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Abstract: This study investigated the characteristics and oxytetracycline (OTC) adsorption of hier-
archical porous carbons (HPCs) synthesized under different activation conditions using biomass
wheat flour (WF) and NaHCO3 as an activator. It was found that the characteristics of the HPCs,
such as specific surface area, total and mesopore volume, defects, and crystallinity, were highly
dependent on the activation temperature, the dose of the activator, and activation time. In particular,
the adsorption mechanisms and adsorption capacity were dominantly governed by the degree of
defects in graphitic structures and mesoporosity, which are largely determined by the dose of the
activator and the activation temperature. The best OTC adsorption was achieved with the HPC of the
most abundant mesopores, which was prepared at 900 ◦C, a WF:NaHCO3 mass ratio of 1:1, and a
duration of 2 h (HPC900_R1.0_2H). Based on the results of the experiments concerning adsorption
kinetics, equilibrium adsorption, and the effects of pH, OTC adsorption onto HPC900_R1.0_2H was
monolayer in type, homogeneous, governed by the combination of diffusion and chemisorption, and
largely attributed to π–π electron–donor–acceptor interactions and electrostatic interactions. The
thermodynamic parameters suggest that it is spontaneous and endothermic. These findings provide
valuable information about the design and synthesis of HPCs from biomass, which exhibit optimized
properties for the adsorption of refractory organic pollutants.

Keywords: hierarchical porous carbon; adsorption; oxytetracycline; activation; thermodynamic

1. Introduction

Oxytetracycline (OTC) is a readily available and efficient antibiotic that is used for
disease prevention and the growth promotion of livestock and aquaculture [1]. For a
significant period of time, a high amount of OTC has been discharged into the environ-
ment, resulting in negative consequences on aquatic ecosystems, including detrimental
changes in microbial community structures and the spread of antibiotic-resistant bacteria
and genes [2,3]. Moreover, conventional wastewater treatment plants (WWTPs) cannot
effectively remove OTC from water due to its recalcitrant characteristics [1,2,4].

Several alternatives have been tried in attempts to remove OTC in aqueous environ-
ments, such as photolysis, advanced oxidation processes (AOPs), hydrolysis, and ozonation.
However, they have several drawbacks: photolysis only degrades compounds that are
photosensitive, and the reaction is relatively slow at environmental temperatures; AOPs
have poor selectivity and the metals employed to achieve high removal efficiency can be
leached, thus causing secondary pollution; hydrolysis is easily affected by the pH and
temperature of the solution; and more toxic byproducts can be formed by ozonation [5–8].

It has been established that the safest and most efficient method to remove OTC
from water is through adsorption using carbon-based adsorbents [9]. Adsorption has
been extensively employed in the treatment of antibiotic wastewater due to the benefits of
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convenient operation, low cost, high efficiency, and the absence of toxic byproducts, without
a reaction between an adsorbate (i.e., pollutant) and an adsorbent [10]. Carbon-based
functional materials have recently been given great attention for a variety of applications,
such as the removal of water pollutants, application as a catalyst or electrode, and the
development of fuel cells [10–13]. Their high potential for the adsorptive removal of water
pollutants relies on the well-developed pore structure, high specific surface area, chemical
and thermal stability, and abundant functional groups, i.e., graphitic structures, C=O,
C–O–C, –OH, and –NH2 [9,12]. Moreover, the properties can be modified via chemical and
physical methods to achieve target pollutants with high adsorption capacity, which can be
used extensively in water treatment [12,14].

Some of them have been studied for the adsorption of OTC organic contaminants
such as multi-walled carbon nanotubes [15], graphene oxide [16], activated carbon [9,17],
biochar [18,19], and biological sludge [20]. Their advantages include low cost, the abun-
dance of raw materials, chemical stability, and high surface area, which is mainly attributed
to the presence of micropores and mesopores [21].

However, conventional carbon-based adsorbents have irregular and defective pore
structures with limited interconnectivity, which inhibits mass transfer and diffusion, thus
restricting molecular access to the adsorbent surfaces [22–24]. In this regard, hierarchi-
cally porous carbon (HPC) can be an efficient alternative to conventional carbon-based
materials. HPC is characterized by a well-defined pore structure consisting of both microp-
ores and mesopores, with a pore size distribution that spans a range of less than 2 nm to
50 nm [25,26].

HPCs are generally prepared using templates, such as nanoscale spheres of SiO2,
resorcinol formaldehyde resin, and CaCO3 [25,27]. The use of templates results in complex
synthesis procedures and the generation of acidic wastewater. On the other hand, the
drawbacks can be ruled out using the activation of pyrolysis, which is one of the template-
free methods. In general, chemical activation can partially oxidize/gasify the components
of carbon-based materials, which leads to a significant increase in the number of micropores
and mesopores and the transformation of surface functional groups [28,29].

The relative abundance of micropores and mesopores in HPC generated by chemical
activation depends on several factors, including the sources of the material and the activa-
tion conditions, such as the type of activating agent, its concentration, temperature, and
time [23]. For example, insufficient and excess use of an activation agent results in poor
and amorphous pore structures and pore coalescence or collapse, respectively [30,31]. The
creation of pores and increased surface area are promoted with increasing temperature,
but it is accompanied by the destruction of micropores, increases in fixed carbon and
ash content, and the excessive volatilization of functional groups [23,31]. Therefore, the
establishment of activation conditions is essential to the development of required pore
structures. However, it also suggests that the pore structures in HPCs can be controlled by
the activation conditions, which increases the variety of potential applications of HPCs.

