
Citation: Ma, J.; Ma, R.; Pan, Q.;

Liang, X.; Wang, J.; Ni, X. A Global

Review of Progress in Remote

Sensing and Monitoring of Marine

Pollution. Water 2023, 15, 3491.

https://doi.org/10.3390/w15193491

Academic Editors: Camilo M. Botero,

Celene B. Milanes and Daniel

O. Suman

Received: 24 August 2023

Revised: 25 September 2023

Accepted: 26 September 2023

Published: 6 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Review

A Global Review of Progress in Remote Sensing and
Monitoring of Marine Pollution
Jingwu Ma 1,2,3, Renfeng Ma 3,4,5,* , Qi Pan 4, Xianjun Liang 6, Jianqing Wang 7 and Xinxin Ni 8

1 Key Laboratory of Ocean Space Resource Management Technology of Ministry of Natural Resources,
Zhejiang Institute of Marine Sciences, Hangzhou 310012, China; majingwu12@163.com

2 Land Consolidation and Rehabilitation Center, Wenzhou Bureau of Natural Resources and Planning,
Wenzhou 325027, China

3 Ningbo University Donghai Academy & Zhejiang Ocean Development Think Tank Alliance,
Ningbo 315211, China

4 Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo 315211, China;
2011087072@nbu.edu.cn

5 Zhejiang Collaborative Innovation Center & Ningbo Universities Collaborative Innovation Center for Land
and Marine Spatial Utilization and Governance Research, Ningbo University, Ningbo 315211, China

6 Ningbo Junzhi Engineering and Environmental Consulting Co., Ltd., Ningbo 315211, China;
nbuandrew@163.com

7 Ningbo Institute of Oceanography, Ningbo 315832, China; wangjq@nbio.org.cn
8 Department of International Hotel Management at Qiandaohu, Tourism College of Zhejiang China,

Hangzhou 311231, China; nixinxin@tourzj.edu.cn
* Correspondence: marenfeng@nbu.edu.cn

Abstract: With the rapid development of urbanization and industrialization, human activities have
caused marine pollution in three ways: land source, air source, and sea source, leading to the problem
of marine environments. Remote sensing, with its wide coverage and fast and accurate monitoring
capability, continues to be an important tool for marine environment monitoring and evaluation
research. This paper focuses on the three types of marine pollution, namely marine seawater pollution,
marine debris and microplastic pollution, and marine air pollution. We review the application of
remote sensing technology methods for monitoring marine pollution and identify the limitations
of existing methods. Marine seawater pollution can be effectively monitored by remote sensing
technology, especially where traditional monitoring methods are inadequate. For marine debris
and microplastic pollution, the monitoring methods are still in the early stages of development and
require further research. For marine air pollution, more air pollution parameters are required for
accurate monitoring. Future research should focus on developing marine remote sensing with data,
technology, and standard sharing for three-dimensional monitoring, combining optical and physical
sensors with biosensors, and using multi-source and multi-temporal monitoring data. A marine
multi-source monitoring database is necessary to provide an immediately available basis for coastal
and marine governance, improve marine spatial planning, and help coastal and marine protection.

Keywords: marine environmental monitoring; governance; marine pollution; coastal zone management

1. Introduction

The ocean is an important environment for humans, and its various types and scales of
currents result in the distribution of liquid and three-dimensional resources, which form an
important and unique system of marine resources and environment. The ocean is abundant
in biological resources, mineral resources, energy, and other resources, and it is attracting
increasing attention from the academic circle and industry. The rapid development of indus-
trialization and urbanization has led to a concentration of human activities along coastlines,
resulting in the degradation of coastal bays, marine resources, and the environment [1].
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Generally, the coastal natural shoreline and coastal mudflat wetlands have been continu-
ously reduced, the area of mangroves and coral reefs has been greatly reduced, and the
marine ecological environment has been polluted. The situation is becoming increasingly
serious, with increasing eutrophication of seawater and frequent occurrences of marine
ecological disasters such as brown tides, green tides, and red tides posing a serious threat
to migratory waterfowl and marine biodiversity. Meanwhile, the above environmental
pollution, biological extinction, and natural disasters have posed a threat to the sustain-
able development of the coastal and marine environment. Dissolved organic matter from
sewage treatment plants, humus from farmland, anthropogenic shoreline erosion, and the
removal of native vegetation can cause significant increases in turbidity in coastal waters [2].
For example, NASA satellite imagery has shown that the water quality of Florida’s Tampa
Bay decreases in the winter months compared to the summer. More particles suspended
in the water, a measure called turbidity, show up as yellow, orange, and red in December
(a) than in July (b) due to seasonal freshwater discharge from nearby rivers and runoff into
the bay, which carry nutrients (Figure 1). Hence, marine pollution monitoring is of great
significance in terms of both theoretical and practical value [3–5]. Marine environment
monitoring is an essential step in maintaining the quality of the marine environment and
securing its ecology, and it is crucial for achieving sustainable marine development.
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Remote sensing plays a crucial role in marine monitoring, including the ecological
monitoring of wetland, mangrove, coral reefs, and other key organisms (Figures 2 and 3),
the environmental disaster monitoring of oil spills and red tides, the mapping of mesoscale
coastlines, the measurement of chlorophyll-a, suspended sediment concentration, seawater
temperature in offshore areas, and the automatic recognition of key targets such as dams,
breeding areas, buildings, ports, bridges, and ships [6–8].

Based on a search of the Web of Science core collection from 2000 by using the keyword
“marine remote sensing," it can be seen that marine remote sensing monitoring is a crucial
aspect of marine ecological monitoring (Table 1). Remote sensing monitoring has been of
interest to scholars from institutions that have published a number of important papers in
this field, such as the Woods Hole Oceanographic Institution, the University of Washington,
the University of California, San Diego, Oregon State University, the Plymouth Marine Lab-
oratory, the First, Second, and Third Institutes of Oceanography, the Marine Environmental
Monitoring Center, the Marine Technology Center, the Tianjin Marine Environmental Mon-
itoring Center Station, the Ocean University of China, and Xiamen University in China.
Meanwhile, government agencies around the world, such as NASA, NOAA, CNRS, and
the Canadian Department of Fisheries and Oceans, invest heavily in research in this field.
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Meanwhile, NASA, NOAA, and other institutes have established specific research direc-
tions in marine remote sensing technology for marine research and also collaborate with
universities, whose research not only focuses on marine pollution monitoring, oil spills,
dissolved organic carbon, coral issues, and thermal pollution [9–13], but also large-scale
marine currents and air-sea interactions. For example, Chinese relevant institutes have
specially established a research department in the field of marine remote sensing. The
Second Institute of Oceanography of the Ministry of Natural Resources has taken the lead
in conducting research on seawater color remote sensing in China and has achieved fruitful
results in the mechanism and algorithm of seawater color remote sensing monitoring,
as well as the development of domestically produced software system platforms. Rele-
vant units such as the National Satellite Ocean Response Center and the North China Sea
Administration of the Ministry of Natural Resources have all implemented operational
monitoring applications for offshore oil spills. Furthermore, the Copernicus program also
made a lot of contributions, whose program is the Earth observation component of the
European Union’s Space program, which offers information services that draw from satel-
lite Earth observation and in-situ (non-space) data. Amounts of global data from satellites
and ground-based, airborne, and seaborne measurement systems provide information to
help service providers, public authorities, and other international organizations improve
European citizens’ quality of life and beyond. And organizations such as USEPA and US
IOOS are monitoring exhaust from ships. University of Delaware professors have used
remote sensing technology to monitor exhaust from ships.

