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Abstract: The risk transmission mechanisms of urban river ecological management engineering
projects are examined in this study. Using the Susceptible Exposed Infectious Recovered Susceptible
(SEIRS) model for risk transmission, a model of risk propagation delay for urban river ecological
management engineering projects on scale-free networks is developed, which takes into account the
effects of risk propagation and delay. We conducted a steady-state analysis of the model and obtained
the basic reproduction number R. When R > 1, the equilibrium point of risk outbreak is stable, and
when R < 1, the equilibrium point of risk disappearance is stable. Numerical simulations of the model
were conducted using the MATLAB2022b to reveal the dynamic propagation patterns of risk in urban
river ecological management engineering projects. The research results show that the steady-state
density of the infected nodes in the network increases with the increase in the effective propagation
rate and the propagation delay time; the propagation delay reduces the risk propagation threshold
in the network and accelerates the occurrence of the equilibrium state of risk outbreak. There is a
correlation between the transmission rate of latent nodes and the transmission rate of infected nodes,
and the effective transmission rate of latent nodes has a greater influence on risk propagation. The
spread of risk in the network can be effectively controlled and mitigated with targeted immunity
for susceptible nodes. This article, based on the theory of complex networks and the mean-field
theory, takes into account the propagation delay and spreading of latent nodes. Building a D-SEIRS
model for risk propagation broadens the research perspective on urban river ecological management
risk propagation.

Keywords: complex networks; ecological management engineering; risk; SRIES model; urban rivers

1. Introduction

The urban river ecological governance project is a relatively complex project. When
construction projects are developed, designed, constructed, and accepted, risks are present
at every stage. The urban river ecological management project’s risk network is a complex
system with complex interactions between the risk factors, forming a complex network
structure [1]. The interaction path between the risk factors provides a path for the spread
of risk in the network. When a risk factor presents a risk state, it may spread the risk
to its associated risk factors through interaction [2]. This will lead to the spread of risks
across the entire network and may have a chain reaction and amplification effect, leading
to the outbreak of risks in projects. It is therefore necessary to study the mechanism of
risk propagation in urban river ecological management projects so that project risks can be
managed and high-quality urban river ecological management projects can be developed
and constructed by the departments involved in the project in a quality manner.

Transmission dynamics is a theoretical approach to the quantitative study of infectious
diseases. It is possible to study the transmission dynamics of complex networks using
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mathematical models of epidemic transmission. At present, research on risk transmission
is attracting extensive attention from scholars in different fields, including information
transmission, internet rumor transmission, financial market risk transmission, corporate
risk transmission, rumor transmission risk, and public opinion transmission risk, in addi-
tion to infectious diseases. Wang et al. [3] proposed the SIRaRu model and demonstrated
that there is a diffusion threshold for all of them in the network and that the network
topology has a significant effect on rumor propagation. Tian et al. [4] designed the super
SIC model and its evolutionary law based on an opinion super network containing social,
environmental, psychological, and opinion sub-networks, drawing on the modeling ideas
of the SIR model and introducing rumor clarifiers. Jeon et al. [5] found that multinational
banks can transfer financial risk from their parent companies to their foreign subsidiaries
through their internal funding markets. Mingyuan et al. [6] used the SIR model as the
basic prototype to construct a transmission model SIR-C applicable to unsafe behaviors
of workers in construction and explored the transmission characteristics and intervention
effects of unsafe behaviors. A model of time-encroaching behavior has been proposed by
He et al. [7], which discusses the propagation of time-encroaching behavior in BA scale-
free networks, ER random networks, NW small-world networks, and WS small-world
networks. This scholars’ research has also linked the spread of rumors to the topological
nature of social networks. An analysis of rumor transmission on small-world networks was
conducted by Zanette [8]. Rumors are spread through pairwise interactions between the
purveyor and others through the crowd. When interacting with another spreader or choker,
the ignorant person may become infected and spread the rumor. SIR reflects the interac-
tions between rumors and has made advances and applications in the field of information
dissemination [9,10]. Since the SIR model was proposed by Kermack and McKendrick in
1927 in their study of the Black Death epidemic in London and its optimization in 1932
with the SIS model [11], researchers have proposed models such as SIRS [12] and SEIR [13].
Lu Miao et al. [14] used a clustering algorithm to cluster the data in the key nodes, based
on which an SIS model was constructed and through which the simulation of the evolution
of public opinion in group social networks was completed. The results of the research show
that the method accurately obtains the number of opinion propagations, search indexes,
and high accuracy evolutionary simulations. By constructing a SEIS model with a defined
latent period, Li et al. [15] demonstrated that the latent endemic equilibrium point is local
and progressive. Yu [16] and Khalkho [17] established the SEIRS model, which is infectious
and rehabilitative during both the incubation and infection periods. An infectious disease
model was developed by Deng and colleagues [18] to study the transmission mechanism
of online mass events.

Domestic and foreign scholars have made a large number of contributions to the study
of risk transfer, as well as infectious diseases. Literature analysis shows that only a few
scholars have applied the infectious disease model to the risk transfer of construction
projects, especially for urban river ecological management. The mechanism of the transmis-
sion of infectious diseases is that the source of the disease enters the susceptible population
through a certain pathway, which in turn spreads among the population, and the infected
person shows different physiological responses depending on his or her immunity [19].
Risk transmission in urban river ecological management projects is similar to infectious
disease transmission. During the project construction process, the project risks are easily
transmitted to the downstream participants, there is a certain latent period before the
project risks occur, and they have been in a hidden state before the risks are revealed. A
complex set of internal and external influencing factors, coupled with a dynamic trans-
mission process, constantly changes the node state, making the project risk transmission
appear complex. The risk contagion SEIRS model constructed by Xiao Qin et al.’s [20]
study on the risk propagation mechanism of amphibious seaplane take-off and landing
safety has implications for the research conducted in this paper. Some of the existing
studies on infectious disease models have been carried out from the perspectives of both
the infectiousness of latency and the delayed nature of risk transmission, respectively. In
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urban river ecological management projects, the impact of infectious latency and delayed
risk transmission on the systemic risk transmission dynamics has not yet been examined.

This article begins by studying the risk evolution in urban river ecological manage-
ment projects. Based on the existing research, it considers the internal mechanism and
influencing factors of risk transmission, as well as the dynamic evolution process of risk.
Using principles from infectious disease dynamics, a project risk transmission model based
on SEIR is established. By solving the transmission threshold, the analysis and simula-
tion examine the impact of the risk delay time and risk infection rate on the project risk
transmission process. This model provides a basis for the effective supervision and control
of project participants and theoretical support for indirect supervision and mid-term and
post-event supervision. Figure 1 depicts the study’s general structure.
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The rest of the paper if organized as follows. The proposed complex network model
is constructed in Section 2 and its characteristics are analyzed. In Section 3, we construct
an SEIE-based risk contagion model for urban river ecological management projects. In
Section 4, the numerical simulations are presented. In Section 5, we discuss the topic.
Section 6 concludes our study.

2. Complex Network of Risks
2.1. Risk Identification

Projects to manage urban rivers ecologically are complex and require high levels of
technology; therefore, the risk points are not only diverse, but the factors are often coupled.
As a result, project implementation risks are also usually uncontrollable and can lead
to large economic losses. The data selected for this paper are mainly obtained from the
following sources.

(1) The CNKI and VIP databases are searched for relevant academic papers published
between 2011–2022 [21–23], from which all the possible risks in urban river ecological
management projects are summarized [24,25].

(2) The list of common problems in the inspection of water conservancy project construc-
tion management (2020, Ministry of Water Resources).
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(3) Accident investigation report of the safety production management platform of con-
struction units.