Other than the activation conditions, the selection of a carbonaceous raw material
is also very important when aiming to prepare an HPC of a specific purpose, such as
an adsorbent or a supercapacitor [25,32]. It was reported that the pores and microscopic
structures of carbonized biomasses, i.e., biochars, are greatly influenced by feedstock
structures, as demonstrated by the biochars derived from rice straw, swine manure, Douglas
fir (Pseudotsuga menziessii), and hybrid poplar (Populous deltoids) [33,34]. In general, the raw
organic materials used as precursors of HPC need to satisfy a couple of requirements: first,
they must be capable of producing a substantial amount of HPC following heat treatment,
and second, they must be able to fabricate carbons with a disordered microstructure (non-
graphitizable carbon). The carbon sources that meet both requirements are biomass-derived
products and certain types of polymers [11,23,35].

Meanwhile, chemical activation involves the mixing of an activating agent, such as
H3PO4, ZnCl2, KOH, and NaHCO3, with a raw material, followed by high-temperature
treatment in an inert gas atmosphere [36,37]. The most widely used chemical activator is
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KOH, but it has a critical drawback in that it is an extremely corrosive substance according
to NFPA 704 hazard labels [35], limiting the use of it at an industrial level. Thus, the use of
more benign activating agents (e.g., sodium bicarbonate (NaHCO3)) that lead to a greener
activation process is required [35,38].

Regarding the above, in this study, wheat flour (WF)-based HPC was fabricated
with NaHCO3 as the activator under various activation conditions. WF has been used
in attempts to prepare supercapacitors [10,11]. However, the activation conditions must
be optimized for the resultant material to have the optimum property for the adsorption
of organic pollutants, such as OTC. For example, the adsorption is largely attributable
to the defects, mesopores, and the degree of graphitization for a better transport and
for the π–π electron–donor–acceptor (EDA) interactions [9,12], while the capacitance is
more related to the micropores and O-containing groups [10,11]. Therefore, the HPCs
were characterized using various techniques such as N2 adsorption/desorption isotherms,
scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier Transform Infrared
(FTIR) spectroscopy, and Raman spectroscopy to analyze the pore structure and surface
properties. The adsorption of OTC on to the HPCs were evaluated using the kinetics and
equilibrium of OTC adsorption. In addition, the activation condition, characteristics, and
the adsorption performance were discussed comprehensively.

2. Materials and Methods
2.1. Materials and Reagents

WF was purchased from Homeplus Co., Ltd. (Seoul, Republic of Korea). NaHCO3
and ethanol (C2H5OH, ≥99.9%) were acquired from Samchun (Seoul, Republic of Korea).
Oxytetracycline hydrochloride (C22H24N2O9·HCl, OTC·HCl), hydrochloric acid (HCl, 37%),
and sodium hydrate (NaOH, ≥97%) were acquired from Merck KGaA (Darmstadt, Ger-
many). The chemicals were all of analytical grade and utilized as they were received. The
deionized water was obtained from the water purification system, Aquapuri 551 system
(Younglin, Anyang, Republic of Korea).

2.2. Preparations of HPCs

HPC was prepared via the pyrolysis of WF and NaHCO3 mixture according to pre-
vious work with some necessary modification [38]. Typically, 24 g of wheat powder was
mixed with a different amount of NaHCO3 (0 g, 12 g, 24 g) and poured into 300 mL of
distilled water to produce a paste under stirring. Then, the paste was carbonized at different
temperatures (600, 800, and 900 ◦C) with a 5 ◦C/min heating rate for a different activation
time (1, 2, and 3 h) under N2 atmosphere. The temperature was selected by considering
previous studies, which state that an organic material is carbonized over 600 ◦C [39]. The
resulting black powder was rinsed sequentially with diluted HCl solution (1 M), deionized
water, and ethanol. It was dried for 12 h at 80 ◦C and then ground. The final product was
named HPCX_RY_ZH, where X is the activation temperature, Y is the mass ratio between
activator and biomass (NaHCO3/WF, g/g), and Z is the activation time.

2.3. Materials Characterization

The pore structure and the specific surface area were analyzed using a BELSORP-mini
(Microtrac BEL, Osaka, Japan). The N2 adsorption/desorption isotherms of the HPCs were
obtained at 77K after degassing at 110 ◦C for 2 h under N2 gas. The Brunauer–Emmett–
Teller (BET) method was used to calculate the specific surface area (SSA), and the total pore
volume (PV) was evaluated at a relative pressure (P/Po) of 0.99. The t-plot method was
used to estimate micropore volume. The HPCs were sputtered with Pt, and the microscopic
images were taken using a field emission SEM (FE-SEM; Carl Zeiss, Oberkochen, Germany).
Raman spectra were obtained using an in Via Raman microspectrometer (Renishaw, Wotton-
under-Edge, UK) with a 514 nm excitation wavelength and 4 cm−1 spectral resolution.
FTIR spectra were listed at 4000–400 cm−1 with the pellets prepared from the mixture of
0.2 mg HPC and 200 mg of KBr, using an FTIR spectrophotometer (Spectrum One System,
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Perkin-Elmer, Waltham, MA, USA). XRD patterns were obtained using a DB Advance X-ray
diffractometer (Bruker, MA, USA) in the 2θ range of 5–69.9925◦. The zeta potential was
analyzed in the pH range of 2–11 using a zeta potential analyzer (ZetaPlus, Brookhaven
Instruments, New York, NY, USA), and with a suspension of 5 g/L HPCs in a 0.01M KCl
aqueous solution.