Table 1. The top 10 related institutes of marine remote sensing monitoring and their research
directions.

Research
Institute

Number
of Paper

Country/
Region Related Laboratory Research Direction

National Aeronautics
and Space

Administration
1506 United States /

Sea level rise monitoring; Marine
ecosystem research; Marine currents

motion research

National Oceanic and
Atmospheric

Administration

1276 United States
Pacific Marine

Environment Laboratory

Climate-weather research; Marine
ecosystem research; Ocean and coastal

evolution research

Global Monitoring
Laboratory

Greenhouse gases and carbon cycle
research; Changes in clouds, aerosols

and surface radiation research; Recovery
of stratospheric ozone research

Chinese Academy of
Sciences

1028 China
Digital Earth Key

Laboratory

Frontier theory and technology of earth
observation research; Earth big data

science and methods research; Digital
earth science and platform research;

Global environmental resources spatial
information system research

Key Laboratory of Infrared
Detection and Imaging

Technology

High-resolution infrared imaging
technology research; Hyperspectral
imaging technology research; Weak
target detection technology research;

High quantitative remote sensing
detection technology research

California Institute of
Technology 853 United States Linde Center

Earth climate change research [14];
Pollution impact research; Carbon

dioxide changes research

University of
Washington 617 United States

Applied Physics
Laboratory- Air-sea

interaction and remote
sensing

Sea-air exchange research; Coastal
research; Sensor research; Wave research



Water 2023, 15, 3491 4 of 24

Table 1. Cont.

Research
Institute

Number
of Paper

Country/
Region Related Laboratory Research Direction

University of Maryland 576 United States
Earth System Science

Interdisciplinary Center
(cooperation with NASA)

Climate variability and change research;
Atmospheric composition and processes
research; Global carbon cycle research;

Global water cycle research

University of
California, San Diego 546 United States Scripps Institution of

Oceanography

Collect and process data on the Earth,
oceans and atmosphere by cameras,
lasers and various electromagnetic

sensors

University of Colorado 476 United States
Mortenson Center in
Global Engineering

Sustainable water treatment system
research; Field and remote sensing

research; Infrastructure resilience and
disaster recovery research

Earth Science and
Observation Center,

Institute for Research in
Environmental Sciences

Analysis of remote sensing data,
validation of data

University of Miami 445 United States Upper Ocean Dynamics
Laboratory

Experimental studies on coastal
circulation processes and

ocean-atmosphere interactions during
the hurricane

Woods Hole
Oceanographic

Institution
385 United States Claisen Laboratory

Studies on air-sea interactions and their
impact on weather and climate through
a wide range of measured and remote

sensing data
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Figure 2. The polyedra algal bloom and oil spill of remote sensing images. (a) Landsat-8 RGB (bands 4-
3-2) composite in this study region on 16 July 2019; (b) chl-a concentration (mg/m3) after atmospheric correction with 
ACOLITE for the same scene [15]. (A) MODIS; (B) MERIS showing the site of the DWH oil spill in blue arrow [16]. 

Figure 2. The polyedra algal bloom and oil spill of remote sensing images. (a) Landsat-8 RGB
(bands 4-3-2) composite in this study region on 16 July 2019; (b) chl-a concentration (mg/m3) after
atmospheric correction with ACOLITE for the same scene [15]. (A) MODIS; (B) MERIS showing the
site of the DWH oil spill in blue arrow [16].
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(conc_chl) C2RCC in the Kneiss Archipelago, Gulf of Gabes, Tunisia [17]. (b) the floating plastic litter 
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quately reviewed the field of marine pollution monitoring. Therefore, a global review of 
progress in remote sensing monitoring of marine pollution is needed, which reviews the 
application domains of marine remote sensing technology and the progress in marine pol-
lution monitoring (Figure 4), serving as a reference for academic research and develop-
ment efforts in using remote sensing technology for marine pollution monitoring. 
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Figure 3. The LiDAR and MSI remote sensing images (a) show the spatial distribution of Chl-a
(conc_chl) C2RCC in the Kneiss Archipelago, Gulf of Gabes, Tunisia [17]. (b) the floating plastic litter
from space using Sentinel-2 imagery [18].

Previous studies have reviewed the literature in the remote sensing field from the
perspective of satellite functions and monitoring targets; however, they have not adequately
reviewed the field of marine pollution monitoring. Therefore, a global review of progress
in remote sensing monitoring of marine pollution is needed, which reviews the application
domains of marine remote sensing technology and the progress in marine pollution moni-
toring (Figure 4), serving as a reference for academic research and development efforts in
using remote sensing technology for marine pollution monitoring.
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2. Sources and Monitoring Indices of Marine Pollution

