure 7 that bicarbonate alkalinity has a certain inhibitory effect
on the removal of IBP. When the bicarbonate alkalinity increased from 0 to 500 mg/L, the
removal efficiency of IBP decreased from 95.2% to 58.1%. On the contrary, the concentra-
tion of residual ozone increased from 1.2 mg/L to 2.3 mg/L, and the change in residual
ozone concentration showed an upward trend. The strong effect of a high concentration
of bicarbonate ions on the removal efficiency of IBP can be explained by the formation of
calcium carbonate on the membrane pore surface. Studies have shown that [16] there are a
large number of alkaline substances in the form of polymeric calcium silicate hydrate, cal-
cium hydroxide, and ettringite on the pore wall of silicate-based microfiltration membrane.
When ionic water containing bicarbonate passes through the pore wall of the membrane,
calcium carbonate precipitates will be formed on the surface of the pore wall, which can be
attached to the pore surface, thus preventing water from contacting with ozone on the pore
wall and slowing down the decomposition rate of ozone. As a result, the residual ozone
concentration reflected in the effluent increases.
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3.5. Influence of Humic Acid Concentration

The humic acid content in natural water ranges from 0 to 100 mg/L. Humic acid can
induce, promote, and inhibit the formation of free radicals. In order to better investigate the
application of ozonation technology catalyzed by silicate-based microfiltration membrane
in water, humic acid of a certain concentration was added to tap water to study the effect of
silicate-based microfiltration membrane catalyzing ozone removal of IBP. The experimental
results are shown in Figure 8.

It can be seen from Figure 8 that humic acid concentration has a very complex effect
on the removal of IBP in the continuous flow reaction system of ozonation of IBP catalyzed
by silicate microfiltration membrane. When the humic acid concentration was 2.0 mg/L,
the removal efficiency of ibuprofen after system stabilization decreased by 3 percentage
points to 92.46% compared with that without humic acid, which was 95.16%. When humic
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acid concentration increased from 4.0 mg/L to 20.0 mg/L, IBP removal efficiency did not
decrease significantly. When the humic acid concentration increased from 20.0 mg/L to
40.0 mg/L, the IBP removal efficiency showed an obvious downward trend. When the
humic acid concentration increased to 40.0 mg/L, the IBP removal efficiency decreased
to 78.14%, which was 17 percentage points lower than that without humic acid. This
phenomenon is likely due to the active groups on the surface of the humic acid, such
as phenolic hydroxyl, competing with IBP, resulting in a lower removal efficiency of
ibuprofen. Figure 8 also shows that with the increase of humic acid concentration, the
concentration of residual ozone in effluent decreases gradually. It may be that the active
groups on the surface of humic acid [22] promote the decomposition of ozone and reduce
the concentration of residual O3 in effluent while competitively reacting with IBP.
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Figure 8. The effect of humic acid concentration on ibuprofen removal efficiency under the follow-
ing conditions: [IBP]0 = 5 mg/L, [O3]0 = 2.5 mg/L, gas flow 0.2 L/min, liquid flow 25 mL/min,
HRT 10 min, and pH 6.5.

3.6. Influence of Hydraulic Residence Time

Under continuous flow reaction conditions, different hydraulic retention times can be
changed by adjusting the water yield. The hydraulic retention time of the reaction tower
was adjusted to 5 min, 10 min, 15 min, 20 min, and 25 min, respectively, and the removal
efficiency of IBP and TOC catalyzed by the silicate microfiltration membrane was explored
using different hydraulic retention times. The experimental results are shown in Figure 9.

Figure 9 shows that with the increase of hydraulic retention time pairs, the removal
efficiency of IBP and TOC in the reaction system gradually increases. It may be that the
longer the hydraulic retention time is and the longer the contact time between ibuprofen
and hydroxyl radical and ozone is, the higher the removal efficiency of ibuprofen will be if
the effective collision probability is increased. There is a difference of 5 percentage points
between the removal efficiency of IBP when the hydraulic retention time is 10 min and
that when the hydraulic retention time is 15 min. Therefore, the hydraulic retention time
selected in this experiment is 10 min.

3.7. Formation of ·OH in the Reaction System

According to the degree of inhibition of bicarbonate alkalinity on IBP removal by
ozonation catalyzed by silicate-based microfiltration membrane, the removal of IBP by
ozonation catalyzed by silicate-based microfiltration membrane may be mainly due to the
oxidation of ·OH. In order to further verify that the removal of IBP in a catalytic ozone
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oxidation system is mainly based on the oxidation of ·OH, electron spin resonance (ESR)
technology was used to characterize the active species in the oxidation system of sole ozone
process and membrane-ozone combined process. In this study, DMPO was used as a free
radical catcher to capture ·OH generated in two oxidation systems.
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Figure 9. The effect of hydraulic retention time on ibuprofen removal efficiency under the following
conditions: [IBP]0 = 5 mg/L, [O3]0 = 2.5 mg/L, gas flow 0.2 L/min, and pH 6.5.

As can be seen from Figure 10, a group of free radical spectral lines with a peak height
ratio of 1:2:2:1 appeared in the ESR spectra of sole ozonation and catalyzed ozonation
systems with the addition of DMPO capture agent, and its hyfine structural parameters were
αN = 1.49 mT, αH = 1.49 mT. This is the same as the parameter of the radical spectral line of
the DMPO-OH adduct [23]. It can be seen that ·OH is formed in both oxidation reaction
systems. In addition, the figure also shows that the DMPO-OH signal intensity obtained by
the membrane-ozone combined process is significantly higher than that obtained by the
sole ozonation process. It further shows that the existence of a silicate-based microfiltration
membrane is conducive to the formation of ·OH from ozonolysis.
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4. Conclusions

Through the continuous flow experimental study of ozonated ibuprofen catalyzed by
the silicate-based microfiltration membrane, the following conclusions have been obtained:

The removal efficiency of IBP by ozone-membrane catalysis system is more than
81.1%, which is 20 percentage points higher than that of sole ozone oxidation. Compared
with ozone oxidation, TOC removal efficiency can also be increased by 20 percentage
points. With the increase of pH, ozone concentration and hydraulic retention time, the
removal efficiency of IBP shows an increasing trend; with the increase of alkalinity and
humic acid concentration in water, the removal efficiency of IBP is significantly inhibited.
Through radical inhibitor and electron spin resonance (ESR) analysis, it is proved that
hydroxyl radical (·OH) is an important active species in the ozonation of IBP catalyzed by
the silicate-based microfiltration membrane.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/w15122184/s1, Text S1: the production process of silicate-based
microfiltration membrane.

Author Contributions: W.W., Z.C., J.S., P.Y., B.W., L.Y., J.K., S.Z. and Y.L. contributed to the conception
and design of the study: data curation, W.W.; formal analysis, W.W. and P.Y.; funding acquisition,
Z.C., P.Y. and L.Y.; investigation, L.Y.; methodology, W.W. and J.S.; project administration, Z.C.;
supervision, J.S., Z.C. and P.Y.; writing—original draft, W.W.; writing—review and editing, J.S., Z.C.,
P.Y. and L.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This work was jointly supported by the National Key Research and Development Pro-
gram of China (Grant No. 2022YFD3203701), Heilongjiang Province Postdoctoral Fund (Grant
No.LBH-Z22142), the Heilongjiang Touyan Innovation Team Program (Grant No. HIT-SE-01), the
Science Foundation of Heilongjiang Academy of Science (No.KY2022ZR04), the Science Foundation
of Heilongjiang Provincial Institute (CZKYF2023-1-B036), the Central Government Guides Local
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