2.4. Adsorption Experiments

Batch adsorption kinetic experiments were conducted in a 250 mL amber bottle with
continuous mixing. The HPCs were dispersed in DIW, followed by the introduction of OTC
stock solution. Samples were taken at predetermined times. The equilibrium adsorption
isotherm experiments were performed in 50 mL amber glass tubes. The 0.025 g of the
HPCs were dispersed in 40 mL OTC solution of 10–600 mg/L. The tubes were shaken in a
shaking water bath (BS-31, Lab Companion, JEIO Tech., Daejeon, Republic of Korea) for
4 h at 298, 308, and 318 ◦K. All samples were filtered through a 0.45 µm polyvinylidene
fluoride (PVDF) filter, and then the concentration of OTC in the filtrates was measured
by a UV–visible spectrophotometer (UV-1280, Shimadzu, Kyoto, Japan) at 358 nm. All
experiments were conducted in triplicate. The pH did not change during the experiments
and was 5.60 ± 0.25 for all experiments, unless noted otherwise.

2.5. Modeling of Adsorption

The results of adsorption kinetic experiments were fitted to a pseudo-first-order
adsorption kinetic model (Equation (1)), a pseudo-second-order adsorption kinetic model
(Equation (2)), an intra-particle diffusion model (Equation (3)), and an Elovich equation
(Equation (4)):

dqt

dt
= ka1(qe − qt), (1)

dqt

dt
= ka2(qe − qt)

2, (2)

qt = kid(t)
a, (3)

dqt

dt
= αElexp(−βElqt), (4)

where, qt is the amount of OTC adsorbed at time t (min) (mg/g), qe is the equilibrium
adsorption amount (mg/g), ka1 is the pseudo-first-order adsorption rate constant (min−1),
ka2 is the pseudo-second-order adsorption rate constant (g/mg·min), kid is the rate constant
of intra-particle diffusion, αEl is the initial adsorption rate (mg/g·min), and βEl is a constant
related to the surface coverage and activation energy of adsorption (g/mg). The experi-
mental results were fitted to the models via nonlinear fitting, using MATLAB (R2021a, The
MathWork, Inc., Natick, MA, USA).

The results of the equilibrium adsorption isotherm experiments were described using
Langmuir (Equation (5)), Freundlich (Equation (6)), and Temkin (Equation (7)) isotherms:

qe = q
KLCe

1 + KLCe max
, (5)

qe = KFCe
1/n, (6)

qe =
RT
bT

ln(ATCe), (7)

where, qe is the equilibrium adsorption amount (mg/g), qmax is the maximum adsorption
capacity (mg/g), Ce is the equilibrium concentration of OTC (mg/L), KL is the Langmuir
adsorption constant (L/mg), KF is the Freundlich constant ((mg/g)·(L/mg)1/n), 1/n is a
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constant related to the adsorption intensity, R is the gas constant (8.314 J/mol·◦K), T is the
absolute temperature (K), bT is the Temkin constant associated with the heat of adsorption
(J/mol), and AT is the Temkin equilibrium constant (L/mg).

3. Results and Discussion
3.1. Characterization of HPCs
3.1.1. Microstructure and Pore Structure

The FE-SEM images of all HPCs showed the co-existence of macropores, mesopores,
and micropores, indicating that the hierarchical porous structures have been successfully
fabricated (Figure 1). The carbonization of WF activated by NaHCO3 led to form a 3D
scaffolding framework [38]. The surfaces of HPC900_R0.5_2H (Figure 1B) were rougher
and more aggregates of smaller particles were found, suggesting more developed pore
structures than those of HPC600_R0.5_2H (Figure 1A). The effects of NaHCO3 dose are
shown in Figure 1B–D for the ratio of NaHCO3 to WF of 0, 0.5, and 1.0, respectively. The
HPC900_R0.0_2H showed a negligible development of surface pores. However, surface
pores increased as the activator dose increased, because of the increase in the release of
gaseous products and the expansion of the graphitic lattices via the intercalates gener-
ated by the metallic Na [40]. The effects of activation time are shown in Figure 1B,E,F,
showing the surfaces of the HPCs activated for 1, 2, and 3 h, respectively. The surface of
HPC900_R0.5_1H displayed macropores on its surface, and they increased with increasing
activation time (HPC900_R0.5_2H and HPC900_R0.5_3H). In addition, small pores were
found on the surface of HPC900_R0.5_3H, which can be assigned to the exposed mesopores
(the inset of 1(F)).

These clearly suggest the detrimental effects of NaHCO3 dose, temperature, and activa-
tion time on the pore structure of HPCs, which led to the enhanced hierarchical pore struc-
ture in the carbonized WF, as they increased, under the conditions in this study [30,35,38].
However, the inner-sphere pores could not be properly characterized by the images in
Figure 1. Therefore, the details of the effects of the activation conditions on the pore struc-
tures were further investigated with specific surface area (SSA), total pore volume (Vtotal),
mesopore volume (Vmeso), micropore volume (Vmicro), and average pore diameter (da) of the
HPCs (Tables 1–3), using N2 adsorption/desorption isotherms.
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Figure 1. SEM images of the (A) HPC600_R0.5_2H, (B) HPC900_R0.5_2H, (C) HPC900_R0.0_2H,
(D) HPC900_R1.0_2H, (E) HPC900_R0.5_1H, and (F) HPC900_R0.5_3H.

Table 1. Pore characteristics of HPCs as a function of pyrolysis temperature.

Specific
Surface Area

(SSA)

Total Pore
Volume
(Vtotal)

Micropore
Volume
(Vmicro)

Mesopore
Volume
(Vmeso)

Vmeso/
Vtotal

Average Pore
Diameter

(da)
(m2/g) (cm3/g) (cm3/g) (cm3/g) (nm)

HPC600_R0.5_2H 460.54 0.2281 0.1779 0.0366 0.1605 1.9811
HPC800_R0.5_2H 622.29 0.2879 0.2513 0.0369 0.1282 1.8505
HPC900_R0.5_2H 648.13 0.2908 0.2539 0.0502 0.1726 1.7947

Table 2. Pore characteristics of HPCs as a function of the ratio between WF and NaHCO3.