The overexploitation of marine resources results in the degradation of the marine
ecosystem and causes pollution, which damages the marine environment. The overex-
ploitation, including major river conservation projects, land reclamation projects, coastal
mining, offshore drilling, and mariculture, also leads to a shortage of marine resources and
has negative impacts on coastal marine resources and environments. The utilization of
marine resources varies in different regions due to differences in distribution, resulting in
different types of pollution, such as land source, sea source and air source (Figure 5).
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Land-source pollution has the widest distribution and largest quantity, accounting for
80% of the total marine pollution and having the most serious effect. Land-source pollution
can be divided into two types: point-source and area-source. Point-source pollution is
primarily composed of industrial waste water and domestic sewage that is collected and
treated through sewage networks and discharged into the sea through designated discharge
points [19,20]. Area-source pollution comes from agricultural runoff and livestock breeding
activities, which flow into the ocean through runoff [20]. The root cause of land source
pollution is human economic and social activity, which contributes to the negative impacts
of such activities on the marine environment [21]. This type of pollution is not limited to
coastal areas but is influenced by economic and social activities and is more pronounced in
offshore regions with intensive secondary industries and rapid economic development [22].
Additionally, human activities on land can cause eutrophication and biotoxicity in sea areas
through river dams and water storage projects and reduce river sediment discharge, leading
to coastal erosion and changes in river water and groundwater quality [23,24]. Coastal
tourism, being a popular form of tourism, also contributes to marine pollution through the
construction of tourist resorts, docks, and breakwaters, which fragment coastal habitats and
harm biodiversity, and through the pollution of seawater quality and the flow of beach litter
into the ocean from bathing beaches [25]. The water quality of direct discharge into the
sea is the main evaluation index for monitoring point-source land source pollution, while
the water quality of seaport rivers, beach water, marine debris, and microplastics is the
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main evaluation index for monitoring area-source land source pollution. Water quality is
primarily evaluated according to the “Standard for Seawater Quality” (GB 3097-1997) [26],
the “Standard for Surface Water Environmental Quality” (GB 3838-2002) [27] for rivers
flowing into the ocean, and the “Guide for Monitoring and Evaluation of Bathing Beaches”
(HY/T 0276-2019) for bathing beaches.

Sea-source pollution mainly refers to the pollution caused by human utilization of
the sea. Marine pollution offshore is primarily caused by fishing and aquaculture practices.
Overfishing has resulted in a reduction of fish resources, leading to the implementation of
non-standard practices such as beach aquaculture, offshore cage aquaculture, and pelagic
fishing, which negatively impact the marine environment by releasing nutrients and drugs
into the water [28]. This can also pose a threat to coastal biodiversity, affecting beaches
and mangroves [29]. Another significant source of marine pollution is marine engineering
activities, such as oil and gas field exploitation, which can result in oil spills, sewage
discharge, and seepage from eroded oil-bearing rocks. Additionally, the unregulated
discharge of waste water from cruise ships and cargo ships in coastal tourism contributes to
marine pollution [30]. Monitoring marine pollution includes monitoring the water quality
of fishery waters and the discharge of waste water from marine engineering activities. The
quality of fishery waters is evaluated according to the “Fishery Water Quality Standard”
(GB 11607-1989) [31], while monitoring of marine engineering pollution in dumping areas
and oil and gas fields should be based on the “Technical Regulations for Monitoring of
Marine Dumping Areas” and “Technical Guidelines for Environmental Impact Assessment
of Marine Engineering” (GB/T 17108-2006) [32].

Air-source pollution can be divided into transmission sources and local sources
(Figure 6). Transmission sources refer to the pollution in the air that is transported from
the land to the sea due to the influence of monsoons. Local sources refer to the pollu-
tants that are emitted directly into the sea, such as oil and gas field exploitation, marine
transportation, and fishing. The pollutants include SO2, NOx, CO, particulate matter,
and VOCs. Atmospheric pollutants fall onto the marine surface through dry deposition
and wet deposition processes [33]. Dry deposition involves the physical, chemical, and
biological processes by which atmospheric pollutants fall onto the marine surface, while
wet deposition involves ionic pollutants and soluble pollutants from the air falling onto
the marine surface through precipitation or water vapor condensation [34]. The evaluation
of marine atmospheric pollution deposition is mainly conducted based on the “Technical
Regulations for the Assessment of the Flux of Atmospheric Pollutants Deposition into the
Sea (Trial)” and includes the observation of the elements nitrate, NH4Cl, Cu, Pb, and Zn.
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3. The Utilization of Remote Sensing Monitoring in Marine Pollution
3.1. An Overview of the Development History and Present Situation

In 1960, the United States launched the world’s first meteorological satellite, TIROS-1,
and used it to collect data on the marine surface temperature field from an altitude of
approximately 700 km [35]. In 1978, the United States took the lead in the field of marine
observation with the launch of Seasat-1, the first satellite dedicated to observing coastal
seawater color [36], which marked the beginning of marine remote sensing monitoring. As
the importance of marine resources continues to be recognized, more and more countries
are investing in marine remote sensing technology to support monitoring efforts in the
fields of shipping, environment, military, and economics [36–38].

The sensors commonly used in marine research include seawater color sensors, in-
frared sensors, microwave altimeters, microwave scatterometers, synthetic aperture radars,
and microwave radiometers (Table 2). These sensors are capable of monitoring elements
from the marine surface to the upper, lower, and bottom topography and can be used to
monitor the seawater color and environment, as well as the marine dynamic environment
(such as the marine surface wind field, marine surface height, effective wave height, and
surface temperature) [39–41]. The sensors play a crucial role in monitoring islands, coastal
zones, and other targets, including the marine wave field, storm surge floodplain, internal
waves, sea ice, and oil spills. With the progress in microwave, infrared, and hyperspectral
remote sensing technologies and their wider applications in the water, ecological, and air
environments, the types of sensors available have become more diverse and specialized,
and the spectral bands more refined. For example, China has launched a series of marine
satellites, including HY-1C/D and HY-2B/C/D, equipped with new ultraviolet imagers,
onboard calibration spectrometers, automatic ship identification systems (Figure 7), and
other loads, providing a wealth of data for monitoring the global seawater color and
dynamics [42]. The spectral bands of remote sensing images are getting finer and finer,
forming multispectral, hyperspectral, and ultraspectral. At present, the spectral resolution
in the 100 nm order is called multispectral, such as a remote sensor in the visible light
and near-infrared spectral region only a few bands, such as the United States LandsatMSS,
TM, SPOT in France, etc. The spectral resolution is in the 10 nm order, which is called
HyPerspectral remote sensing. With the further improvement of the spectral resolution of
remote sensing, remote sensing enters the ultraspectral stage when the spectral resolution
reaches 1 nm. Hyperspectral and ultraspectral remote sensing are the frontier fields of
remote sensing technology. It uses many very narrow electromagnetic wave bands to obtain
relevant data from objects of interest so that substances that are not detectable in wide-band
remote sensing can be detected. Chuanpeng Zhao et al. [43] proposed a new approach with
solid improvements in dual-temporal image construction, misclassification processing, and
tacit knowledge analysis, generated an accurate coastal salt marsh map at a national scale,
and provided a classification mechanism for dual-temporal image-based coastal salt marsh
identification and mapping. Remote sensing technology has huge advantages in obtaining
real-time, large-scale, wide-area, and multi-period comparisons of basic coastal zone data.
However, due to the indirect reflection of the characteristics of each observation object
through the radiation and reflection characteristics of electromagnetic waves, the resolution
is lower than that of conventional ground or ship observation methods. In addition, the
presence of the phenomenon of homologous objects with different spectra and foreign
objects with the same spectrum makes it difficult to recognize and interpret images.
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Table 2. Satellite sensors information for marine research.