Based on the literature and social research, this paper establishes a risk factor system
for river ecological management projects from four aspects: project concept [26,27], project
decision [28,29], project preparation [30,31], and project implementation [31,32]. Table 1
displays the findings, which reveal that there are 53 risk factors overall and 4 risk stages in
the index system.

Table 1. River ecological management project risk factors.

Stage Risk 1 Level Risk 2 Level

1 Project concept stage

1 Political Risk
A1 Policy risk

A2 Legal and regulatory risks

2 Economic Risks
A3 Inflation risks

A4 Risk of interest rate changes
A5 Financing risk

3 Natural environmental risks
A6 Hydrological and geological risks
A7 Risk of meteorological conditions

A8 Ecological environment risk

4 Social Risks

A9 Sociocultural risk
A10 Resident negotiated land acquisition risk

A11 Social security situation
A12 Public opinion

2 Project decision stage 5 Project decision risk

A13 Project approval risk
A14 Basic acceptance risk before implementation

A15 Risk of decision-making error
A16 Risk of land change

A17 Risk of incomplete collection of basic data

3 Project preparation phase

6 Bidding risks

A18 Risk of document loss
A19 Risk of improper competition

A20 Information leakage risk
A21 Bid evaluation risk

A22 Normative risk of bidding process

7 Plan and design risks

A23 Risk of qualification of design unit
A24 design schedule lag

A25 There are defects, errors, omissions,
and frequent changes in the design plan

A26 Survey accuracy risk

8 Prepare for risks before construction

A27 Construction site layout
and technical preparation risk

A28 Project contract risks
A29 Risk of insufficient supply of substances

(materials) and materials
A30 Risk of illegal start

4 Project implementation phase

9 Construction personnel risk

A31 Technical water risk
A32 Weak security awareness

A33 Employee qualification risk
A34 Risk of construction personnel slowing down

10 Construction technical risks

A35 (construction) drawings improper design risk
A36 Engineering and technical risks

A37 Construction machinery and
equipment condition risk

A38 Cross operation condition risk
A39 Risk of construction accidents
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Table 1. Cont.

Stage Risk 1 Level Risk 2 Level

4 Project implementation phase

11 Construction management risks

A40 Safety management risks
A41 Coordination risks of participating
parties (including technical disclosure)

A42 Rationality of construction organization design
A43 Plan Adjustment and engineering change risk
A44 Contract management and enforcement risks

A45 Risk of organizational structure setup confusion
A46 Manage permission risk

12 Construction duration factor risk
A47 Certification period
A48 Construction period

A49 Risk of construction delay

13 Completion acceptance risk

A50 Risk of file transfer not in place
A51 Quality assessment risk

A52 Audit risk
A53 Risk of cost overruns

2.2. Complex Network Construction and Characterization
2.2.1. Construction of Risk Networks

There are nodes and edges in complex networks that represent the influences and their
interrelationships. In this way, a complex network can be constructed objectively. Empirical
network construction, time series network construction, and correlation coefficient network
construction are common methods of network construction [33]. A questionnaire and other
forms of research and judgment are used in the empirical network-building method to rate
the influencing factors in Table 1. Experts make judgments based on their experience of the
influencing factors. If the experts consider them to be relevant, then they are linked; if not,
then they are not. In this study, empirical network-building is used.

The columns of the risk factor relationship data matrix are the emitters (causes) and
the rows of the matrix are the affected parties (effectors); Relationships are indicated by “1”
when they exist, and by “0” when they do not exist. Let there be n risk nodes in risk element
set A: Ah = (R1, R2, . . . , Rh) is a set of risk factors for the row; Am = (R1, R2, . . . , Rm) is for
the set of risk elements, and bij is the binary relational data. The number of rows in the
matrix is i and the number of columns is j, i = 1, 2, 3, . . . , n, j = 1, 2, 3, . . . , n.

bij = 1. That is, the risk element in row i has an effect on the risk element in column j.
bij = 1 means that the risk element in row i does not affect the risk element in column j.
The expert scoring method was used to determine the risk adjacencies for the urban

river ecological management project (Table 2).

Table 2. Risk factor adjacency matrix.

A1 A2 A3 A4 A5 A6 A7 . . . A47 A48 A49 A50 A51 A52 A53

A1 0 1 0 1 0 0 0 . . . 0 0 0 0 0 0 0
A2 0 0 0 0 0 0 0 . . . 0 0 0 0 0 0 0
A3 1 0 0 1 0 0 0 . . . 0 0 0 0 0 0 1
A4 0 0 0 0 1 0 0 . . . 0 0 0 0 0 0 1
A5 0 0 0 0 0 0 0 . . . 0 0 0 0 0 0 0
A6 0 0 0 0 0 0 0 . . . 0 0 0 0 0 0 0
A7 0 0 0 0 0 0 0 . . . 0 0 0 0 0 0 0

...
...

...
...

...
...

...
... 0 ...

...
...

...
...

...
...

A47 0 0 0 0 0 0 0 . . . 0 0 0 0 0 0 0
A48 0 0 0 0 0 0 0 . . . 1 0 1 0 0 0 0
A49 0 0 0 0 0 0 0 . . . 1 0 0 0 0 0 1
A50 0 0 0 0 0 0 0 . . . 0 0 0 0 0 0 0
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Table 2. Cont.

A1 A2 A3 A4 A5 A6 A7 . . . A47 A48 A49 A50 A51 A52 A53

A51 0 0 0 0 0 0 0 . . . 0 0 0 0 0 0 0
A52 0 0 0 0 0 0 0 . . . 0 0 0 0 0 0 0
A53 0 0 1 0 0 0 0 . . . 0 0 0 0 0 0 0

2.2.2. Network Characteristics and Network Visualization

The MATLAB2022b is used to analyze a large amount of network parameter data for
projects, which identifies the key risk factors, as well as the overall characteristics of the
network. The results are presented in Table 3.

Table 3. Overall network parameter characteristics.

Parameter Name Overall Network Parameter Names Overall Network

Number of nodes 53 Network diameter 7
Number of network edges 255 Network average aggregation coefficient 0.2977

Network density 0.0925 Intermediation centrality 0.0331
Network average path 2.5287 Approach centrality 0.3015

Network average 9.6226 Global network efficiency 0.5281

Based on the adjacency matrix, MATLAB2022b is used to generate a risk network
topology diagram for the urban river ecological management project, as shown in Figure 2.
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Degree describes the centrality of nodes in a network and is a simple, but important,
concept. The degree indicates how many other nodes a node is connected to, and the degree
indicates how influential that node is. Based on the directed network definition, degrees
can be categorized into the following three types: in-degree, out-degree, and degree. The
higher the incidence value of a node, the more vulnerable it is to external influences. The
out-degree value can be represented by the number of neighboring edges that the node
connects outwards; the larger the out-degree value of the node, the more likely it is to affect
other nodes. The sum of the in-degree and out-degree is the degree of the node. The degree
value distribution of each risk node in the urban river ecological management project was
calculated and obtained.