Specific
Surface Area

(SSA)

Total Pore
Volume
(Vtotal)

Micropore
Volume
(Vmicro)

Mesopore
Volume
(Vmeso)

Vmeso/
Vtotal

Average Pore
Diameter

(da)
(m2/g) (cm3/g) (cm3/g) (cm3/g) (nm)

HPC900_R0.0_2H 662.75 0.2750 0.2611 0.0139 0.0505 1.6595
HPC900_R0.5_2H 648.13 0.2908 0.2539 0.0369 0.1269 1.7947
HPC900_R1.0_2H 633.30 0.4382 0.3070 0.1312 0.2994 2.7678

Table 3. Pore characteristics of HPCs as a function of activation time.

Specific
Surface Area

(SSA)

Total Pore
Volume
(Vtotal)

Micropore
Volume
(Vmicro)

Mesopore
Volume
(Vmeso)

Vmeso/
Vtotal

Average Pore
Diameter

(da)
(m2/g) (cm3/g) (cm3/g) (cm3/g) (nm)

HPC900_R0.5_1H 259.01 0.1169 0.0975 0.0194 0.1659 1.8054
HPC900_R0.5_2H 648.13 0.2908 0.2539 0.0369 0.1269 1.7947
HPC900_R0.5_3H 720.81 0.3720 0.3044 0.0676 0.1817 2.0643

The SSA and Vtotal of the HPCs increased greatly as the pyrolysis temperature was
elevated from 600 ◦C to 800 ◦C, but slightly when it was further raised to 900 ◦C. Table 1
shows that the increased SSA and Vtotal were attributed to the formation and decrease in
micropores and mesopores, respectively, resulting in the decrease in da. It was reported
that Na2CO3 and the C in biomass are thermally decomposed to form Na2CO3, H2O, CO,
and CO2 (Equations (8) and (9)), under relatively low temperatures [38]. An increase
in temperature near to or over the fusion point of Na2CO3, i.e., 851 ◦C, Na2CO3 and
its byproduct (NaO) are decomposed to Na and CO, generating micropores [23,38]. In
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addition, mesopores of carbonaceous materials would be broken into smaller pores under
high temperature [30,38].

2NaHCO3 → Na2CO3 + CO2 + H2O, (8)

C + CO2 → 2CO, (9)

Na2CO3 → Na2O + CO2, (10)

Na2CO3 + 2C → 2Na + 3CO, (11)

Na2O + C → 2Na + CO, (12)

Table 2 shows that the SSA slightly decreased, while the Vtotal significantly increased
as the ratio of NaHCO3 to WF increased from 0 (no activator) to 1.0. It is thought that
the increase in Vtotal is largely attributed to the increase in mesopores, considering the
slight and great increase in Vmicro and Vmeso, respectively (Table 2). This indicates that the
release of CO, CO2, and H2O (Equations (8)–(12)) results in the formation of mesopores,
rather than micropores, as well as in the widening of existing micropores via their destruc-
tion [30,31,41]. On the other hand, the SSA was the highest when no NaHCO3 was added,
i.e., HPC900_R0.0_2H, and the decrease in the SSA was not as significant as the increase in
the SSA with increasing temperature (Table 1). Table 3 shows that the SSA, Vtotal, and Vmicro
greatly increased when the activation time increased from 1 to 2 h, but less significantly
with a further increase to 3 h. The Vmicro showed a linear correlation with the activation
time (Pearson correlation coefficient of 0.988).

Considering the results presented in Tables 1–3, it is suggested that the SSA and
Vmicro in the HPCs are more dependent on the activation time rather than temperature and
NaHCO3 dose, while Vmeso is the most significantly affected by NaHCO3 dose. However,
the dominance of micropores was found for all HPCs, ranging from 70.1 (HPC900_R1.0_2H)
to 95.0 (HPC900_R0.0_2H) %. The plot of adsorption–desorption isotherm and the pore
size distribution can be found on Figures S1 and S2, respectively.

3.1.2. FTIR Spectroscopy

Figure 2 displays the FTIR spectra of the HPCs, showing the common bands, cor-
responding to –OH stretching (at 3430 cm−1), aliphatic C-Hn stretching (at 2920 and
2850 cm−1), adsorbed CO2 (at 2360 and 2335 cm−1), and aromatic C=C and/or conjugated
C=O stretching (at 1630 cm−1) [30,42].

The intensities of the –OH and CO2 bands decreased, while those of the bands of
aliphatic C–Hn and C=C/C=O did not exhibit any notable changes, as the temperature
increased from 600 to 900 ◦C (Figure 2A). This indicates that more –OH and CO2 was
decomposed and/or volatilized over 600 ◦C, while the aliphatic C–Hn and C=C/C=O were
formed at 600 ◦C and are thermally stable at the temperature up to 900 ◦C [31,43].

The intensities of the –OH, C–Hn, and CO2 bands decreased with increasing NaHCO3
amount (Figure 2B). The band of C=C/C=O decreased, and the noise of the band also
decreased, as the ratio increased from 0 to 0.5, indicating the formation of more rigid struc-
tures with a higher degree of graphitization when an activator (NaHCO3) was used [43].
An increase in the injection counts of the NaHCO3 (HPC900_R1.0_2H) resulted in in-
creased intensity and noises of the C=C/C=O band, suggesting more amorphous aromatic
structures.

