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Abstract: Analytic methods are useful for lake ice climatology investigations that account for ice
phenology, thickness, and extent. Ice climatology depends on the local climate and lake characteristics,
which can be compressed into a few forcing factors for analytic modelling. The internal factors are
lake depth, size, and water quality, while the external factors are solar radiation, air–lake interaction,
and heat flux from bottom sediment. A two-layer temperature structure with a sharp thermocline
in-between is employed for the water body and a non-inert conduction law for the ice cover. A
thermal equilibrium approach results in temperature and ice thickness solutions, and a time scale
analysis provides the applicability of the equilibrium method for lake ice climatology. A non-steady
solution is needed for ice melting.
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1. Introduction

The extent of freezing lakes in the Northern Hemisphere is from 30–35◦ N over the
high Tibetan Plateau to the coast of the Arctic Ocean at 70–75◦ N. Ice cover is a seasonal
phenomenon apart from a few polar and mountain lakes. Ice formation, growth, and
breakup bring major changes to the physics, ecology, and human living conditions in
districts of seasonally freezing lakes [1–4]. The thermal response of lakes depends on their
depth, horizontal size, morphology, and water type, while the primary factors that drive
the evolution of lake ice cover are the radiation balance, air–lake interaction, and heat
exchange with the lake bottom [4–7]. The air–lake interaction has an impact also on the
mass balance of lake ice. Climate variations show up strongly in lake ice conditions, and
thus, lake ice seasons are sensitive indicators of climate [2,6,8]. In addition to ice phenology,
the maximum annual ice thickness and maximum annual ice extent are the key long-term
seasonal characteristics of lake ice cover.

Lake ice climatology has been investigated with time series analyses [6,9–14], math-
ematical modelling [15–17], and remote sensing [18–20]. A purely statistical approach
has usually been taken in the time series analysis. The relation of time series statistics
to physical lake processes and weather history is non-linear and contains time scales, so
linear statistical inference may be misleading [14], e.g., a first-order physics approach to ice
growth shows ice thickness scales with the square root of the freezing-degree days.

Mathematical lake ice models are forced using weather and heat flux from water to
the ice bottom [16,21]. For climate studies, simple analytic or semi-analytic models are
often feasible [14,17]. The models can be used to examine the physical basis of lake ice
climatology and the climate sensitivity of the lake ice season characteristics for individual
lakes or for regions up to the global scale. Modelling also aids in finding proper statistics
for the ice time series analyses. These statistics are based on time integrals where the time
scale depends on the lake size. Overall, the memory time scale of most lakes is less than
1 year so that interannual variations in ice climatology arise only from external sources.

First-order analytic models for ice phenology, thickness, and extent based on a passive
lake water body were derived in [22]. The dependence of the lake ice season on air
temperature was quantified, and the role of snow cover in ice growth and breakup was

Water 2023, 15, 2951. https://doi.org/10.3390/w15162951 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w15162951
https://doi.org/10.3390/w15162951
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-4754-5564
https://doi.org/10.3390/w15162951
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w15162951?type=check_update&version=1


Water 2023, 15, 2951 2 of 11

qualitatively illustrated. The work here is extended to an interactive, lake-ice–two-layer
water body model. The purpose is to examine the role of the lake water body in the seasonal
ice cycle, to analyse the scaling of the climate sensitivity of lake ice seasons, and to improve
interpretation tools for time series analyses. A two-layer lake has two internal timescales
in response to thermal forcing. Equilibrium conditions are applicable for temperature in
shallow lakes and for ice thickness when the solar heat flux or the heat flux from water to
the ice bottom is large, otherwise the lengths of the periods of water cooling and ice growth
are restricting factors and a non-steady model is required.