According to the degree ranking chart in Figure 3, the nodes with larger degrees are
listed in order as: A2—laws and regulations risk; A49—schedule delay risk; A36—engineering
technology risk; A44—contract management and implementation risk. The risk of each of
these on the other risk factors have a greater impact.
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2.3. Analysis of Risk Propagation and Delay Effects
2.3.1. Propagation Effects

The risks associated with urban river ecological management projects can propagate
from one node to downstream nodes, leading to cascading effects and amplification, ul-
timately impacting the overall construction project quality. Therefore, effective project
risk management should take into account the risk transfer effects. An analysis of the
topological relationships of urban river ecological management project risks has been con-
ducted previously. Risk evolution in urban river ecological management projects exhibits
characteristics of biological contagion, and the transmission behavior between risk factors
is similar to virus diffusion. Firstly, the transmission environment is similar. Viruses are
transmitted in social networks, with “people” as nodes, and the transmission channel is
the contact between people. Moreover, in the process of interaction, the risk factors may
make the risk nodes—which were in a stable state—become potential risk outbreaks or risk
outbreak nodes. Secondly, the propagation process is similar. The propagation of a virus
is carried out through the virus body to its neighbors, who then continue to propagate to
their neighboring nodes, and do not spread across nodes. Risk propagation in urban river
ecological management projects is also the propagation of initial risks to its neighboring
nodes’ risk factors, which eventually leads to outbreaks. Thirdly, the results of propagation
are similar. There are similarities between the propagation characteristics and evolutionary
laws of urban river ecological management projects and the spread of viruses on social
networks, which makes it possible to apply the propagation model of complex networks to
the evolution of risk in urban river ecological management projects.

The SEIR model is frequently used to explain how infectious diseases spread. In
construction projects, this model can be used to describe the process of risk propagation.
The SEIR model consists of four stages: susceptible, exposed, infectious, and recovered. In
construction projects, these states can be interpreted as follows: susceptible—that is, not
affected by the risk but potentially susceptible; exposed—exposed to the risk but negative
effects have not yet occurred; infectious—negative effects of the risk have already appeared,
such as personal injury or property damage; recovered—having recovered from the effects
of the risk and no longer affected by it.

Based on the SEIR model, risk propagation in construction projects can be described
as follows: Initial risk—there may be potential risks in construction projects, such as
engineering quality and safety management. These risks can be considered as “infectious
sources” and become the infectious state. Risk propagation—once the initial risk has a
negative impact, such as an engineering accident or quality issue, these negative impacts
may spread to other personnel or stakeholders, such as project participants, government
regulatory departments, media, etc. These personnel or stakeholders can be considered as
“susceptible” and potentially exposed to the risk of infection. Risk exposure—once other
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personnel or stakeholders come into contact with the negative impact, such as learning
about the occurrence of engineering accidents or quality issues, they are in an exposed
state. At this stage, they have not yet suffered direct negative impacts but may face future
risks. Risk impact—once other personnel or stakeholders are negatively impacted, such
as suffering from the effects of engineering accidents or quality issues, they are in the
infectious state. At this stage, they may face negative impacts such as personal injury and
property damage. Risk management—once the infectious parties are affected by the risks
and recover, they enter the recovered state. At this stage, risk management measures can
help prevent future risks.

2.3.2. Delay Effects

The risks associated with urban river ecological management projects can occur at
any node in the complex network. Risk generation in urban river ecological management
projects is possible, but the interference of other factors can delay it. The delayed effect of
risk in urban river ecological management projects in this paper refers to when the risk
occurs at one or some nodes in the network and is not manifested because the risk outbreak
threshold of other nodes has not been reached or the relevant units have taken temporary
control measures on these nodes so that they are concealed until the risk outbreak. Risks
at certain nodes do not directly characterize themselves or lead to the outbreak of risks at
other nodes, but rather accumulate and eventually lead to the creation of risks. This shows
that risk has a delayed effect.

3. SEIRS-Based Risk Contagion Model for Urban River Ecological Management
3.1. Model Assumptions

Based on the transmission principle of infectious diseases and the risk scale-free net-
work topology characteristics of urban river ecological governance projects, the following
assumptions are made for this study.

Hypothesis 1. The nodes in the scale-free network of urban river ecological management projects
are divided into four categories: susceptible class S, latent class E (already infected with the
risk but not manifested, but with the ability to transmit the risk), infected class I, and immune
class R (the risk is eliminated and has some ability to resist the risk, but cannot always resist
and may still become susceptible); denoting Sk(t), Ek(t), Ik(t), Rk(t) as the densities of the
four classes of individuals in nodes of degree k at time t, and meets Sk(t) + Ek(t) + Ik(t) +
Rk(t) = 1, 0 ≤ Sk(t), Ek(t), Ik(t), Rk(t) ≤ 1.

Hypothesis 2. β, ρ, ε, γ, µ, ν, respectively, denote the probability of conversion of the susceptible
state to the latent state, the probability of conversion of the latent state to the infected state, the
probability of conversion of the infected state to the immune state, the probability of change from
the immune state to the susceptible state, the probability of self-healing of the latent state to the
susceptible state, and the probability of self-healing of the infected state to the susceptible state; all of
the above parameters being constants between 0 and 1.

Hypothesis 3. h1 denotes the infection rate of latent class nodes, h2 denotes the infection rate of
infected class nodes, Θ1(t) and Θ2(t) denote the probability of association of susceptible nodes with
latent class nodes and the probability of association of susceptible nodes with infected class nodes at
moment t, respectively; the above parameters all take values between 0 and 1.

Hypothesis 4. T denotes the delay time of risk contagion in the risk-scale-free networks of the
urban river ecological management project, and it is assumed that the contagion delay time of latent
class nodes and infected class nodes in the network is the same.
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3.2. Construction Based on the SEIRS Model

Based on the above assumptions, the risk propagation SEIRS process for urban river
ecological management projects is shown in Figure 4. A set of differential equations for the
risk contagion delay model for urban river ecological management projects in a scale-free
network model is constructed based on the mean-field theory, as follows.

dSk(t)
dt = −βk[h1Θ1(t) + h2Θ2(t)]Sk(t) + µEk,T(t) + νIk,T(t) + γRk(t),

dEk,0(t)
dt = βk[h1Θ1(t) + h2Θ2(t)]Sk(t)− (µ + ρ)Ek,0,

dEk,1(t)
dt = −(µ + ρ)Ek,1(t) + (µ + ρ)Ek,0,

· · ·
dEk,T(t)

dt = −(µ + ρ)Ek,T(t) + (µ + ρ)Ek,T−1(t),
dIk,0(t)

dt = −(ν + ε)Ik,0(t) + ρEk,T(t),
dIk,1(t)

dt = −(ν + ε)Ik,1(t) + (ν + ε)Ik,0(t),
· · ·
dIk,T(t)

dt = −(ν + ε)Ik,T(t) + (ν + ε)Ik,T−1(t),
dRk(t)

dt = εIk,T(t)− γRk(t),

(1)

where Ek,τ(t)Ik,τ(t) denote the latent and infected nodes of degree k, respectively, at t− τ

moments and satisfies Ek(t) = ∑T
τ=0 Ek,τ , Ik(t) = ∑T

τ=0 Ik,τ .Θ1(t) = ∑n
j=1

jP(j)Ej(t)
〈k〉 , Θ

2
(t) =

∑n
j=1

jP(j)Ij(t)
〈k〉 . Letting the right-hand side of Equation (1) equal zero shows that Ek,0 =

Ek,1 = · · · = Ek,T , Ik,0 = Ik,1 = · · · = Ik,T , so that h = h1Θ1(t) + h2Θ2(t), simplifying
Equation (1) to: 

.
Sk = −βhkSk +

µ
T+1 Ek +

ν
T+1 Ik + γRk,

.
Ek = βhkSk −

µ+ρ
T+1 Ek,

.
Ik =

ρ
T+1 Ek − ν+ε

T+1 Ik,
.
Rk =

ε
T+1 Ik − γRk.

(2)
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Figure 4. SEIRS model.