Sensor Type Function Representative Satellite
Sensors Satellite Country/Region Time Spectral Band Resolution Revisit Cycle

Seawater
color sensor

Monitoring of
marine surface

chlorophyll
concentration,

suspended mass
concentration,

marine primary
productivity, diffuse

attenuation
coefficient, other
marine optical

parameters [44]

Coastal Zone Color Scanner NIMBUS-7 United States 1978

5 visible near-infrared
bands (0.443~0.750 µm),
1 thermal infrared band

(11.5 µm)

0.825 km 1 day

Sea-viewing Wide Field of View
Sensor Seastar United States 1997 8 bands (0.402~0.885 µm) 1.1 km (IFOV) 1 day

Moderate-resolution Imaging
Spectroradiometer

EOS-
AM(TERRA)/EOS-

PM(AQUA)
United States 1999/

2002
36 discrete spectral bands

(0.4~14.4 µm) 0.25~1 km 0.5/1 day

Chinese Ocean Color and
Temperature Scanner

HY-1A China 2002
10-band (0.402~12.50 µm)

1.1 km 1 day
HY-1C China 2018 1.1 km 1 day

Medium Resolution Spectral
Imager FY-3 China 2008 20-band (0.43~12.5 µm) 0.25~1.1 km 5.5 day

Chinese Ocean Color and
Temperature Scanner HY-1D China 2020 10-band (0.402~12.50 µm) 1.1 km 1 day

Ocean Colour Monitor OceanSat-3 India 2022 3 bands 360 m 2 days

Infrared
sensor

Measurement of
marine surface

temperature

Advanced Very High
Resolution Radiometer

NOAA/
TIROS United States 1979 2 thermal infrared

channels (11 µm, 12 µm) 1.1 km (IFOV) 0.5/1 day

Along-Track Scanning
Radiometer ERS-1/2 Europe 1991/

1995
2 thermal infrared

channels (11 µm, 12 µm) 1 km 3 days (TIR)/
6 days (SWIR)

Advanced Along-Track
Scanning Radiometer ENVISAT Europe 2002

11/12 µm channel
during daytime and

3.7/11/12 µm channel at
night

1 km (IFOV)
3 days
(TIR)/

6 days (SWIR)

VistA Integration Reporting
and Revenue FY-3A China 2008

10 channels (including
visible channels,

3 infrared atmospheric
window channels)

1.1 km 5.5 days
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Table 2. Cont.

Sensor Type Function Representative Satellite
Sensors Satellite Country/Region Time Spectral Band Resolution Revisit Cycle

Microwave
altimeter

Measurement of
mean sea level
height, geoid,
effective wave
height, marine

surface wind speed,
surface laminar flow,
gravity anomalies,

rainfall index

Radar altimeter ERS-1/2 Europe 1991/
1995 C-band/5.3 GHz 20 km (IFOV) 10 days/1 month

Dual frequency radar altimeter,
Single frequency altimeter Jason-1 United States,

France 2001

NRA: Ku-band/13.6 GHz
and C-band/5.3 GHz;

SSALT: Ku-band/
13.65 GHz

25 km 10 days

Radar altimeter-2 ENVISAT Europe 2002 Ku-band/13.5 GHz 20 km (IFOV) 10 days/1 month

Radar altimeter HY-2B China 2018 Ku-band/13.58 GHz,
C-band/5.25 GHz 2 km

14 days in the
early stage,

168 days in the late
stage

Microwave
scatterome-

ter

Measurement of the
wind field at 10 m

above sea level

Single-frame side-scan vertical
transmit vertical receive (VV)

radar
ERS1/2 Europe 1991/

1995 C-band/5.3 GHz

Optimal:
50 km;

Sampling:
25 km

3 days on average

Double amplitude side scan
scatterometer ADEOS Japan 1996 Ku-band/13.995 GHz

Optimal:
50 km;

Sampling:
25 km

1.5 days

Sea Winds scatterometer QuikSCAT United States 1999 Ku-band/13.4 GHz

Optimal:
50 km;

Standard:
25 km;

Sampling:
12.5 km

1 day

Microwaves scatterometer HY-2B China 2018 Ku-band/13.256 GHz 25 km

14 days in the
early stage,

168 days in the late
stage

Sector beam rotational scanning
scatterometer CFOSAT China, France 2018 Ku-band/13.256 GHz 25/12.5 km real time
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Table 2. Cont.

Sensor Type Function Representative Satellite
Sensors Satellite Country/Region Time Spectral Band Resolution Revisit Cycle

Synthetic
aperture

radar

Monitoring of wave
direction spectrum,

mesoscale eddy, ocean
internal waves, shallow
sea topography, marine

surface pollution,
marine surface
characteristic

information [45]

Active Microwave
Instrument Synthetic

Aperture Radar
ERS-1/2 Europe 1991/

1995

L-band/1.275 GHz,
S-band/3.0 GHz,
C-band/5.3 GHz,
X-band/9.6 GHz

30 m 1.5 month

Ka-band Radar SWOT United States 2023 Ku band/C band / 20.8 days
Multi-polarized Advanced
Synthetic Aperture Radar ENVISAT-1 Europe 2002 C-band/5.3 GHz 30 m~1 km 5 days/3 months

Multi-polarized C-band
synthetic aperture radar

GF-3 China 2016 C-band/ 1 m (highest) 1 week
RCM-3 Canada 2019 C-band/5.405 GHz 1 m (highest) 12 days

Microwave
radiometer

Measurement of marine
surface temperature,
marine surface wind
speed, sea ice water

vapor content, CO2 and
sea-air exchange

Line Leveling Passive
Microwave Radiometer DMSP United States 1987 4 bands (19.35, 2.235, 37.0,

85.5 GHz) 7 channels

61 × 66 cm
antenna
diameter

1 day

Microwave Scanning
Radiometer MOS-1 Japan 1987 2 bands (23.8 GHz,

31.4 GHz)

23 km
(31.4 GHz)

/32 km
(23.8 GHz)