2. Materials and Methods
2.1. Model Equations for Water Temperature

Most seasonally freezing lakes are dimictic. Summer warming and winter cooling
produce the summer and winter stratification, while the overturning of the water mass
takes place in autumn and spring. The stratification consists of three layers: the surface and
bottom layers’ system and the thermocline layer between. The overturns cut the ice season
from the annual cycle. Autumn overturn starts a “prewinter” (as called in [23]), when the
lake may freeze in a short time, and spring overturn, which begins under ice and ends soon
after breakup, overlaps the ice decay period.

Here, freshwater lakes are idealized as a two-layer system where the thermocline is
taken as a sharp interface between the upper (surface) and lower (bottom) layers (Figure 1).
In summer, the surface layer is warmer than the bottom layer, while in cold (a surface
temperature below 4 ◦C) conditions, the stratification is inverse. The one-dimensional heat
conduction law with the flux (Neumann) boundary condition is employed on top, and the
flux or fixed (Dirichlet) boundary condition can be taken at the bottom [4,5,24]:

ρwcw
∂T
∂t

=
∂

∂z

(
kw

∂T
∂z

+ Qsz

)
(1a)

z = 0 : kw
∂T
∂z

= Q0 (1b)

z = −H : kb
∂T
∂z

= −Qb, or T = Tb (1c)

where T is temperature; t is time, ρw, cw, and kw are the density, specific heat, and thermal
conductivity of water, respectively; z is the positive vertical coordinate positive up; Qsz is
solar radiation at depth z; Q0 and Qb are the surface and bottom heat fluxes, respectively;
H is depth; and kb and Tb are the thermal conductivity and temperature at the bottom. The
standard MKSA units are employed except that here, day (d) is a convenient unit of time.

Integrating across the upper and lower layers with the Neumann boundary conditions,
we have equations for the layer temperatures T1 and T2, surface forcing, and the stability
condition of the layering:

dT1

dt
= λa(Ta − T1) + λ1(T2 − T1) + fa (2a)

dT2

dt
= λ2(T1 − T2) + fb (2b)

Q0 = K0 + K1(Ta − T1) (2c)

λa =
K1

ρwcwH1
, λ1 =

kw

ρwcwH1
, λ2 =

kw

ρwcw H2
, fa =

K0

ρwcwH1
, fb =

Qb
ρwcwH2

(2d)

ρw(T2)> ρw(T1); ρw(T) = ρw(Tm)− α(T − Tm)
2 (2e)
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where Ta is air temperature, K0 and K1 are the parameters of the surface heat flux, H1
and H2 are the layer depths, H1 + H2 = H, Tm = 3.98 °C is the temperature of the
maximum density, and α ≈ 0.0083 kg m−3 ◦C−2 is the fit parameter of the quadratic density
equation in (2e). The dimension of λa, λ1 and λ2 is inverse time, they are the inverse
relaxation times in the system; and the dimension of fa and fb is temperature/time, they
represent the surface and bottom heating rates. The surface heat flux parameters in general
depend on time. K0 is highly positive in the summer due to solar radiation while in the
winter, it depends on latitude, and K1 ∼ 10–20 W m−2 ◦C−1 can be taken as fixed in
the first approximation [17]. K0 also depends on evaporation, and K1 depends largely on
wind speed.
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Figure 1. A sketch of the model structure. Red arrows are for heat transfer; yellow disc is the Sun. 
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where 𝑘 is the heat exchange coefficient at the boĴom, and 𝜆 is one more inverse re-
laxation time in the system. 

In the overturning periods, the water body is homogenous, 𝑇ଵ = 𝑇ଶ = 𝑇, and the lay-
ers can be added together for a one-layer model: 

𝑑𝑇

𝑑𝑡
= 𝜆(𝑇 − 𝑇) + 𝑓 + 𝑓 (3)

T1

T2

Tb

Ta

Ice

Upper
layer

Lower
layer

Figure 1. A sketch of the model structure. Red arrows are for heat transfer; yellow disc is the Sun.

In the case of the Dirichlet bottom boundary condition, we take

Qb = kb(Tb − T2) =⇒ fb = λb(Tb − T2), λb =
kb

ρwcw H2
(2f)

where kb is the heat exchange coefficient at the bottom, and λb is one more inverse relaxation
time in the system.