The intensity of the CO2 band decreased with increasing activation time, while that
of –OH, C–Hn, and C=C/C=O decreased and then increased, as the time increased from 1,
2, and then 3 h (Figure 3C). This indicates an increase in the abundance of the functional
groups on the HPC surfaces via intermolecular interactions under a longer reaction time [44].
This is also attributable to the etching effect of NaHCO3 on the porous carbon during a
longer activation process [31].
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3.1.3. XRD

The XRD patterns of all of the HPCs exhibit two peaks at the 2θ of ~24◦ and ~44◦,
which correspond to the (002) plane of the interlayer spacing and (100) planes of the
graphitic structures, respectively, as demonstrated in the literature (Figure S3) [11,38]. Also,
a sharp peak at 2θ of ~14◦, which corresponds to the signal of the native starch from wheat
flour, was found [45,46].

Figure 3A displays that the XRD spectra of HPC600_R0.5_2H showed some small
peaks at 2θ of ~23◦, ~27◦, and ~33◦, indicating the presence of Na2CO3 formed from
NaHCO3 decomposition (Equation (8)) [38]. For HPC900_R0.5_2H, the peaks of (002) and
(100) planes were more intense and wider than those in HPC600_R0.5_2H, and the peaks of
Na2CO3 disappeared and were replaced by two (2) peaks near ~22◦, which may correspond
to the decomposition of Na2CO3 to Na2O (Equation (9)). These changes in the XRD patterns
by increasing the temperature condition suggest an increase in the degree of graphitization,
due to the existence of more pores and defects in carbon material [10,38,44].

Figure 3B shows that the XRD pattern of the HPC prepared without NaHCO3 (HPC900_
R0.0_2H) consists of (002) and (100) planes of graphitic structures, as well as a peak of
starch, but no notable peaks of Na2CO3 (2θ of ~23◦, ~27◦, and ~33◦) or Na2O (2θ of ~22◦).
The peaks of (002) and (100) planes became more intensive and sharp peaks of Na2O were
detected as the amount of NaHCO3 increased, i.e., HPC900_R0.5_2H, demonstrating the
activator’s evident impact on the formation of more crystalline graphitic structures. On the
other hand, the pattern of HPC900_R1.0_2H shows that the intensity of the peaks of (002)
and (100) planes was depleted, while that of the peak at 2θ of ~22◦ became stronger. This
suggests that this could be explained due to the abundant availability of Na2O (Equations (8)
and (9)), leading to an increase in the formation of pores and defects, but resulting in a
decreased degree of graphitization and crystallinity [38].

The XRD pattern of the HPC, prepared at 900 ◦C and 1 h, consists of the peaks of
(002) and (100) planes, as well as of Na2CO3 (Figure 3C). An additional peak of Na2O
was found in that of HPC900_R0.5_2H, and the intensities of the peaks of (002) and (100)
planes increased, indicating more developed graphitic structures. However, with the
additional one hour of activation time, i.e., HPC900_R0.5_3H, the peaks of Na2CO3 and
Na2O disappeared and the (002) plane weakened, indicating the complete decomposition
of NaHCO3, Na2CO3, and Na2O, which can lead to more pores created as well as more
defects. It has been reported that a longer thermal treatment under a higher temperature is
responsible for the depletion of certain minerals, such as Na2O and quartz [44,47].

3.1.4. Raman Spectroscopy

The Raman spectra of HPCs are illustrated in Figure 4A, and they were deconvoluted
into seven (7) bands, as illustrated in Figure 4B for HPC900_R0.5_3H. The bands were at
1210, 1350–1351, 1540–1541, 1580–1581, 1610, 2900–2923, and 2626–2670 cm−1, which are
assigned to D4, D, D3 (D′), G, D2 (D′), 2D (G′), and 2D+G (D+D′) bands, respectively.
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The D4 band is associated with disordered graphitic lattice, polyenes, and ionic impuri-
ties. The bands of D, D3 (D′), G, and D2 (D′) are associated with disordered graphitic lattice
induced by the sp3 hybridization such as graphene layer edges, amorphous carbon, ideal
graphitic lattice, and disordered graphitic lattice in surface graphene layers, respectively.
The intensity of the D band was substantial for all HPCs, suggesting that all of them possess
a high degree of defects and porosity [48]. The 2D and D+G bands are associated with
single-layer graphene and a combination of the D and G bands, respectively [49]. Therefore,
the ratio of the area of D band to G band (ID/IG) can be used to evaluate the degree of
structural defects and disorder, as well as the sizes of the graphite nanocrystallites, in
carbon materials OTC [50]. The ratio of 2D and to G band (I2D/IG) is an indicator of the
relative abundance of single-layer graphene in a graphitic structure, while the types of the
defects can be suggested by that of D band to D2 band (ID/ID2).

Table 4 shows that the ID/IG increased from 4.528 to 7.887 as the temperature increased
from 600 ◦C (HPC600_R0.5_2H) to 900 ◦C (HPC900_R0.5_2H). This points out the increase
in disordered carbon structures or defects in the HPCs, while the size of the carbon crystal-
lites decreased, with increasing temperature [10,38,48]. These suggest a higher capacity of
surface chemical reactions and adsorption via accelerated electron transfer and stronger
π–π interactions [50,51] for HPC900_R0.5_2H than for HPC600_R0.5_2H. The I2D/IG also
increased from 1.579 (HPC600_R0.5_2H) to 1.776 (HPC900_R0.5_2H), which agrees with
the increase in ID/IG. On the other hand, the ID/I2D decreased from 15.700 to 11.883 for
HPC600_R0.5_2H and HPC900_R0.5_2H, respectively. This indicates that the defects in
HPC600_R0.5_2H and HPC900_R0.5_2H were more associated with sp3–C-related defects
and hopping defects, respectively [41].