5 days

Multi-frequency scanning
microwave radiometer

Seasat-A/
Nimbus-7 United States 1978 5 bands 9 channels /22~120 km

(37~6.6 GHz) 2 days

Advanced Microwave
Scanning Radiometer -E EOS-PM(AQUA) Europe 2002 6 bands 12 channels Antenna

diameter 1.6 m 1 day

Advanced Microwave
Scanning Radiometer ADEOS-2 Japan 2002 8 bands 14 channels Antenna

diameter 2 m 1 day

Scanning Microwave
Radiometer Imager MWRI HY-2B China 2018 5 bands (6.925, 10.7, 18.7,

23.8, 37.0 GHz)
Antenna

diameter 1.2 m

14 days in the
early stage,

168 days in the late
stage

Calibration Microwave
Radiometer HY-2D China 2021 6 bands (3.58, 5.25, 13.256,

18.7, 23.8, 37 GHz) / 10 days

Poseidon-4 radar altimeter
and microwave radiometer Sentinel-6 United States,

Europe 2020 C-band/Ku-band / 10 days
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Figure 7. Image observed by PALSAR-2, synthetic aperture radar onboard ALOS-2, at 10:23 (UTC)
on March 26 (a) around the Suez Canal; (b) extended image around the stranded ship (Picture source:
Earth Observation Research Center).

3.2. The Monitoring Data and Methods

Marine remote sensing has the unique advantages of all-weather, wide-range, and
long-term observation and is widely used in marine ecology and resources monitoring,
marine disaster monitoring, marine rights and interests maintenance, marine environmental
prediction and security assurance, and other fields. Therefore, marine pollution can be
monitored and reversed based on marine remote sensing data. Marine pollution monitoring
can be classified into three aspects: seawater quality, marine debris and microplastic
pollution, and atmospheric deposition pollution. According to the application focus of
remote sensing, the remote sensing data products and research methods for monitoring the
pollution of these marine areas are analyzed.

3.2.1. Seawater Quality Monitoring

Marine remote sensing is widely used in a variety of fields, including marine ecology
and resource monitoring and marine disaster monitoring [46]. With the help of remote
sensing, it is possible to reverse and monitor marine pollution. The main environmental
indices monitored by remote sensing include the suspended solids content, chlorophyll-a
concentration [47], colored soluble organic matter, and other comprehensive pollution
indices [46,48]. To invert the quality of water environmental indices, a spectral model must
be established and combined with monitoring data. Remote sensing inversion is often per-
formed using visible light bands (Table 3), and various methods such as empirical models,
theoretical models, semi-analytic models, and others can be used (Table 4). The suspended
solids content in water can be reversed by fitting a formula that correlates the measured
suspended solids content with remote sensing reflectance or turbidity [49–51]. The concen-
tration of chlorophyll-a is a direct indices of eutrophication and organic pollution, and the
inversion methods of chlorophyll-a concentration include chlorophyll fluorescence, band
models, nonlinear mapping, and mechanism model methods [52–54]. Chromophoric solu-
ble organic matter is another important component of dissolved organic matter that can be
monitored remotely through the development of a remote sensing inversion model [55–57].
For example, red tides have posed a huge threat to the resources and environment of coastal
areas. Multi-spectral scanners can be used to monitor red tides, whose visible/infrared
multispectral radiometers can provide information on the location, range, water color
type, changes in phosphate concentration on the sea surface, and the direction of red tide
diffusion and drift to take timely measures to control them [58].
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It is difficult to find independent spectral characteristics in seawater quality indices,
such as dissolved organic carbon, water temperature [59], transparency, dissolved oxy-
gen, chemical oxygen demand, five-day biochemical oxygen demand, total nitrogen, total
phosphorus, etc. As a result, indirect remote sensing analysis must rely on the correla-
tion between different substances [60–62]. However, remote sensing monitoring also has
limitations, such as difficulty in estimating pollutants in the vertical dimension of water
bodies and the limitation of partial inversion to estimate only general parameters, not
specific types of marine pollution. Coastal human activities and the complex dynamic
environment of the sea can also affect the water quality, requiring higher performance
from satellite sensors to monitor it effectively through remote sensing technology [63].
Despite the progress in remote sensing technology, the main drawback of physical-chemical
sensor systems is their lack of specificity and sensitivity and their inability to assess the
environmental concentration of most marine pollutants. In this regard, biosensors may
offer the required specificity and selectivity [64].

Table 3. The monitoring data for seawater quality.

Seawater Quality Indices Data

Suspended solids content Remote sensing data
Sentinel-3A OLCI [65], SPOT, Terra ASTER,
Landsat TM/ETM, Envisat MERIS [66],
COMS GOCI [67–69]

Measured data
Seawater sampling data, official water
environment monitoring samples,
measured spectral data

Chlorophyll-a
concentration

Remote sensing data

Non-space remote sensing data: AVIRIS,
CASI, OMIS, AISA, etc.;
Remote sensing data: Envisat MERIS,
CBERS-2 CCD, Terra/Aqua MODIS [70,71],
EO-1 Hyperion, Terra ASTER, Landsat
MSS/ETM+, HJ-1 CCD, et al.

Measured data Ground-measured spectral data: ASD,
GER, etc.

chromophoric dissolvable
organic matter

Remote sensing data Sentinel-2 [72], Landsat 8 OLI, SeaWiFS,
Aqua/Terra MODIS [73], etc.

Measured data Water sampling data

Table 4. The monitoring methods for seawater quality.

Methods Characteristics

Empirical models (single band model,
band ratio model, multiple regression
model, nonlinear model, machine
learning)

Based on the relationship between water spectral
information and measured water quality parameters, the
algorithm is relatively mature and the process is simple,
but it lacks physical basis

Theoretical model

The combination of water quality spectral characteristics
and statistical analysis has a certain physical basis, but
for the model requiring higher precision, the process is
more complicated and the universality is poor

Semi-analytical model

Based on the relationship between apparent optical
quantity and measured water quality parameters, it has
a strong physical mechanism and good universality,
despite the difficulty of model establishment [72]

The quality of seawater can be negatively impacted by large-scale pollutants such as
red tides, green tides, and oil spills, especially due to increased human activities leading to
increased inputs of nitrogen and phosphorus in the ecosystem (Table 5) [74–77]. Remote
sensing technology plays a crucial role in monitoring such events by monitoring the sea-
water quality indices over large areas [78,79]. The research has shown that the multi-band
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ratio method can be used to monitor floating algae and reduce interpretation errors [80–82].
Several algorithms have been proposed, including the Floating Algae Index (FAI) [83,84],
the Normalized Algae Index (NDAI) [85], the Virtual Baseline Index of Floating Algae
Height (VB-FAH) [86], and the Multi-Spectral Green Tide Index (MGTI) [87,88]. However,
these algorithms require complex and accurate atmospheric correction procedures, which
can increase the complexity of interpretation. To address this, Zhang Hailong et al. devel-
oped the Floating Algae Index (FGTI) based on the DN values of different satellite data,
and Chen Ying et al. [89] proposed the Green Tide Index (TCT-GTI) algorithm based on the
Tassel Cap Transformation method, which requires no atmospheric correction.