In the overturning periods, the water body is homogenous, T1 = T2 = T, and the
layers can be added together for a one-layer model:

dT
dt

= λa(Ta − T) + fa + fb (3)

where the parameters λa, fa, and fb are defined with H1 and H2 replaced by H. The
one-layer model can also be used for the upper layer alone with the lower layer acting as a
passive boundary condition.

2.2. Ice–Water Model

In the presence of ice cover on a lake surface, the surface water temperature is at
the freezing point, and ice grows and melts in the interaction with the atmosphere and
water body [4,5]. Ice cover is taken here as a rigid, static layer with thickness h, specified
by its density and thermal conductivity without accounting for the type of ice crystal
structure. The approach is feasible when congelation ice is the dominant type. The lower-
layer-temperature Equations (2b,f) and stability criterion (2e) apply, and the upper layer
temperature and ice thickness are obtained from

dT1

dt
= λ1

(
Tf + T2 − 2T1

)
+ fs (4a)
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dh
dt

+ aw

(
T1 − Tf

)
= ai

Tf − T0

h
= −F0 (4b)

fs =
δQs

ρwcwH1
, ai =

ki
ρiL f

, aw =
kw

ρiL f H1
, F0 =

Q0

ρiL f
(4c)

where δQs is the absorption of sunlight in the upper layer, Tf is the freezing point tempera-
ture, ρi is the density of ice, ki is the thermal conductivity of ice, and L f is the latent heat of
freezing. During growth, T0 < Tf , while during melting, T0 = Tf . The time scales of ice

growth are τi = h2/
[

ai

(
Tf − T0

)]
and τw = h/

[
aw

(
T1 − Tf

)]
, while in ice melting, the

time scales are τw and h/F0.

3. Equilibrium
3.1. Temperature Equilibrium

The equilibrium solution of a two-layer system in an open-water situation is obtained
from Equations (2a–f). For physically realizable conditions, the surface temperature is
above the freezing point, and in the lower layer, the density must be larger than in the
upper layer. Thus,

T1 = Ta +
K0 + Qb

K1
> Tf , T2 = T1 +

Qb
kw

(5a)

ρw(T2) > ρw(T1) (5b)

The stability condition requires that |T2 − Tm| < |T1 − Tm|, i.e., the lower layer tem-
perature is closer to the temperature of the maximum density. Thus, if Qb > 0 (Qb < 0),
equilibrium is possible only for T2 < 8 °C (T2 > 4 °C) in fresh water. In an open-water
situation, kw ∼ 50 W m−2 ◦C−1 represents the turbulent thermal conductivity.

When Tf < T1 ≤ Tm, the open-water equilibrium is possible for

Ta > Tf − ∆T, ∆T =
K0 + Qb

K1
(6)

Apart from geothermal lakes, ∆T ∼ −1 °C in tundra lakes and ∆T ∼ 0 °C in boreal
lakes but it can be several degrees positive in low-latitude alpine lakes [17]. Fluctuations of
air temperature below the critical value must be shorter than the relaxation time λ−1

a = cH1,
c ≈ 2.5 d m−1 to keep the open surface state.

In lake ice climatology, the freezing-degree days (S) has been used as a predictor
for the freezing date [25]. This can be physically motivated in mid-latitudes using the
equilibrium model with S > 〈−Ta〉λ−1

a , Ta < Tf , where 〈·〉 is the time averaging operator.
If the air temperature is lower than the freezing point for longer than the relaxation time,
freezing takes place. The connection with lake depth (parameter λ−1

a ∝ H1) explains why
deep lakes freeze over later (if at all) than shallow lakes in the same climate region. Also,
one should examine the properties of air temperature time series more widely, not only the
basic statistics but also autocorrelation, in studies of the freezing date.