3.3. Immunization Strategy Construction

Assuming that the immunization ratio of susceptible nodes is a, the immunization
strategy is modeled as in Figure 5, a ∈ [0, 1]; with the other parameters defined as before,
the differential equation for the post-immunization system can be expressed as:

.
Sk = −βhkSk − aSk +

µ
T+1 Ek +

ν
T+1 Ik + γRk,

.
Ek = βhkSk −

µ+ρ
T+1 Ek,

.
Ik =

ρ
T+1 Ek − ν+ε

T+1 Ik,
.
Rk = aSk +

ε
T+1 Ik − γRk,

(3)

where h = h1Θ1 + h2Θ2. According to the analysis process of the unimmunized contagion
model, the effective contagion rate and steady-state density of the immunized network
can be found in the same way, without going over the solution process here; the contagion
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threshold hc and the steady-state density of infected nodes I1 of the immunized network
are as follows:

hc =
(a + γ)〈k〉

γ(T + 1)〈k2〉 , (4)

I1 =

2ρ

{
mγβ(T + 1)[h1(ε + ν) + h2ρ]

(
e

(ν+ε)(µ+ρ)(a+γ)
mβγ(T+1)[h1(ε+ν)+h2ρ] − 1

)
− (ν + ε)(µ + ρ)(a + γ)

}
mβ[h1(ε + ν) + h2ρ][(ρ + ε + ν)(T + 1)γ + ερ]

(
e

(ν+ε)(µ+ρ)(a+γ)
mβγ(T+1)[h1(ε+ν)+h2ρ] − 1

)2 . (5)
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4. Numerical Simulation
4.1. Initial Model Parameter Setting

Based on the previous assumptions, there is β probability of the conversion of the
susceptible state to the latent state, ρ probability of the conversion of the latent state to the
infected state, ε probability of the conversion of the infected state to the immune state, γ
probability of the conversion of the immune state to the susceptible state, µ probability of
the conversion of the latent state to the susceptible state, ν probability of the conversion
of the susceptible state to the infected state. Combining the actual situation of the urban
river ecological management project with expert opinions and research [34], the above
parameters are assigned the values: 0.4, 0.6, 0.2, 0.1, 0.1, 0.2.

4.2. Model Dynamics Simulation

Considering the characteristics of urban river ecological management projects, project
risks will persist. In this regard, we conducted dynamic analysis of the risk network for
N = 1500, N = 50, and N = 10.

The parameters are as follows:

β = 0.4, ρ = 0.6, ε = 0.2, γ = 0.1, µ = 0.1, ν = 0.2, T = 5, h1 = 0.1, h2 = 0.3, m = 3

From Figure 6a–c, it can be observed that in cases where the network size is 1500, 50,
and 10, respectively, the instantaneous density of different-scale network models eventually
reaches a steady-state density (i.e., parallel to the time axis). Moreover, based on the
simulations conducted above, it can be concluded that as the evolution time of the risk
network increases, the nodes tend to balance within their respective groups. Under these
parameter settings, the equilibrium achieved is a balance of risk outbreak rather than the
disappearance of network risks. This validates the correctness of the stability analysis
of the equilibrium points in Appendix A.1.1; namely, if network risks are not effectively
controlled, risks will persist. The theoretical analyses further support the need for timely
risk control and management by project stakeholders involved in urban river ecological
management projects. Only by doing so can the continuous presence of risks on the network
be prevented, thereby avoiding potential project losses.
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4.3. Dynamic Simulation Analysis of the SEIRS Model
4.3.1. Effect of Delay Time and Network Size on Propagation Thresholds

The above analysis shows that λ =
(

h1(ν+ε)
ρ + h2

)
βρ

(ν+ε)(µ+ρ)
, i.e., the effective conta-

gion rate of risk is influenced by the probability of β, ρ, ε, γ, µ, ν. The infection rates are h1
and h2 for latent and infected nodes.

In this study, the parameters are set as constants to analyze the pattern of the effective
propagation rate with the network size. From λc =

〈k〉
(T+1)〈k2〉 , the propagation threshold

of the security risk evolution network is related to the average degree 〈k〉, 〈k2〉 and delay
time T of the network. When the size of the network is large enough, the average degree
of the network 〈k〉 ≈ 2m, 〈k2〉 ≈ 2m2ln Kc/m, Kc ≈ mN1/2, where Kc is the network, the
maximum value of neutrality, m, is the minimum number of connected edges in the network,
and N is the total number of nodes in the network. The transformation λc =

2
m(T+1)ln N .

It is clear from the previous analysis, and 〈k〉 ≈ 9, that the minimum connected edge
m = 3 in this paper. The relationships between the propagation threshold λc, T, and N are
shown in Figure 7.
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Figure 7a analyzes the variation pattern of the risk propagation thresholds in the
network with the risk contagion delay time for the sizes of the different networks. In
networks of a certain size, the contagion threshold decreases with the increasing delay
time, and when the delay time is sufficiently long, the propagation threshold approaches
zero, indicating that risk contagion delays in the network eventually lead to increased risk
contagion. When the delay time is certain, the propagation threshold varies according to
the size of the network. The larger the network size, the lower the propagation threshold,
which is in line with the propagation characteristics of scale-free networks, and it can
also be obtained that the propagation threshold is almost the same for different sizes of
networks when the delay time is long enough. Urban river ecological management projects
involve a long project cycle and many stakeholders; therefore, in the case of a certain scale
of project risks, the project risks can be detected and dealt with on time according to the law
of the change of the contagion threshold with the delay time in order to avoid the project
risks from not being dealt with on time, resulting in a lower risk contagion threshold and
causing uncontrollable project risk contagion.

According to Figure 7b, the variation patterns of the contagion threshold are shown for
different delay times and network sizes in the urban river ecological management project
risk network. The risk network’s contagion threshold tends to decrease as its network size
increases, and the threshold with a time delay is lower than the threshold without a delay.
Based on the trends, the contagion threshold of the network is almost zero when there
is a time delay and the network is large enough; however, when there is no time delay
and the network is large enough, the contagion threshold drops. However, the structural
characteristics of the network prevent it from dropping to zero. When the network is large
enough, the contagion thresholds for different delay times converge to the same value.

Figure 7a,b show that the marginal change in the project risk contagion threshold with
the delay time is greater than the marginal change with the network size, indicating that
the risk contagion threshold is more sensitive to the risk delay time, i.e., risk delay affects
the contagion threshold more than the network size. Therefore, in the construction process
of urban river ecological management projects, risks are found to be dealt with promptly to
avoid the contagion of the project risks caused by the failure to deal with them promptly.

4.3.2. Effect of Delay Time on Steady-State Density

When the network size N = 1500, the maximum value of the contagion threshold of
the network without delay λc(max) = 0.0912, when the effective contagion rate of risk
λ = h1

2 + 3h2
13 . The relationship between λ and h1 and h2 is shown in Figure 8, where the

intersecting line segments are h1
2 + 3h2

13 = 0.0912.
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Figure 8. The variation pattern of effective transmission rate λ with h1 and h2.

In two contexts, with h1 = 0.01, h2 = 0.03, and h1 = 0.1, h2 = 0.3, i.e., λ < λc(max)
and λ > λc(max).

A MATLAB2022b simulation was used to analyze the variation law of the steady-state
density of various nodes in the risk network of engineering projects with a delay time.
Figure 8 shows the specific results.