Table 5. The Monitoring data and methods for marine green tide pollution disaster.

Author Time Satellite/Sensor Waveband Range Algorithm Characteristics

Hu [78] 2009 Aqua/Terra
MODIS V, NIR, SWIR Floating Algal

Index

It is less sensitive to changes in
environment and observational
conditions (aerosol type and thickness,
sun/observational geometry, and solar
brilliance) and can penetrate thin
clouds, providing a simple and
effective means of atmospheric
correction and making it easier to
establish image-independent
thresholds to monitor and quantify
planktonic macroalgae.

Shi et al.
[85] 2009 Aqua/Terra

MODIS SWIR Normalized Algae
Index

The effect of atmospheric molecular
scattering is removed, making the
NDAI more sensitive to the radiance
signal from the marine surface [85].

Son [90] 2012 GOCI V, NIR GOCI floating
green tide index

The muted or subtle signal of
planktonic green algae is enhanced and
separated from the surrounding
complex water signal [90].

Xing et al.
[86] 2016 HJ-1A/1B V, NIR

Virtual Baseline
Index of Floating
Algal Height

Even without the use of the shortwave
infrared (SWIR) band, VB-FAH appears
to be comparable to the planktonic
algal index (FAI).

Zhang et al.
[88] 2016 GF1 WFV, HJ CCD V Multispectral

Green Tide Index

It can effectively eliminate the influence
of external interference, such as
suspended sediment and thin clouds,
and has low sensitivity to the
environment [88].

Zhang et al.
[91] 2019

GF-1 WFV1,
GF-1 WFV3,
HJ-1B CCD,
Landsat-7 ETM+,
GOCI

V, NIR, SWIR Floating algae
index

The use of tasseled cap transformation
is more powerful than traditional
NDVI (normalized vegetation index) in
responding to perturbations from
environmental conditions,
observational geometry, sunlight, and
thin cloud pollution [88,91].

Chen et al.
[89] 2020 GOCI V Green Tide Index No atmospheric correction is

required [89].

Monitoring red tides can be conducted by using the spectral and temperature char-
acteristics of the affected water bodies and through the analysis of optical satellite data
(Table 6). The main methods of red tide remote sensing monitoring include the Chlorophyll
Concentration Anomaly Method, the Red Tide Index (MRI), the Rrs Band Ratio Method,
the Red Band Difference (RBD), the RBD_ KBBI (Karenia brevis Bloom Index), and oth-
ers [92,93]. Jiang Dejuan et al. [92] emphasized that the effectiveness of red tide monitoring
is dependent on the type of sensor, algorithm, and remote sensing time. Therefore, it is
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necessary to combine field survey data or ERGB images with the remote sensing data to
verify the accuracy of red tide monitoring in different times and regions [94,95].

Table 6. The monitoring methods for the marine red tide pollution disaster.

Research Methods Characteristics

Chlorophyll concentration anomaly
method

It characterizes the most important characteristic
parameters of red tide but is usually overestimated.

Red tide index
It can enhance the difference between the red tide water
body and the surrounding water body; therefore, it can be
used for the determination of red tide.

Band ratio method Using the ratio of reflection and absorption bands of red
tide water bodies, we can extract red tide information.

Red band difference method The method is based on the high fluorescence property of
dinolflagellate water bloom.

RBD_ KBBI The red tide monitoring index proposed is based on RBD.
Note: Compiled from references [92].

Marine engineering encompasses a variety of activities, including marine dumping,
marine oil and gas transportation, and others. The main source of seawater quality and
environmental degradation in the ocean is oil spills caused by ships during berthing at
ports, navigation, and accidents [96,97]. Early monitoring, tracking, and diffusion of
oil spills is crucial in designing effective algorithms for remote sensing monitoring [98].
However, the current methods for oil spill monitoring often overlook the space-time
characteristics and laws of the interaction between oil spills and the ocean [99]. Different
remote sensing technologies, such as microwave radar, optical (multi/hyperspectral remote
sensing), thermal infrared, and others, can be used to monitor marine oil spills. Microwave
radar remote sensing is one of the main methods and is based on the different absorption
and transmission properties of water and oil in electromagnetic waves. This method is
mainly used to extract the oil spill extent by identifying the “dark pixel” feature in the
microwave radar image [100,101]. Spectral response characteristics of oil spill simulation
experiments can be used to identify, classify, and quantify the types of oil spills [102,103].
Optical remote sensing can also be used for the identification and classification of oil
spills [104–106]. Solar reflected light can be used to monitor the oil spill thickness on
the marine surface; however, the monitoring range is limited to less than 0.4 mm due
to the different absorption, scattering, and reflection effects of oil spills on incident light.
Thermal infrared remote sensing has a larger monitoring range; however, the ability to
monitor oil spills is weaker than that of optical remote sensing due to the differences in
existing spaceborne sensors [107]. In a study of oil spills caused by marine accidents,
Lu Yingcheng et al. [105] used a GF-3 SAR image to delineate “suspected oil spills” and
analyzed the optical anomalies of the “Sanji” oil spill incident in the East China Sea in
2018 using Sentinel-2 multi-spectral remote sensing data (MSI) from the European Space
Agency. This study resulted in the optical remote sensing identification and classification
of different types of oil spills. Huang Ke et al. [104] used GF-1 satellite data along with
a thin oil film thickness model to calculate the oil film thickness of the oil spill area and
estimate the oil spill caused by the explosion of the Huangwei oil pipeline in Qingdao in
2013. Remote sensing monitoring of oil spills at sea is influenced by marine environmental
conditions, such as marine surface wind speed, and therefore, a combination of sea wave
spectrum and wind wave information is necessary for further research [108,109].