Table 4. Result of Raman spectroscopy of HPCs with different activation temperatures.

D4 D D3 G D2 D+G 2D ID/IG I2D/IG ID/ID2

HPC600_ Center (cm−1) 1210 1350 1540 1580 1610 2900 2660 4.528 1.579 15.700
R0.5_2H Fraction (%) 0.126 0.584 0.124 0.129 0.037 0.599 0.401
HPC900_ Center (cm−1) 1210 1350 1541 1580 1610 2906 2670 7.887 1.766 11.883
R0.5_2H Fraction (%) 0.097 0.637 0.131 0.081 0.054 0.567 0.433

The ID/IG and I2D/IG increased from 4.821 to 7.959 and from 1.638 to 2.818, respec-
tively, while the ID/I2D decreased from 12.607 to 10.765, as the NaHCO3 amount increased
(Table 5). In addition, the results in Table 6 show an increase in the ID/IG and I2D/IG, from
5.729 to 7.888 and from 1.603 to 1.953, respectively, and a decrease in the ID/I2D, from 19.451
to 9.746, with increasing activation time.

Table 5. Result of Raman spectroscopy of HPCs with different activator dose.

D4 D D3 G D2 D+G 2D ID/IG I2D/IG ID/ID2

HPC900_ Center (cm−1) 1210 1350 1540 1580 1610 2915 2670 4.821 1.638 12.607
R0.0_2H Fraction (%) 0.114 0.592 0.124 0.123 0.047 0.410 0.590
HPC900_ Center (cm−1) 1210 1350 1541 1580 1610 2906 2670 7.887 1.766 11.883
R0.5_2H Fraction (%) 0.097 0.637 0.131 0.081 0.054 0.567 0.433
HPC900_ Center (cm−1) 1210 1351 1540 1580 1610 2911 2670 7.959 2.818 10.765
R1.0_2H Fraction (%) 0.105 0.625 0.133 0.079 0.058 0.448 0.552

The results in Tables 4–6 strongly suggest that an increase in activator dose, elevating
temperature, and a prolonged activation time commonly induced similar changes in the
HPCs, such as increasing the degree of defects, especially hopping defects, and the relative
number of single-layer graphenes. However, the most and the least significant factors for
the ID/IG were temperature and activation time, respectively; for the I2D/IG, they were
activator amount and temperature, respectively; and for the ID/I2D, they were activation
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time and activator amount, respectively. Therefore, it is suggested that the degree of defects,
formation of graphene layers, and the relative abundance of hopping defects are mostly
governed by temperature, activator amount, and activation time, respectively.

Table 6. Result of Raman spectroscopy of HPCs with different activation time.

D4 D D3 G D2 D+G 2D ID/IG I2D/IG ID/ID2

HPC900_ Center (cm−1) 1210 1351 1541 1580 1610 2911 2670 5.729 1.603 19.451
R0.5_1H Fraction (%) 0.107 0.621 0.132 0.108 0.032 0.493 0.507
HPC900_ Center (cm−1) 1210 1350 1541 1580 1610 2906 2670 7.887 1.766 11.883
R0.5_2H Fraction (%) 0.097 0.637 0.131 0.081 0.054 0.567 0.433
HPC900_ Center (cm−1) 1210 1350 1540 1580 1610 2900 2660 7.888 1.953 9.764
R0.5_3H Fraction (%) 0.088 0.647 0.117 0.082 0.066 0.542 0.458

3.2. Adsorption of OTC
3.2.1. Effect of Activation Conditions of HPCs on OTC Adsorption Kinetics

The effects of the activation conditions on the OTC adsorption kinetics by the HPCs
are presented in Figure 5 and Table 7. As presented in Figure 5A, HPC900_0.5R_2H
exhibits the highest adsorption rate and capacity compared to HPC600_0.5R_2H and
HPC800_0.5R_2H. The pseudo-second-order kinetic model fits better for HPC600_0.5R_2H
and HPC800_0.5R_2H, demonstrating that the OTC adsorption onto them is mainly at-
tributable to chemical mechanisms and that the adsorption was affected by the OTC
amount on the surfaces [9,13,44]. Meanwhile, the HPC900_R0.5_2H condition is better
fitted with the Elovich equation model (r2 > 0.99), demonstrating that the OTC adsorption
onto HPC900_R0.5_2H is the combination of bulk and surface diffusion, as well as the
chemisorption, on energetically heterogeneous surfaces [9,52].
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Table 7. Result of OTC adsorption kinetics using HPCs prepared with different temperatures,
activator amount, and activation time.

Model Temperature Effect Activator Ratio Effect Activation Time Effect

HPC600_
R0.5_2H

HPC800_
R0.5_2H

HPC900_
R0.5_2H

HPC900_
R0.0_2H

HPC900_
R0.5_2H

HPC900_
R1.0_2H

HPC900_
R0.5_1H

HPC900_
R0.5_2H

HPC900_
R0.5_3H

ka1 (min−1) 0.7164 0.0603 0.1746 0.0789 0.1746 0.2472 0.0938 0.1746 0.0981
Pseudo-first-

order
qe1 (mg/g) 7.3002 10.5649 31.0715 7.9271 31.0715 79.9331 3.1866 31.0715 42.8964

r2 0.9715 0.9356 0.8836 0.9172 0.8836 0.9252 0.8746 0.8836 0.8985
SSE 1.36 6.68 112.04 5.21 112.04 463.43 1.27 112.04 194.00

ka2 (g/mg·min) 0.1752 0.0898 0.0079 0.0120 0.0079 0.0044 0.0399 0.0079 0.0029
Pseudo-

second-order
qe2 (mg/g) 7.6021 11.1119 33.5996 9.1863 33.5996 85.8779 3.4861 33.5996 47.4636

r2 0.9930 0.9716 0.9545 0.9550 0.9545 0.9812 0.9234 0.9545 0.9551
SSE 0.33 2.95 43.79 1.05 43.79 116.59 0.78 43.79 85.86