Figure 9a analyzes the network’s steady-state density with a delay time when h1 = 0.01,
h2 = 0.03, i.e., when the initial effective infection rate is less than the infection threshold.
The density of the susceptible nodes in the network at the initial moment (zero contagion
delay time) is 1, and the steady-state density of the latent, infectious, and immune nodes
is 0. As the delay time of transmission increases, the transmission threshold of the risk
gradually decreases, and it can be seen from Figure 9a that when the delay time is less
than 5, the steady-state density of various nodes does not change, indicating that the
effective transmission rate of the risk is always less than the transmission threshold. When
the delay time is longer than 5, the steady-state density of the susceptible nodes decreases
rapidly, and when the delay time is long enough, the density drops to 0. The steady-state
densities of the latent and infected nodes show an increasing trend and eventually equalize,
and the steady-state density of the latent nodes is close to 0.6, the steady-state density of
the infected nodes is close to 0.3, and the steady-state density of the immune nodes changes
less but shows an overall trend of first increasing and then decreasing to 0. The steady-state
density of the immune nodes is less variable but shows a trend of increasing and then
decreasing until it reaches zero. This indicates that when the delay time is greater than 5,
the risk starts to explode in the network as the effective contagion rate of the risk is greater
than the contagion threshold.
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Figure 9b analyzes how the steady-state density of the network varies with the conta-
gion delay time when h1 = 0.1 and h2 = 0.3, i.e., when the initial effective contagion rate of
risk in the network is greater than the contagion threshold. The steady-state density of the
four types of nodes in the network is approximated to 0.9, 0.03, 0.02, and 0.05 at the initial
moment; when the risk delay effect appears, the risk will be transmitted in the network
regardless of the delay time, resulting in a rapid decrease in the steady-state density of the
susceptible nodes until it reaches 0. The steady-state densities of the latent and infected
nodes increased to 0.68 and 0.31, respectively, and the immune nodes increased and then
decreased rapidly until they approached 0.

In cases where the effective rate of risk transmission is less than the transmission
threshold, a longer transmission delay is required to bring the steady-state density of each
node into equilibrium, and when the effective rate of risk transmission is greater than
the transmission threshold, a shorter transmission delay is required. In cases where the
effective transmission rate is less than the transmission threshold, risk transmission delays
play a greater role than in cases where the effective transmission rate is greater. Different
values of the risk transmission rate for latent and infected nodes affect the steady-state
density at the initial moment, but not at equilibrium. The results provide some theoretical
guidance for the development of risk contagion control strategies for urban river ecological
management projects.

4.3.3. Infection Rate Effects on Steady-State Density

The relationship between the infected nodes, latent nodes, and h1, h2, as well as the
results of the analysis of the above steady-state density over time, show that when the
density of infection is relatively small, the delay time exceeds 5 before infection occurs.
Therefore, in this paper, assuming the delay time T = 5 for risk contagion, a MATLAB
simulation was used to analyze the trend of infected nodes and latent nodes with h1, h2.
Figure 10 illustrates the specific results.
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Figure 10. The relationship between infection node, latent node and h1, h2. (a) Steady-state density
of infected nodes as a function of h1 and h2; (b) Steady-state density of latent nodes as a function of
h1 and h2.

From Figure 10a, it can be seen that when the values of h1 and h2 are small, there is no
significant change in the steady-state density of the infected nodes and because the delay
time is fixed at this time, which indicates that the risk transmission threshold is certain. As
a result, the value of the effective infection rate is small and lower than the propagation
threshold, and the risk cannot spread in the network, so the steady-state density of the
infected nodes will remain at zero. As h1 and h2 increase, the effective infection rate
gradually increases until it exceeds the propagation threshold, and the steady-state density
shows a rapidly increasing trend. The marginal change of the steady-state density of the
infected nodes concerning h1 is greater than that concerning h2; that is, the steady-state
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density of the infected nodes is more sensitive to h1. This result is because h1 has a greater
impact on the infection rate in the expression of the effective infection rate.

Based on Figure 10b, it can be observed that when h1 and h2 have relatively small
values, the steady-state density of the latent nodes does not show significant changes. As
h1 and h2 gradually increase, the pattern of change in the steady-state density of the latent
nodes follows the same trend as the variation of the infected nodes in Figure 10a. Therefore,
it can be concluded that the steady-state density of the latent nodes is more sensitive to
h1. The reason for this result is that h1 has a greater impact on the transmission rate in the
expression of the effective transmission rate.

To further explore the relationship between the steady-state density of the infected
and latent nodes with h1, h2, and T. Taking the delay time T = 0, 10, 20, the variation law of
the steady-state density of the infected and latent nodes with h2 for fixed h1 = 0.01, and the
variation law of the steady-state density of the infected and latent nodes with h1 for fixed
h2 = 0.03, respectively, were analyzed. In Figures 11 and 12, the specific results are shown.

Water 2023, 15, x FOR PEER REVIEW 15 of 25 
 

 

Based on Figure 10b, it can be observed that when ℎଵ and ℎଶ have relatively small 
values, the steady-state density of the latent nodes does not show significant changes. As ℎଵ and ℎଶ gradually increase, the pattern of change in the steady-state density of the la-
tent nodes follows the same trend as the variation of the infected nodes in Figure 10a. 
Therefore, it can be concluded that the steady-state density of the latent nodes is more 
sensitive to ℎଵ. The reason for this result is that ℎଵ has a greater impact on the transmis-
sion rate in the expression of the effective transmission rate. 

  

Figure 10. The relationship between infection node, latent node and ℎଵ, ℎଶ. (a) Steady-state density 
of infected nodes as a function of ℎଵ and ℎଶ; (b) Steady-state density of latent nodes as a function 
of ℎଵ and ℎଶ. 

To further explore the relationship between the steady-state density of the infected 
and latent nodes with ℎଵ, ℎଶ, and 𝑇. Taking the delay time 𝑇 = 0, 10, 20, the variation law 
of the steady-state density of the infected and latent nodes with ℎଶ for fixed ℎଵ = 0.01, 
and the variation law of the steady-state density of the infected and latent nodes with ℎଵ 
for fixed ℎଶ = 0.03, respectively, were analyzed. In Figures 11 and 12, the specific results 
are shown. 

  
Figure 11. Steady-state density of infected and latent nodes with h2 for ℎଵ = 0.01. (a) The law of 
steady-state density of infected nodes changing with ℎଶ; (b) The law of steady-state density of La-
tent Nodes changing with ℎଶ. 

Figure 11a,b show that when ℎଵ = 0.01 , the steady-state densities of the infected 
node I and the latent node E increase with the increase in ℎଶ. By comparing the cases of 
the risk delay being 0, 10, and 20, it is found that the project risk delay leads to an increase 
in the steady-state densities of node I and node E. This, in turn, accelerates the spread of 
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Figure 11a,b show that when h1 = 0.01, the steady-state densities of the infected node
I and the latent node E increase with the increase in h2. By comparing the cases of the
risk delay being 0, 10, and 20, it is found that the project risk delay leads to an increase
in the steady-state densities of node I and node E. This, in turn, accelerates the spread of
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the project risk within the network. In addition, as the time units of the delay increase, the
growth rate of their steady-state densities also increases.

Figure 12a,b show that when h2 = 0.03, the steady-state densities of the infected node
I and the latent node E increase with the increase in h1. By comparing the cases of the risk
delay being 0, 10, and 20, it is found that the changing pattern of the steady-state densities
of the infected node I and the latent node E concerning h1 is consistent with the pattern
shown in Figure 10. This implies that increasing the value of h1 in the model leads to an
increase in the steady-state densities of the infected node and latent node, indicating that
more individuals are infected or in a latent state in the system.