3.2.2. Debris and Microplastics Monitoring

Marine debris and microplastics have a significant negative impact on marine organ-
isms, ecosystems, fisheries, and tourism [110,111]. The monitoring of these pollutants in the
ocean through remote sensing can be effectively accomplished by using sensitivity analysis,
optical simulation, and satellite image spectral analysis (Table 7) [112,113]. The reflection
spectra of known marine floating objects can be utilized for this purpose [110,114]. Most
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of the research and monitoring of marine debris is focused on plastic waste and utilizes
optical sensors operating in the visible light, near-infrared, and short-wave infrared spectral
ranges, as well as SAR sensors and other image data sources [115]. However, microplastics
are plastic pollutants with a diameter of less than 5 mm and cannot be effectively identified
through satellite images due to their small size. While there have been efforts to observe
microplastics In water, through optical means such as lasers and polarization, there is
still a significant gap in terms of satellite observation. SAR sensors are commonly used
to monitor marine debris and microplastics by identifying surface active agents on the
marine surface. The classification methods for marine debris monitoring are mainly manual
classification, use of indices, spectral classification, or machine learning [115]. The use
of unmanned aerial vehicles and artificial intelligence for monitoring beach litter is an
emerging field [116]. Machine learning has been shown to significantly increase the speed
of screening for marine debris, operating 39 times faster than human screening in cases of
low sensitivity [116]. The development of a spectral characteristic model for marine debris
or microplastics is also an area of exploration. Goddijn-Murphy et al. proposed a reflection
model based on geometric optics and the spectral characteristics of plastics and seawater to
describe the interaction between sunlight and floating microplastics on the marine surface.

The use of satellite data are useful tool in monitoring marine debris as it can provide
repeated global coverage data at various scales and resolutions, which is not possible
through field observations or remote sensing with ships, aircraft, or unmanned aerial
vehicles. However, the limitations of optical satellite data include limited temporal coverage
due to fixed time and factors such as the sun, clouds, atmospheric aerosols, sensor saturation
on surfaces such as ice, sand, or snow, and a high solar zenith angle. Additionally, the
spatial resolution of satellite data are typically greater than 1 m, making it difficult to
monitor marine debris smaller than this resolution [117]. For the limitation, it is possible to
solve this problem by improving the accuracy of remote sensing observation instruments.
Furthermore, through multi-band remote sensing observation methods, we can gain a
deeper understanding of the electromagnetic wave characteristics of ground objects and
separate information from different observation objects.

Table 7. Remote sensing monitoring data and methods for marine debris and microplastics.

Author Time Band Range Satellite/Sensor Types of Plastic Waste Monitoring Methods Classification
Methods

Hamilton
[117] 2015 MW RADARSAT-2

Marine surface float (marine
bacteria associated with

surfactants)

Observe oil slicks to monitor marine surface slicks
using the association among bacteria produced by

surfactants and oil slicks (Hamilton et al., 2015)

Machine
learning

techniques

Aoyama
[118]

2016 NIR/SWIR Worldview-2 Marine debris Find common spectral features associated with the
presence of plastic [118]

Spectral
classification

method

2016 NIR/SWIR Worldview-3 Buoys around fishing nets Propose the spectral angle mapper (SAM)
classification method [118]

Spectral
classification

method

Kurata [119] 2016 MW RADARSAT-2
Marine surface float (marine

bacteria associated with
surfactants)

Observe oil slicks to monitor marine surface slicks
using the association among bacteria produced by

surfactants and oil slicks [119]

Machine
learning

techniques

Davaasuren
[120] 2018 MW

Sentinel-1A,
COSMO-
SkyMed

Microplastics (surfactants,
sea mud and biofilms)

Observe oil slicks to monitor marine surface slicks
using the association between bacteria produced

by surfactants and oil slicks [120]

Machine
learning

techniques
Goddijn-
Murphy 2018 V~SWIR -- Floating microplastics Model the reflection of sunlight interacting with

the marine surface of floating microplastics Model building

Howe [121] 2018 MW TerraSAR-X
Marine surface float (marine

bacteria associated with
surfactants)

Observe oil slicks to monitor marine surface slicks
using the association between bacteria produced

by surfactants and oil slicks [121]

Machine
learning

techniques
Topouzelis

[115]
2019 V, NIR Sentinel-2A Artificial floating plastics

(water bottles, LDPE plastic
bags and nylon fishing nets)

Supervised classification [108]
Machine
learning

techniques
2019 MW Sentinel-1

Biermann 2020 V, NIR, SWIR Sentinel-2 MSI Piece of floating large plastic
Develop novel float index (FDI) algorithms to
monitor floating plastics and distinguish them

from natural floats
Usage index

Kikaki [111] 2020
V, NIR Planet P

Floating plastic debris

Monitor and validate floating plastic debris by
systematically recording and assessing the spectral

characteristics of pure floating plastic and
distinguishing it from other floating materials on

the marine surface (e.g., Sargassum, foam)

Manual
classification

NIR, SWIR Sentinel-2 MSI
NIR, SWIR Landsat-8 OLI
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3.2.3. Inversion of Atmospheric Pollution Deposition

The monitoring of atmospheric pollution deposition typically involves measured data,
model simulations, and remote sensing. Atmospheric pollution deposition in the ocean can
be classified into three sub-categories that are influenced by the distribution of aerosols:
clean ocean, marine minerals, and marine pollution [122]. Therefore, the monitoring of
atmospheric pollution deposition can be conducted through aerosols. Remote sensing
by satellite is a highly effective research method for observing the global distribution
of aerosols, their optical properties, and their radiation effects due to the large spatial
and temporal variations of aerosol distribution [123]. Aerosol optical thickness, a key
parameter of aerosols, characterizes atmospheric turbidity and is a critical factor in deter-
mining the impact of aerosols on climate [124,125]. Some of the satellite sensors used to
monitor atmospheric pollution deposition include the Global Ozone Monitoring Exper-
iment (GOME), the Atmospheric Mapping Scanning Imaging Absorption Spectrometer
(SCIAMACHY), the Ozone Monitor (Aura OMI), the Interferometric Infrared Atmospheric
Detector (METOP/IASI), the FY-3 Total Ozone Detector (FY-3 TOU), and the UV Ozone
Vertical Detector (FY-3 SBUS) of FY-3 [126,127].