Elovich αEl (mg/g) 16,253.980 1600.437 32.7913 2.5162 32.7913 202.7550 1.4056 32.7913 35.1593
Equation βEl (g/mg) 1.9062 1.0417 0.1878 0.5795 0.1879 0.0843 1.6265 0.1879 0.1135

r2 0.9575 0.8793 0.9964 0.9595 0.9964 0.9805 0.9433 0.9964 0.9929
SSE 1.36 6.68 111.98 5.21 111.98 463.53 1.27 111.98 194.00

Note: SSE: Sum-Squared Error.

Figure 5B presents that OTC adsorption was greatly enhanced as the NaHCO3 amount
increased. It should be noted that HPC900_R0.0_2H showed the lowest OTC adsorption,
even though it has the highest SSA (662.75 m2/g). This could be explained by the poor
development in mesopores and a higher fraction of micropores (Table 2), where the OTC
diffusion is limited [23]. The adsorption was enhanced as the activation time increased
(Figure 5C). It seems reasonable that this is attributable to the increased SSA and mesopores
as given in Table 3.

Meanwhile, the Elovich equation model provided good fits to the OTC adsorption
onto the HPCs prepared at 900 ◦C (HPC900_0.0R_2H, HPC900_0.5R_2H, HPC900_1.0R_2H,
HPC900_0.5R_1H, and HPC900_0.5R_3H), regardless of activator amount and activation
time. This strongly suggests that the temperature influenced the adsorption mechanisms
more than the amount of activator or activation time. It was also supported by the more
significant effect of the temperature on SSA and ID/IG, than activator amount and activation
time (Tables 1–6). However, the performance, i.e., equilibrium adsorption amount and
adsorption rate, was more significantly affected by the activator amount (Figure 5), by
which the Vmeso was the most influenced (Tables 1–3).

The OTC adsorption was further studied hereinafter, using HPC900_R1.0_2H, which
showed the best performance.

3.2.2. Effect of pH

Figure 6A shows that the OTC removal was not notably affected in a pH range of 2–8,
but significantly decreased as the pH further increased to 11. The pH would significantly
affect adsorption, when it is largely governed by electrostatic interactions, influencing the
charge of an adsorbent and an adsorbate. In particular, OTC has three (3) pKas because
of its multiple ionizable functional groups, making it an amphoteric molecule [53]. OTC
dominantly exits as OTC+ at pH < 3.4, OTC0 at 3.4 < pH < 7.6, OTC− at 7.6 < pH < 9.7,
and OTC2− at pH > 9.7 [54]. On the other hand, the pHPZC of HPC900_R1.0_2H was 3.9,
making the adsorbent renders positively and negatively charged, when the solution pH
is under and over the pHPZC, respectively (Figure 6B). However, the result in Figure 6A
suggests that the OTC adsorption onto HPC900_R1.0_2H was not solely affected by the
electrostatic interactions, but also significantly influenced by π–π EDA interactions and
hydrophobic effects [55,56].
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As the pH is decreased, the π–electron-accepting ability of OTC increases; however,
electrostatic repulsion increases because both HPC900_R1.0_2H and OTC are positively
charged, and hydrophobicity decreases by protonation [13,56]. Under the pH 3.4 < pH
< 7.6, OTC is apparently not charged, having the highest hydrophobicity. Therefore, the
stable OTC adsorption at acidic-to-neutral pHs is attributable to the strong π–π EDA
interactions, overwhelming the others, between OTC molecules, which accept π–electrons
via the conjugated ionic structures, and the surfaces of HPC900_R1.0_2H, which donate
π–electrons because of the C=O group and well-crystallized graphitic C–C [57]. On the
other hand, the electrostatic repulsion increases because of the dominance of OTC−/OTC2−

and the increase in negative charge on HPC900_R1.0_2H as the pH increased. In addition,
the π–π EDA interactions are suppressed, and the hydrophobicity decreases because of
deprotonation and ionization under alkaline conditions [26,56].

3.3. Adsorption Isotherm and Thermodynamic Study

The equilibrium adsorption amount (qe) of OTC on HPC900_R1.0_2H gradually in-
creased as the temperature increased from 298 to 318 ◦K (Figure 7). The three (3) widely
used isotherm models (Langmuir, Freundlich, and Temkin) were selected to analyze the
results [44,58]. Langmuir isotherm provided the best fit (Table 8), suggesting that the ad-
sorption is homogeneous and monolayer, where the surface coverage does not influence the
adsorption enthalpy [58]. The comparison of the OTC adsorption performance of different
adsorbents can be found in Table S1. The HPC material has a higher adsorption capacity
than most conventional biochars.
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Table 8. Result of adsorption isotherm.