By comparing the results of Figures 11 and 12, it is observed that when parameter h1
is fixed, the equilibrium steady-state density of the infected node I and the latent node E is
smaller than the result with a fixed parameter h2. This indicates that increasing parameter
h1 is more likely to lead to a risk outbreak in urban river ecological management projects.
The equilibrium steady-state density of both the infected node I and the latent node E
increases as parameters h1 and h2 increase. When one parameter is fixed and the other
parameter is increased, it also leads to an increase in the steady-state density, and the
combined effect of increasing both parameters is more pronounced. Furthermore, the latent
node E exhibits a growth rate faster than the infected node I, and the maximum steady-state
density of the latent node is greater than that of the infected node. This suggests that in
the risk network of urban river ecological management projects, the contagiousness of
the risk factors in the latent period plays a significant role in the entire risk-spreading
process, and the transmission delay accelerates the propagation of risks within the network.
Therefore, when devising risk control strategies for urban river ecological management
projects, stakeholders should pay attention to the contagiousness of the latent nodes and
the delay in risk propagation.

4.3.4. Sensitivity Analysis

Sensitivity analysis is a method used to assess the sensitivity of the model out-
puts to changes in the input parameters. By systematically varying the key parameters
within the model and observing the resulting changes in the output, we can gain insights
into the model’s sensitivity to different parameters, thus enhancing our understanding
of the model’s behavior and predictive capabilities. In sensitivity analysis, the effects
of the model outputs can be observed by changing the values of parameters such as
m, T, β, ρ, ε, γ, ν, µ, h1, h2.

Non-normalized sensitivity formula:

DT
x =

∂T
∂x

(6)

Normalized sensitivity formula:

FT
x =

∂T
∂x
· x

T
(7)

where T is a variable, and x is a variable. In this article, T takes the values of S, E, I, R, and
x takes the values of m, T, β, ρ, ε, γ, ν, µ, h1, and h2. Based on the two formulas above and
taking parameters 3, 5, 0.4, 0.6, 0.2, 0.1, 0.2, 0.1, 0.1, and 0.3, we can obtain the results shown
in the graph.

According to the non-normalized analysis in Figure 13a, the parameters m, T, β, ρ, ε,
γ, ν, µ, h1, h2 have relatively small numerical values overall, but still have some impact on
the nodes S, E, I, R in the model. According to the analysis results in Figure 13b, for node S,
the parameters m, T, β, ρ, ε, γ, ν, µ, h1, h2 have little impact on it. For the latent node E, the
parameters m, T, β, ρ, ε, ν, µ have a negative influence on E, while h1 and h2 have a positive
impact on E. Additionally, as h1 and h2 increase, the risk of the latent node E also continues
to increase. For the infected node I, the parameters m, T, β, ε, ν, µ have a negative impact
on I, while h1 and h2 have a positive impact on I. Similarly, as h1 and h2 increase, the risk
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of the infected node I also continues to increase. Therefore, in the risk evolution study of
urban river ecosystem management projects, it is crucial to strengthen the control of h1 and
h2 as they play a significant role in controlling the spread of risks.
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4.4. Immunization Strategy

Comparing the effective transmission rate after immunization with the effective trans-
mission rate and transmission threshold before immunization, we can see that hc > λc,
indicating that the transmission threshold of the risk transmission model after immuniza-
tion is greater than that before immunization, and the spread of risk in the network can be
controlled to a certain extent, effectively avoiding the risk of transmission.

The steady-state density versus T and a was obtained by substituting β = 0.4, ρ = 0.6,
ε = 0.2, γ = 0.1, µ = 0.1, ν = 0.2, m = 3, h1 = 0.01, and h2 = 0.03 into the expression for
the steady-state density of the infected node after immunization. Analyze the relationship
between I and a when T = 0, 10, 20, 30, 40, 50; I1 and T when a = 0, 0.2, 0.4, 0.6, 0.8, 1. This
study normalized the immune density of the infected nodes after immunization to ensure a
convincing analysis. I in the figure indicates the steady-state density of the infected nodes
before immunization, i.e., the maximum value of the steady-state density of the infected
nodes, and the results of the analysis are shown in Figure 14.
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As can be seen from Figure 14a, the steady-state density decreases as the probability
of the immunization of the susceptible nodes increases, suggesting that enhanced immu-
nization is effective in controlling contagion in the risk network of urban river ecological
management projects. It was observed that the relative value of the steady-state density of
the network is 1 when the immunity probability of the susceptible nodes is zero, at which
point the steady-state density is at its maximum. The relative value of the steady-state
density is equal to the marginal change in the immunity probability of the susceptible node,
indicating that the immunity probability of the susceptible node plays an important role in
the relative value of the steady-state density of the infected node.

As can be seen from Figure 14b, when the immunization probability of the susceptible
nodes is 0, the relative steady-state density of the infected nodes remains at 1, which is
the same as before immunization. When immunizing susceptible nodes with a certain
probability, the higher the immunization probability, the smaller the relative value of the
steady-state density of the infected nodes, and the better the immunization effect when
the delay time is held constant. For a given probability of immunization, the relative
value of the steady-state density first remains constant at 0 and then increases with the
increasing delay time, i.e., the immunization becomes less effective. The reason for this
phenomenon is that after immunizing the nodes in the network, the contagion threshold
of the risk increases. When the delay time is short, the contagion threshold of the risk is
still greater than the effective contagion rate of the network and the risk cannot spread in
the network, so the relative value of the steady-state density remains 0. However, as the
delay time continues to increase, the contagion threshold decreases further until it is less
than the effective contagion rate, at which point the risk will spread in the network, leading
to an increase in the relative value of the steady-state density. The results show that the
immunization of the susceptible nodes can effectively inhibit the spread of risk; in addition,
the effectiveness of immunization can be enhanced by controlling the delay time of the risk
in the network.

The above analysis shows that the immunization of the susceptible nodes can ef-
fectively control the propagation of risks in the risk network of urban river ecological
management projects, and controlling the delay time of risks in the network can strengthen
the immunization effect of the network against risks. Therefore, in the practical work of
risk management for urban river ecological management projects, project participants
can combine the results of the analysis of the topology of the scale-free network for the
evolution of risk in urban river ecological management projects and target immunization
at the nodes with the highest degree values.

5. Discussion

The research results show that the model accurately describes the law of risk prop-
agation in urban river ecological management projects and explains the trend in delay
propagation. By adjusting the values of various parameters in the model and analyzing
the influence of their changes on the proportion of various nodes, the propagation law
of risk in urban river ecological management projects can be derived, which provides a
theoretical basis for preventing and controlling the propagation of project risks. For the
application of the research results in the construction of urban river ecological management
engineering projects, for the nodes of the class of easily infected risk factors, the supervision
of the project needs to be strengthened so that the factors affecting the risks in urban
river ecological management engineering projects are kept within a controllable range,
and the probability of the risk factors that may affect urban river ecological management
engineering projects being transformed into latent or infected states is minimized as far as
possible. For latent category risk factors, through strengthening the risk early warning, the
timely understanding of the risk changes when the early warning signals promptly invokes
the emergency plan control to reduce the risk value of the risk factor to a manageable range
or directly eliminate. The most direct management tools are used to transform the risk
factor into an immune node for the infection category while avoiding the probability of
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exposure to this risk factor with the susceptible and latent risk factors and reducing the
number of risk factors transformed into the infection status. The contagiousness of the
risk also needs to be considered along with the latency of the risk, and when adopting an
immunization strategy in a network, the most effective risk control strategy needs to be
developed in conjunction with the latency of the risk.