Example 1. In typical boreal lakes, scales in fall cooling at T1 < Tm are Qb ∼ 5 W m−2, K1 ∼ 20
W m−2 ◦C−1, K0 ∼ 0, and kw ∼ 50 W m−2 °C−1. Then, the equilibrium is T1 = Ta + 0.25 °C,
T2 = T1 + 0.1 °C. The lake freezes at Ta < Tf − 0.25 °C. The relaxation time is λ−1

a ≈ 12.5 d.

The two-layer model can sometimes be reduced to the slab model (Equation (3)).
When T1 → Tm, T2 → Tm , i.e., to a full turnover that may continue above or below Tm in
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the presence of mechanically forced mixing. The equilibrium solution with the Dirichlet
bottom boundary condition (Equation (2f)) is

T = ωaTa + (1−ωa)Tb +
K0

K1 + kb
> Tf , ωa =

K1

K1 + kb
(7)

We have a weighted average of air temperature and bottom temperature plus a shift
Q 0, which depends on the radiation balance and evaporation.

3.2. Ice Equilibrium

When there is ice cover, the equilibrium is

T1 = Tf +
1

kw
(δQs + Qb) > Tf (8a)

T2 = T1 +
Qb
kw

> T1 (8b)

he = ki
Tf − T0

δQs + Qb
(8c)

The lower-layer temperature is formally as without ice (see Equation (5a)), while the
top of the upper layer is forced by the freezing point temperature. For consistency, ice
surface temperature is T0 < Tf , and for stability, Qb > 0, as is the case normally in seasonal
lakes. For Qb = 0, the water body is isothermal at equilibrium, and if δQs = 0 as well,
there is no equilibrium thickness, but the ice grows as long as T0 < Tf . For T0 → Tf , the
equilibrium thickness vanishes, i.e., he → 0 .

At freeze-over, mixing is strongly reduced, and the thermal conductivity of water
decreases to kw ∼ 10 W m−2 °C−1, at the extreme, down to the molecular value kw =
0.56 W m−2 °C−1. For kw ∼ 10 W m−2 °C−1 and Qb, δQs ∼ 5 Wm−2, we have T1 ∼
Tf + 1 °C, T2 ∼ T1 + 0.5 °C. If Tf − T0 = 10 °C, the equilibrium ice thickness is 2.1 m.

The time scale (τ) of ice thickness equilibrium can be large. Equation (4b) gives, after
some manipulation,

τ =
ρiL f he

δQs + Qb
=

ai

(
Tf − T0

)
[
(δQs + Qb)/ρiL f

]2 (9)

For he ∼ 1
2 m, the heat flux from below must be more than 40 W m−2 to reach the

equilibrium in 3 months. Thus, in typical conditions in boreal and tundra lakes, there is
no climatic equilibrium state for ice thickness but only ice growth and melt periods. The
growth period ends when the ice surface temperature settles to the melting point in late
winter. In low-latitude, dry climate alpine lakes, a large fraction of sunlight penetrates the
ice, making seasonal equilibrium possible [26].

Example 2. For Tf − T0 ∼ 10 °C and δQs + Qb ∼ 10 W m−2, we have h ∼ 2.1 m. The time
scale of ice growth is then almost 2 years. Then, at h ∼ 1 m, the growth rate is 0.85 cm d−1. With
low equilibrium thickness, the time scale is short, e.g., for δQs + Qb ∼ 100 W m−2, the equilibrium
thickness is 20 cm, and the time scale is 1 week.

An equilibrium between ice thickness and sublimation is possible. For sublimation
rate E, the latent heat flux ρiL f E can be added to the denominator in Equation (8c). This
flux can be important in a dry and cold climate [27,28].

In the temperature equation, the stability condition requires that ρ(T1) ≥ ρ
(

Tf

)
. In

the case of solar forcing, the stability condition is T1 < 8 °C or δQs > kw

(
8 °C− Tf

)
∼
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80 W m−2. In the case of sediment heat flux, if Tb > 8 °C and kb > 0, the heating keeps on
convection through all depths, resulting in an open-water situation.