Isotherm 298 ◦K 308 ◦K 318 ◦K

Langmuir qmax (mg/g) 87.184 128.370 162.707
KL (L/g) 0.052 0.025 0.030
r2 0.999 0.995 0.996

SSE 67.38 110.44 303.40

Freundlich KF ((mg/g)·(L/g)1/n) 13.596 14.912 17.194
n 3.082 2.763 2.571
r2 0.936 0.973 0.953

SSE 901.64 683.14 1609.76

Temkin bT (J/mol) 0.006 0.008 0.010
AT (L/mg) 1.274 0.883 0.877
r2 0.936 0.939 0.951

SSE 380.57 69.22 231.37

Equations (13) and (14) were used to calculate the Gibbs free energy change (∆G0) and
the changes of enthalpy (∆H0) and entropy (∆S0) of the adsorption [9,59,60]:

∆G0 = −RT ln
(

K0
)

, (13)

ln
(

K0
)
= −∆H0

RT
+

∆S0

R
(14)

where, K0 is the equilibrium constant, calculated with the correlation of the OTC mass
on the surface of the adsorbent (ms) and that in the liquid phase (me), R is the ideal gas
constant (8.314 J/mol·K), T is the absolute temperature (K), ∆G0 is the standard Gibbs free
energy change, ∆H0 is the change in the standard Gibbs free energy change, and ∆S0 is the
change in the entropy. The correlation of ln (K0) vs. 1/T can be found on Figure S4. Table 9
shows that ∆G0 was negative and decreased with increasing temperature, implying that the
adsorption is spontaneous. The ∆H0 and ∆S0 were positive, suggesting that the adsorption
is endothermic and the increase in the randomness after adsorption, respectively. It is
thought that the adsorption is dominated by chemisorption, considering that the ∆H0 was
over 40 kJ/mol [9,44,60,61].

Table 9. Thermodynamic parameters of OTC adsorption by HPC900_R1.0_2H.

298 K 308 K 318 K

∆G0 (kJ/mol) −3.093 −4.109 −6.028
∆H0 (kJ/mol) 40.788
∆S0 (kJ/mol·◦K) 0.147

3.4. Discussion about the Stability and Regeneration

The stability of the HPCs for the adsorptive removal of organic pollutants, such
as OTC, may not be important because adsorbents are generally wasted or regenerated
after use due to the accumulated pollutants. However, the stability of catalysts is of high
importance for the practical applications. The deactivation of catalysts at various degrees
has been reported in a number of works found in the literature, for a biochar derived
from wood shavings and thiourea–urea [62], Cu@Fe3O4 [63], GAC [64], Fe@NS-C-2-12 [65],
nitrogen and phosphorus co-doped porous carbon [50], which are mainly attributable to
the accumulation of the pollutants, and their byproducts, as well as the changes in the
property of the catalysts.

The adsorption capacity of adsorbents generally decreases via the occupation of
adsorption sites, the change of surface chemistry, and pore blockage [62,63,65]. It was
reported that the adsorption capacity of DCF and VFX onto CS7 was decreased [25], while
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the adsorption of OTC onto a poplar-leaf-derived biochar was decreased [66], as they were
used repeatedly. However, the carbonaceous adsorbent can be successfully regenerated.
The adsorption capacity of a biochar was recovered by pyrolysis at 800 ◦C for 2 h under
nitrogen flow [66]. Thermal treatment can also improve the performance by increasing
the extent of graphitization, which is advantageous for better structural stability and
performance [9]. Therefore, it seems reasonable that carbonaceous adsorbents have a high
potential of practical and economic applications.

4. Conclusions

In this study, NaHCO3-activated WF-based HPCs were prepared under various condi-
tions to investigate the conditions affecting their properties and OTC adsorption. It was
demonstrated that the crystallinity of graphitic structures, degree of defects, the number
of hopping defects, the stacking graphene-like layers, and pore structures were largely
dependent on the activation conditions, while the functional groups were relatively less
influenced by them. The activation temperature most significantly affected the adsorption
mechanisms and the degree of defects, as evidenced by the increase in the ID/IG from
4.528 to 7.959, with increasing temperature from 600 to 900 ◦C, while the Vmeso changed the
most significantly from 0.1169 to 0.4382 cm3/g, when the dose of the activator (NaHCO3)
increased from 0 to 100% of the WF mass. In addition, SSA increased greatly from 529.01 to
720.81 m2/g, as the activation time increased from 1 to 3 h.

The best OTC adsorption capacity of 87.184–162.707 mg/g at 298–318 ◦K was achieved
by the HPC prepared at 900 ◦C for 2 h, at the WF:NaHCO3 ratio of 1:1 (w:w), i.e.,
HPC900_R1.0_2H, with the most abundant mesopores, suggesting the detrimental role of
mesopores for the OTC adsorption onto HPCs.

The kinetics, equilibrium, and thermodynamics of OTC adsorption onto HPC900_1.0R_2H
were good fits to the Elovich equation model and Langmuir isotherm, suggesting that
the adsorption is the result of the combination of the diffusion and chemisorption, homo-
geneous, monolayer, spontaneous, and endothermic. No notable change in adsorption
capacity was found under pH of 2–8, but it decreased substantially as the pH continued to
increase, implying the crucial role of π–π EDA interactions and electrostatic attraction.

It is strongly suggested by the results in this study, that the HPCs derived from WF
could be one of the excellent adsorbents for OTC removal, and that the performance of
the HPCs can be controlled by the manipulation of the properties via changing activation
conditions, which opens the opportunity of HPCs to a variety of applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w15173146/s1, Figure S1: N2 adsorption–desorption isotherms
of HPCs by (A) temperature effect, (B) ratio effect, (C) activation time effect; Figure S2: Pore size
distribution of HPCs by (A) temperature effect, (B) ratio effect, (C) activation time effect; Figure S3:
XRD patterns of graphitic structure in (A) Yang et al. 2019 [1] and in (B) https://rruff.info/Graphite/
R090047s (accessed on 6 August 2023); Figure S4: ln (K0) vs. 1/T plot for HPC900_R1_2H; Table S1:
Comparison of the maximum OTC adsorption performance of different adsorbents [65–71].
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