Applying the SEIR model to urban river revitalization projects enables comprehensive
and objective risk assessment, revealing the mechanisms and patterns of risk transmis-
sion. Establishing a project risk transmission model allows for in-depth research on the
interactions and influences among various stakeholders, providing theoretical support
for risk management and control. In practical applications, the introduction of the SEIR
model can assist managers in effectively addressing the issues of risk transmission, thereby
improving the smooth progress and quality outcomes of the project. Specifically, it provides
the following areas of assistance: (1) Enhanced project risk management: The application
of the SEIR model helps to elevate the level of project risk management. It allows for a
comprehensive and objective assessment of project risks, enabling the timely identification
of and response to potential risks. (2) Improved project schedule and risk control: By ana-
lyzing the risk transmission pathways, speeds, and their impact on the project schedule and
costs, the SEIR model enhances the project’s ability to manage progress and mitigate risks.
It aids in developing effective risk management plans and facilitates timely adjustments
in the schedule and resource allocation. (3) Strengthened coordination and collaboration
among project stakeholders: The introduction of the SEIR model fosters better coordination
and collaboration among project participants. It helps in predicting risk trends, analyzing
the interactions and influences among stakeholders, optimizing resource allocation, and
enhancing the overall coordination and cooperation. This ultimately improves the overall
project outcomes and quality levels.

Although this study focuses on risk propagation in urban river ecological manage-
ment projects, the analytical models and methods used can be applied to risk propagation
research in other domains. Similar SEIRS models and network analysis methods can be
employed to analyze and understand various risk propagation phenomena, such as the
spread of infectious diseases, information dissemination, and influence propagation in
social networks. By adjusting the model parameters and network structures, this approach
can be extended to other domains that exhibit characteristics of risk propagation, including
financial risk propagation, supply chain risk propagation, and aviation safety risk propaga-
tion. The flexibility of these models and methods allows for their application in diverse
contexts and fields, thereby offering the potential for a comprehensive understanding and
management of risk propagation processes.

6. Conclusions

Based on the complex network theory and mean-field theory, this paper develops a
D-SEIRS model to predict risk propagation in urban river ecological management projects.
This model takes into account both the propagation latency and latent node propagation,
thus providing a new perspective on risk propagation. Using a complex network of risks
for urban river ecological management, the network’s overall characteristics and key risk
factors in project risk transfer can be determined. By analyzing the network topologically,
we can identify the risk nodes with high degree values. These risks, including A2, A49, and
A36, significantly affect the other risk variables.

The results of the network stability analysis revealed that when the basic reproduc-
tion number is less than 1, there exists a risk avoidance equilibrium point for urban river
ecological management project risks. There is a global asymptotically stable equilibrium
point at this point. The model exhibits a risk outbreak equilibrium point, which is lo-
cally asymptotically stable, when the basic reproduction number is greater than 1. The
derivation of the steady-state density demonstrates that, under specific parameter settings,
the steady-state densities of various nodes in the risk network of urban river ecological
management projects are influenced by the contagion rates (h1 and h2) and the delay times.
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The simulation results indicate that in a scale-free network of project risks, the presence
of risk is persistent, and the delay in risk propagation leads to a lower risk propagation
threshold within the network, thereby accelerating the spread of the risk. Additionally,
the decrease in the risk transmission threshold within the network, caused by the delay in
risk propagation, facilitates the diffusion of network risks and the emergence of a balanced
state of risk outbreak within the network. Furthermore, the steady-state densities of both
the infected nodes (I) and latent nodes € in the risk network increase with higher effective
transmission rates and longer propagation delay times. Moreover, the transmission rate
of the latent nodes has a greater impact on the steady-state density of the risk nodes. Ac-
cording to the simulations involving the immunization of the susceptible risk nodes in the
network, strengthening the immunity of the susceptible nodes can effectively control risks
in the urban river ecological management network.

The study acknowledges the specific characteristics and limitations influenced by
external conditions in the evolution of risks within urban river ecological management
projects. In risk propagation theory, it is typically assumed that all risk nodes have the same
attributes, meaning they are subject to the same probability of change due to the risk factors.
However, in practical situations, the conditions influencing the risk factors tend to be
complex and diverse. The next research focus is on integrating multidisciplinary knowledge
and leveraging big data analysis techniques to construct more reasonable analytical models.
These models will consider the heterogeneity of the nodes and the external conditions,
ultimately enhancing the effectiveness and accuracy of project risk management.
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Appendix A

Appendix A.1. Equilibrium Point Stability and Steady-State Density Analysis

Appendix A.1.1. Equilibrium Point and Stability of the Model

Risk Aversion Balance Point and Stability

To obtain the equilibrium point, let the right-hand side of the equation in the Equa-
tion (A2) equal 0, and then according to Sk + Ek + Ik + Rk = 1. One can obtain the risk-averse
equilibrium point (1, 0, 0, 0) and the unique risk-burst equilibrium point

(
S∗k , E∗k , I∗k , R∗k

)
, where:

S∗k =
γ(ν + ε)(µ + ρ)

βhk[(ρ + ε + ν)(T + 1)γ + ρε] + γ(ν + ε)(µ + ρ)
,

E∗k =
γβhk(ν + ε)(T + 1)

βhk[(ρ + ε + ν)(T + 1)γ + ρε] + γ(ν + ε)(µ + ρ)
,

I∗k =
γβhkρ(T + 1)

βhk[(ρ + ε + ν)(T + 1)γ + ρε] + γ(ν + ε)(µ + ρ)
,

R∗k =
hkρβε

βhk[(ρ + ε + ν)(T + 1)γ + ρε] + γ(ν + ε)(µ + ρ)
.
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Substituting E∗k and I∗k into h gives:

h =

(
h1(ν + ε)

ρ
+ h2

) n

∑
j=1

jP(j)
〈k〉

γβhjρ(T + 1)
βhj[(ρ + ε + ν)(T + 1)γ + ρε] + γ(ν + ε)(µ + ρ)

∆
= f (h). (A1)

Let the function:
F(h) = f (h)− h. (A2)

It follows that the equation F(h) = 0 has a banal solution h = 0, i.e., the risk-free
equilibrium point Sk = 1, Ek = Ik = Rk = 0. At this point, the risk-averse equilibrium
point is (E, I, R) = (0, 0, 0), whose Jacobi matrix is:

J0 =

− µ+ρ
T+1 0 0
ρ

T+1 − ν+ε
T+1 0

0 ε
T+1 −γ

. (A3)

It is known that the characteristic roots are all negative, − µ+ρ
T+1 , − ν+ε

T+1 , −γ. Thus,
according to the theory of differential equations, it is known that there is a risk-averse
equilibrium point (1, 0, 0, 0) of the system and that the equilibrium point is locally asymp-
totically stable.

Risk Outbreak Equilibrium and Stability Analysis

Substituting h = 1 into Equation (A2) gives:

F(1) < 1.

Derivation of Equation (A2) concerning h gives:

F′(h) = f ′(h)− 1

=
(

h1(ν+ε)
ρ + h2

) n
∑

j=1

jP(j)
〈k〉

γ2βjρ(T+1)(ν+ε)(µ+ρ)

{βhj[(ρ+ε+ν)(T+1)γ+ρε]+γ(ν+ε)(µ+ρ)}2 − 1.

The second derivative of Equation (A2) for h gives:

F′′ (h) < 0.

Thus, to obtain the equation F(h) = 0 to have a non-trivial solution on 0 < h < 1,
i.e., the risk burst equilibrium point (E, I, R) = (E∗, I∗, R∗), it must satisfy:

F′(0) > 0.

Hence, we have:

dF
dh

∣∣∣
h=0

=
(

h1(ν+ε)
ρ + h2

) n
∑

j=1

j2P(j)
〈k〉

βρ(T+1)
(ν+ε)(µ+ρ)

− 1

= 〈k2〉
〈k〈

(
h1(ν+ε)

ρ + h2

)
βρ(T+1)

(ν+ε)(µ+ρ)
− 1 > 0

.