4. Time Evolution
4.1. The Two-Layer System

The system forms a pair of ordinary linear differential equations that can be directly
integrated, e.g., using the elimination method (see textbooks on ordinary differential
equations). The homogeneous system

dT1

dt
= −λaT1 + λ1(T2 − T1) (10a)

dT2

dt
= λ2(T1 − T2) (10b)

can be transferred into

d2T1

dt2 + (λa + λ1 + λ2)
dT1

dt
+ λ2λaT1 = 0 (11)

The solution is for the upper layer T1 = Aer1t + Ber2t, where A and B are constants
depending on the initial conditions, and r1,2 are the roots of the characteristic equation
r2 + (λa + λ1 + λ2)r + λ2λa = 0, i.e., the negative inverse time scales of the system:

r1,2 = −1
2
(λa + λ1 + λ2)±

√
1
4
(λa + λ1 + λ2)

2 − λaλ2 (12)

The lower-layer solution is then obtained directly from Equation (10a). Both roots
in Equation (12) are real and negative (for r1 “+” is taken in Equation (12)), and thus the
solution disappears from the initial state with the time scales |rk|−1. This also means that
disturbances from an equilibrium disappear with these time scales. We have λa, λ1 ∝
H−1

1 , λ2 ∝ H−1
2 . Usually, λaλ2 � 1

4 (λa + λ1 + λ2)
2, and

r1 ≈ −
√

λaλ2, r2 ≈ −(λa + λ1 + λ2) +
√

λaλ2 (13)

When λ2 � λa, λ1, or the lower layer is inert, r1 → 0 and r2 → −(λa + λ1) . In gen-
eral, the values of the parameters λa, λ1, λ2 are of the order of 0.5 d−1 divided by depth in
meters, with λ1/λ2 = H2/H1.

Example 3. For H1 = H2 = 10 m, we have λa + λ1 + λ2 = 0.15 d−1, and |r1,2|−1 =52 d, 7.6 d.
In a deep lake, H1 = 10 m and H2 = 50 m, and we have |r1,2|−1 = 210 d, 9.5 d. Thus, there is a
rapid first adjustment of the upper layer followed by a slow adjustment of the whole system.

Starting with T1(0) = T2(0) = T0, we have the upper-layer solution

T1 =

[
r1 + λa

r1 − r2
er2t − r2 + λa

r1 − r2
er1t
]

T0 (14)

It is seen that both terms in the brackets are positive and vanish at t→ ∞ . In the
beginning, T1 ≈ (1− λat)T0, and the second term disappears faster. In the example above,
the solution is T1 = 0.28er2t + 0.72er1t for H1 = H2 = 10 m and T1 = 0.45er2t + 0.55er1t for
H1 = 10m, H2 = 50 m.

The general solution of the full model is obtained by adding a special solution, T1e, of
the heterogeneous system to the homogeneous equation:

T1 = Aer1t + Ber2t + T1e (15)
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When H2 → ∞ , then λ2 → 0 and |r1|−1 = ∞, i.e., there is only the relaxation for the
surface layer and the system is reduced to the slab model with (λ1, T2) being equivalent
to (λb, Tb). Then, the solution, using the Dirichlet boundary condition at the bottom and
ignoring the transient terms, is as follows:

T(t) =
∫ t

−∞
e−λ(t−τ)[λa(Ta + TR) + λbTb]dτ (16a)

where λ = λa + λb. If TR = K0/K1 and Tb are constant, we have

T(t) =
∫ t

−∞
e−λ(t−τ)λaTa(τ)dτ +

λa

λ
TR +

λb
λ

Tb (16b)

The solution includes a weighted integral of past air temperature and a fixed shift,
which depends on the radiation balance and heat flux from the lake bottom. The relaxation
time of the system is λ−1 ∝ H. Whether the lake freezes, i.e., T = Tf , depends on the air
temperature integral and the shift terms, and the freezing date can be formally expressed
as tF = tF(H,