The critical conditions are:

〈k2〉
〈k〉

(
h1(ν + ε)

ρ
+ h2

)
βρ(T + 1)

(ν + ε)(µ + ρ)
= 1. (A4)

Let R0 = 〈k2〉
〈k〉

(
h1(ν+ε)

ρ + h2

)
βρ(T+1)

(ν+ε)(µ+ρ)
, then R0 is called the fundamental regeneration

number, and when R0 < 1, the risk vanishes and there exists a risk-averse equilibrium
point (1, 0, 0, 0) and that equilibrium point is locally asymptotically stable. When R0 > 1,
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the risk will be stable after some control and there exists a unique equilibrium point of risk
outbreak

(
S∗k , E∗k , I∗k , R∗k

)
. Substituting the fundamental regenerative number R0 into the

expression for h∗ gives S∗ = 1
R I∗, E∗ = ν+ε

ρ I∗, R∗ = ε
(T+1)γ I∗, at which point the Jacobi

matrix of the equilibrium point of the risk outbreak is:

J∗ =

−
(ν+ε)(µ+ρ)R0

(T+1) I∗ − µ+ρ
T+1

(ν+ε)(µ+ρ)R0
(T+1) (S∗ − I∗) − (ν+ε)(µ+ρ)R0

(T+1) I∗
ρ

T+1 − ν+ε
T+1 0

0 ε
T+1 −γ

.

Its characteristic equation can be obtained as:

x3 + ax2 + bx + c = 0, (A5)

of which:

a = (ν+ε)(µ+ρ)R
(T+1) I∗ + µ+ρ

T+1 + ν+ε
T+1 + γ > 0,

b =
[
(ν+ε)(µ+ρ)R

(T+1) I∗ + µ+ρ
T+1

]
ν+ε
T+1 + ν+ε

T+1 γ +
[
(ν+ε)(µ+ρ)R

(T+1) I∗ + µ+ρ
T+1

]
γ

− (ν+ε)(µ+ρ)R
(T+1) (S∗ − I∗) ρ

T+1 > 0,

c = − (ν+ε)(µ+ρ)R
(T+1) (S∗ − I∗) ρ

T+1 γ +
[
(ν+ε)(µ+ρ)R

(T+1) I∗ + µ+ρ
T+1

]
ε

T+1 γ

+ (ν+ε)(µ+ρ)R
(T+1) I∗ ρ

T+1
ε

T+1 > 0.

Therefore, we have:
ab− c > 0.

According to the Routh–Hurwitz stability criterion, the real part of all the characteristic
roots of the characteristic Equation (A5) are all negative, and the theory of differential
equations shows that there is a risk outbreak equilibrium point (S∗, E∗, I∗, R∗) in the system
and that the equilibrium point is locally asymptotically stable. Let λ = β[h1(ν+ε)+h2ρ]

(ν+ε)(µ+ρ)
,

λc =
〈k〉

(T+1)〈k2〉 , where λ is the effective propagation rate of risk in the network and λc is the

risk contagion threshold. It follows that when n→ +∞ , 〈k2〉 → +∞ , λc → 0 , i.e., a very
small contagion rate of risk in a scale-free network can also make risk persistent.

Appendix A.2. Steady-State Density Analysis of the Model

In the scale-free grid, the average degree and degree distribution of the network satisfies:

P(k) = 2m2k−3, 〈k〉 =
∫ +∞

m
kP(k) = 2m, (A6)

where m is the minimum number of connections in the network, substituting Equation (A6)
into h = h1Θ1(t) + h2Θ2(t).

h =

(
h1(ν+ε)

ρ +h2

)
2m

n
∑

k=1

2m2k−1γβhρ(T+1)
βhk[(ρ+ε+ν)(T+1)γ+ρε]+γ(ν+ε)(µ+ρ)

=
(

h1(ν+ε)
ρ + h2

)
mγβhρ(T + 1)×

∫ +∞
m

1
{βhk[(ρ+ε+ν)(T+1)γ+ρε]+γ(ν+ε)(µ+ρ)}k dk.

(A7)

Integrate to obtain:

h =
γ(ν + ε)(µ + ρ)

mβ[(ρ + ε + ν)(T + 1)γ + ρε]

(
e

(ν+ε)(µ+ρ)
[h1(ν+ε)+h2ρ]mβ(T+1) − 1

) . (A8)
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The proportion of infected nodes in the whole network is I = ∑ P(k)Ik(t), where Ik(t)
denotes the proportion of nodes of degree k in the steady-state infected state, combined
with Equations (A6)–(A8), we can obtain I as in Equation (A9). According to Equation (A9),
we can find out the steady-state density of easily infected nodes, latent nodes, and immune
nodes, see Equation (A10).

I = ∑ 2m2k−3 γβhkρ(T+1)
βhk[(ρ+ε+ν)(T+1)γ+ρε]+γ(ν+ε)(µ+ρ)

= 2m2γβhρ(T + 1)
∫ +∞

m
1

{βhk[(ρ+ε+ν)(T+1)γ+ρε]+γ(ν+ε)(µ+ρ)}k2 dk
= 2m2βhγρ(T + 1)

×
(
− h[(ρ+ε+ν)(T+1)γ+ρε]

mγ2(T+1)(ν+ε)(µ+ρ)[h1(ν+ε)+h2ρ]
+
∫ +∞

m
1

γ(ν+ε)(µ+ρ)k2 dk
)

= 2m2βhγρ(T + 1)
×
(
− h[(ρ+ε+ν)(T+1)γ+ρε]

mγ2(T+1)(ν+ε)(µ+ρ)[h1(ν+ε)+h2ρ]
+ 1

γ(ν+ε)(µ+ρ)m

)
= 2mβhρ

(
− h[(ρ+ε+ν)(T+1)γ+ρε]

γ(ν+ε)(µ+ρ)[h1(ν+ε)+h2ρ]
+ (T+1)

(ν+ε)(µ+ρ)

)

=

2ργ

mβ(T+1)[h1(ν+ε)+h2ρ]

e
(ν+ε)(µ+ρ)

[h1(ν+ε)+h2ρ]mβ(T+1) −1

−(ν+ε)(µ+ρ)


mβ[h1(ν+ε)+h2ρ][(ρ+ε+ν)(T+1)γ+ρε]

e
(ν+ε)(µ+ρ)

[h1(ν+ε)+h2ρ]mβ(T+1) −1

2

(A9)

Similarly, we can obtain:

S =

2(ν+ε)(µ+ρ)

mβ(T+1)[h1(ν+ε)+h2ρ]
+

e
(ν+ε)(µ+ρ)

[h1(ν+ε)+h2ρ]mβ(T+1) −1

e
(ν+ε)(µ+ρ)

[h1(ν+ε)+h2ρ]mβ(T+1) −3


e

(ν+ε)(µ+ρ)
[h1(ν+ε)+h2ρ]mβ(T+1) −1

2 ,

E =

2γ(ν+ε)

mβ(T+1)[h1(ν+ε)+h2ρ]

e
(ν+ε)(µ+ρ)

[h1(ν+ε)+h2ρ]mβ(T+1) −1

−(ν+ε)(µ+ρ)


mβ[h1(ν+ε)+h2ρ][(ρ+ε+ν)(T+1)γ+ρε]

e
(ν+ε)(µ+ρ)

[h1(ν+ε)+h2ρ]mβ(T+1) −1

2 ,

R =

2ρε

mβ(T+1)[h1(ν+ε)+h2ρ]

e
(ν+ε)(µ+ρ)

[h1(ν+ε)+h2ρ]mβ(T+1) −1

−(ν+ε)(µ+ρ)


mβ(T+1)[h1(ν+ε)+h2ρ][(ρ+ε+ν)(T+1)γ+ρε]

e
(ν+ε)(µ+ρ)

[h1(ν+ε)+h2ρ]mβ(T+1) −1

2 .

(A10)
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