∫
wTa, TR, Tb), where the integral refers to the weighted ( w) air temperature

history.
The growth of ice extent A, 0 ≤ A ≤ AL, where AL is the area of the lake, follows the

hypsographic curve Γ(H) equal to the fractional area deeper than H, i.e., Γ(0) = lake area
and Γ(H) = 0 for H > Hmax. At depth H, the lake freezes at time tF = tF(H), and the ice
extent is a function of weather and hypsographic-curve lakes [14]. The evolution of the ice
extent therefore follows the formula

dA
dt

=
dΓ/dH
dtF/dH

(17)

For example, if both the hypsographic curve and freezing date are linear, and Γ(H) =

1− H/Hmax and tF(H) = tF0 + αH, we have A = (αHmax)
−1(t− tF0). If α ∼ 0.5 d m−1

and Hmax = 30 m, ice extent increases by 6.7% per day and reaches 100% 15 days after
first freezing at the shore. The solution is sensitive to the initial freezing date tF0, which
depends on the air temperature evolution, e.g., in Lake Ladoga, where the mean and
maximum depths are 48 m and 210 m, it takes an average of 58 days to reach the complete
ice coverage [14].

4.2. Ice-Cover Thickness

Ice growth forms a nonlinear system, which interacts with the water body and atmo-
sphere. The heat flux from water to ice can, at the extreme, create a permanent opening in
the ice cover, or provide an equilibrium where the heat flux through ice ( h > 0) equals the
heat flux from the water. The general case of ice thickness in the presence of heat flux from
water cannot be solved analytically, but special conditions can be worked through.

When the surface temperature T0 and heat flux from water Qw are constant, the ice
growth problem (Equation (4b)) can be solved in an implicit form:

h
he

+ log
(

1− h
he

)
= − t

τ
; he = ki

Tf − T0

Qw
, τ =

ρiL f he
Qw

(18)

where he is the equilibrium ice thickness, and τ is the time scale of ice growth. The solution

is shown in Figure 2. When h� he, the left-hand side is approximately − 1
2

(
h
he

)2
and the

ice grows in proportion to the square root of time with a minor influence from the heat flux
from water. Furthermore, h = he/2 at t/τ = log 2− 1/2 ≈ 0.193.
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For transparent ice (𝜅 = 0 ), we have thin ice at equilibrium due to strong boĴom 
melting and a short time scale. With increasing aĴenuation, both the thickness and time 
scale increase.  

The case of periodic heat flux, 𝑄௪ = 𝜌𝐿∆𝑞௪[1 + sin(Ω𝑡)] , where 𝜌𝐿∆𝑞௪  and Ω 
are, respectively, the amplitude (and average) and frequency of 𝑄௪ , can be solved for 
small-thickness amplitude situations, ℎ = ℎ + 𝑒, 𝑒 ≪ ℎ  , using the perturbation tech-
nique. The thickness of ice follows the forcing cycle with the same frequency and with the 
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If ∆𝑞௪ = 1 cm d−1 (a very high amplitude, corresponding to ∆𝑄௪ ≈ 35 W m−2) and 
𝑇 − 𝑇 = 10 ℃, then ℎ = 60 cm and 𝜂 = 2.16 month−1. For a daily cycle, we have ∆𝑒 =

0.11 cm and 𝜂 = 0.017 rad, while for a monthly cycle, ∆𝑒 = 3.4 cm and 𝜂 = 0.50 rad. 
The phase shift is nearly 𝜋/2 rad or 6 h in the first case, and it is 1.49 rad or 7.1 d in the 
second case. 

The melting of ice is a heat flux problem where the solar radiation parameters have 
a key role due to their large space–time variability [29]. At the melting stage, 𝑇 = 𝑇, and 
solar radiation heats the ice from the top, inside, and boĴom. The melting equation is 

Figure 2. A plot of dimensionless ice thickness vs. dimensionless time illustrating the influence
of heat flux from the water body (Qw) on ice growth. Ice thickness approaches the asymptotic
equilibrium thickness (he) with time proportional to he/Qw.

The growth rate decreases with time and ice thickness approaches the equilibrium
asymptotically, e.g., for Tf − T0 = 10 °C and Qw = 10 W m−2, we have he = 2.1 m. The
time scale is τ ≈ 2 years, and the thickness is half of the equilibrium or 1.05 m at t = 0.193·τ
≈ 140 days. For Qw = 0, he = ∞, and in 140 days, the ice would grow to 1.2 m.

The warming of the surface water with penetrated solar radiation δQs can be simply
added to the heat flux Qw. Since δQs = Qs0e−κh, where Qs0 is the net solar radiation at the
surface and κ is the light attenuation coefficient, there is an additional coupling effect. The
solution of Equation (18) for the time evolution is no more possible, but, ignoring Qw, we
have an implicit formula for the equilibrium thickness and time scale:

hee−κhe = ki
Tf − T0

Qs0
, τ = eκhe he

ρiL f

Qs0
(19)

For transparent ice (κ = 0), we have thin ice at equilibrium due to strong bottom
melting and a short time scale. With increasing attenuation, both the thickness and time
scale increase.

The case of periodic heat flux, Qw = ρiL f ∆qw[1 + sin(Ωt)], where ρiL f ∆qw and Ω are,
respectively, the amplitude (and average) and frequency of Qw, can be solved for small-
thickness amplitude situations, h = he + e, e� he, using the perturbation technique. The
thickness of ice follows the forcing cycle with the same frequency and with the amplitude
and phase shift of

∆e =
∆qw√

ω2 + η2
, ϕ = arctan

(
ω

η

)
, η =

ki

(
Tf − T0

)
ρiL f h2

e
(20)

If ∆qw = 1 cm d−1 (a very high amplitude, corresponding to ∆Qw ≈ 35 W m−2) and
Tf − T0 = 10 °C, then he = 60 cm and η = 2.16 month−1. For a daily cycle, we have
∆e = 0.11 cm and η = 0.017 rad, while for a monthly cycle, ∆e = 3.4 cm and η = 0.50 rad.
The phase shift is nearly π/2 rad or 6 h in the first case, and it is 1.49 rad or 7.1 d in the
second case.
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The melting of ice is a heat flux problem where the solar radiation parameters have a
key role due to their large space–time variability [29]. At the melting stage, T0 = Tf , and
solar radiation heats the ice from the top, inside, and bottom. The melting equation is

dh
dt

= −
[

aw

(
T1 − Tf

)
+ Q′0 + Qsi

]
(21)

where Q′0 is the surface heat balance with only the infrared band of solar radiation included,
and Qsi is the absorption of solar radiation by the ice. The radiation penetrating the ice
cover, δQs, is used for heating the water temperature and therefore increasing the heat flux
aw

(
T1 − Tf

)
. This partition needs parameterizations of albedo and the light attenuation

coefficient that has a lot of freedom in the perspective of available data [4].

5. Discussion

Slab models have been used for lake thermodynamics for a long time. They are easy
to treat with analytic methods and applicable for shallow lakes. Beneath ice, turbulence is
weak or absent, and in analytic modelling, the heat flux from water to ice has been based on
a molecular conduction approach or on molecular analogue parametrization schemes [4].
In two-layer modelling, the interaction between upper and lower layers can be accounted
for; the lower layer can also be made to represent the bottom sediment.

A method to predict the freezing date based on the weighted sum of past daily air tem-
peratures was derived in [30], with more weight on more recent days. This was extended
in [22] with an advanced parametrization of the surface heat flux. This model can be used
to predict the climate sensitivity of the freezing date, but the weighted air temperature
integral cannot be converted to freezing-degree days, which is usually employed in a time
series analysis [2,25]. It was seen in Section 3.1 that an equilibrium condition during a cold
spell can predict the freezing event based on the freezing-degree days, but due to the time
scale limitation, it is applicable only under a shallow depth or mixed layer condition.

Ice growth follows freezing-degree days, as has been known for a long time [5,10,21].
In this work, it was shown that ice thickness may reach equilibrium in the winter, when the
heat flux from water to the bottom of ice is large. The source of this heat can be deep water,
bottom sediment, or solar radiation penetrated through the ice cover. When this heat flux
is small, the time scale of equilibrium is longer than the annual ice seasonal. For perennial
lake ice, such as that found in the Antarctic continent [31], an annual equilibrium may exist
between solar radiation and ice thickness, as shown in Section 4.2.

The relaxation time parameters lead to the time scales in the system. λa depends on
the atmospheric surface layer and is therefore independent of λ1 and λ2. The parameters
λ1 and λ2 are inversely proportional to the thicknesses of, respectively, the upper and lower
layers, i.e., λ1/λ2 = H2/H1. Thus, in deep lakes, λ1 � λ2. As seen in the definition, they
depend on the density, specific heat, and thermal conductivity of water. When the lower
layer represents the sediment, the properties of λ2 must represent the sediment. For a wet
sediment layer, the heat storage can be large, and the water properties work in the first
approximation, with the molecular value for the conductivity that makes λ2 small. In an
open-water environment, the sediment heat flux usually has a minor impact, but it can be
important in the ice season.

The surface forcing function Q0 = K0 + K1(Ta − T1) contains zeroth order radiation
balance and evaporation/sublimation in K0 and the first-order correction for the tempera-
ture difference Ta − T1 in K1 [17]. K0 has a strong annual cycle with K0 ∼ 100 W m−2 in the
summer and K0 ∼ −50 W m−2 in the winter; while K1 is more stable, K1 ∼ 10 W m−2 ◦C−1

is strictly positive in practice. The ratio K0/K1 adds a term in the solution of the surface
temperature; at K0/K1 = 0, the upper-layer temperature equals a low-pass-filtered air
temperature, while for large |K0/K1|, the situation is dominated by the radiation balance.

The present work treated dimictic freshwater lakes. Most freezing lakes fit in this
category. As such, the results are applicable to monomictic lakes, and for polymictic lakes,
the special one-layer case is feasible. Accounting for the breakage of ice with wind would



Water 2023, 15, 2951 10 of 11

necessitate adding a mechanical model to the system that would be useful especially in
large lakes. In regards to salinity, firstly, its influence on the water density may be reflected
in the stratification, and when preventing deep convection, the salinity may even support
ice-cover formation. Secondly, the freezing point is lowered with a direct consequence on
the freezing date, and the decrease in the temperature of the maximum density has an
impact on the mixing conditions.

6. Concluding Remarks

Analytic methods are useful for lake ice climatology investigations. Ice phenology and
properties depend on the local climate and lake characteristics, which can be compressed
into a few internal and forcing factors for analytic modelling. The forcing factors considered
are solar radiation, air–lake interaction, and heat flux from bottom sediment, while ice
climatology contains ice phenology, thickness, and extent.

A two-layer temperature structure is employed for the water body and a non-inert
conduction law for the ice cover. The thermal equilibrium approach results in temperature
and ice thickness solutions, and the time scale analysis provides the applicability of the
equilibrium method for lake ice climatology. The non-steady solution is applied for ice
melting. The two-layer approach provides a basic framework for understanding the
ice–water coupling in thermodynamics of freezing lakes. Prior to freezing, the inverse
stratification of the water body forms with the thermocline depth depending on the forced
mixing conditions. Beneath ice cover, a stable inverse stratification prevails until solar
radiation starts spring convection.

The solution of the equilibrium conditions and the time scales was illustrated. Solv-
ing for the full-time evolution brings complexity to the interpretation of the two-layer
model outcome, while with ice cover, included analytic solutions are possible only in
restricted cases. Also, for a lake ice climatology analysis based on time series, higher-order
statistics of air temperature would be useful due to nonlinearities in the progress of ice
seasons. A forthcoming paper will introduce applications to a time series analysis of lake
ice climatology.
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