Remote sensing monitoring calculates the concentration of deposition according to
the formula by reversing the density of the vertical gas column, and then calculates the
dry and wet deposition flux in combination with the dry and wet deposition calculation
formula. For example, Dong Haiying et al. [124] used Terra MODIS data to reverse the
10 km resolution aerosol optical thickness and analyzed that the aerosol concentration
gradually decreased from the coastal waters to the outer sea due to the influence of land-
based pollution components, and there was a high aerosol optical thickness in the coastal
Bohai Sea, the Yellow Sea coast, and the Yangtze River estuary. SeaWiFS aerosol optical
thickness products can be used to study aerosol distribution and change characteristics. Hao
Zengzhou et al. [128] analyzed the aerosol distribution in China’s sea area and found that
the average aerosol optical thickness in the eastern China sea area has a zonal distribution
centered on the middle latitude and has seasonal changes. From spring to winter, the aerosol
optical thickness shifts from the high latitude sea area to the low latitude sea area, and the
scope is also gradually expanding. Mao Ying [122] over the sea air will be visible infrared
imaging radiometer VIIRS, medium resolution imaging spectrometer MODIS, stationary
seawater color satellite imager GOCI, and geosynchronous meteorological satellite AHI H8
aerosol optical thickness product data combined with field measured data. Compared with
other aerosol optical thickness remote sensing products, GOCI aerosol optical thickness
products show the characteristics of high sampling frequency and high precision.

The inversion results of aerosol optical thickness remote sensing products are affected
by a variety of factors, including the signal-to-noise ratio of the sensor itself, the accuracy
of the calculation of the surface reflectance of the underlying surface, and the rationality
of the selection of the preset aerosol model [122]. At the same time, the frequent human
activities and pollutant emission and diffusion, as well as the unique physical geography
and hydrological conditions of the sea area, will cause the sea area reflectivity to include
many factors, not only the atmospheric impact but also the role of the seawater itself, which
is more obvious in the coastal sea area.

4. Conclusions and Future Prospects
4.1. Conclusions

This paper summarizes the progress in the application of remote sensing for marine
pollution monitoring. Coastal areas are subjected to various forms of pollution from land,
sea, and air sources due to the difference in urbanization and industrialization, leading
to a degradation in the quality of the marine environment and having significant impacts
on marine ecology. Remote sensing monitoring of marine pollution encompasses various
aspects, including seawater quality, marine debris and microplastic pollution, and the inver-
sion of atmospheric pollution depositions. With the launch of various marine monitoring
satellites, remote sensing provides a wealth of data sources to monitor marine hydrology
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and environmental parameters. Remote sensing can provide information on environmental
parameters and habitats and monitor human activities, thus improving the marine envi-
ronment to some extent (Figure 8). Monitoring seawater quality and temperature mainly
uses remote sensing of seawater color and temperature, which is effective in monitoring
seawater quality deterioration and large-scale coastal seawater quality changes during
disasters. The methods of monitoring marine debris and microplastics have evolved from
remote sensing inversion to machine learning. The research into remote sensing monitoring
of marine atmospheric pollution deposition, which only quantifies atmospheric pollution
through aerosol thickness, is inadequate. It is crucial to integrate measured data, remote
sensing monitoring, and information services to achieve comprehensive monitoring and
assessment of marine pollution. Moreover, there are a number of marine remote sens-
ing products worldwide; however, there are significant differences in accuracy and other
aspects of similar products in different countries, leading to technical barriers that pose chal-
lenges to marine governance decisions and environmental protection in various countries
and regions. Therefore, developing three-dimensional monitoring techniques, combining
different types of sensors, and establishing a comprehensive marine monitoring database
is of great significance, along with data, technology, and standard sharing, to monitor the
marine environment and realize the sustainable development of marine resources.
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4.2. Future Prospects
4.2.1. The Tendency of Three-Dimension in Marine Monitoring

Despite its practicality, remote sensing monitoring has limitations in its ability to iden-
tify and quantify the majority of marine pollutants. Due to the complex three-dimensional
nature of the ocean, most remote sensing methods can only obtain information from the
upper layer, with the exception of the altimeter used for rough sounding. The best condi-
tions for optical sensors to penetrate the seawater surface are up to 27 m, while air sensors
can only reach up to 46 m [129,130]. This resolution limitation of the image data affects the
vertical dimension of marine pollution monitoring and assessment and cannot provide a
quantitative method for tracing the levels of individual substances. Thus, the development
of remote sensing technology that can monitor deep-sea pollution is a crucial goal for
the future [117,131]. Although monitoring the deep sea may monitor less pollution than
the upper sea, three-dimensional marine observation remains the key direction for the
progress of remote sensing technology. Furthermore, multi-source data integration with
three-dimensional ocean numerical models for marine pollution monitoring should be
used. Observations obtained through remote sensing and sensors are not sufficient to
project the 3D structure of the marine environment. Hence, 3D hydrodynamic and ocean
circulation modeling should be developed.

4.2.2. The Tendency of Multi-Source Data Fusion in Marine Pollution Monitoring

Despite the progress in remote sensing technology and the increasing availability of
data, the accuracy of remote sensing data products can still be impacted by environmental
factors such as spatial-temporal variability in the sky and on earth. The diversity of human
activities in the ocean also limits the validity of remote sensing data for marine pollution
monitoring. Currently, marine pollution monitoring primarily relies on field observations,
utilizing biochemical indices, rather than solely relying on remote sensing. To improve the
accuracy and reliability of marine pollution monitoring, it is necessary to integrate remote
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sensing with other monitoring tools, such as ship sensors, buoy sensors, aircraft sensors,
and marine ecological reserves/biosensor networks.

Remote sensing technology, such as high-resolution imaging, multi-spectral and hyper-
spectral, fluorescence, and Raman molecular spectroscopy, can be used to measure different
types of pollution; however, it is still not enough to replace on-site observations. For
example, the movement of pollutants in the ocean is influenced by complex hydrodynamics
and marine circulation, making it difficult for remote sensing technology to accurately track
the diffusion of marine pollution. Additionally, micropollution may not cause large-scale
pollution, and it is challenging to quantify using remote sensing alone.

Therefore, multi-platform and multi-means integrated observation technology is nec-
essary for accurate marine environmental monitoring. This includes the establishment of a
marine remote sensing database, which integrates satellite, aviation, ship, and shore-based
data to provide a comprehensive monitoring system for marine environmental monitoring.
The development of technology for collecting, storing, processing, analyzing, and utilizing
multi-source data will be crucial for the progress of marine remote sensing. By providing
timely information to the government and relevant entities, this database can support
disaster prevention, mitigation, and the launch of emergency plans.

In addition, the importance of ground measurements and alternative satellite cali-
bration systems (e.g., MOBY, AERONET, and GOOS) cannot be overlooked. The Marine
Optical Buoy (MOBY), a radiometric buoy stationed in the waters off Lanai, Hawaii, has
been the primary basis for the on-orbit vicarious calibrations of all three US ocean color sen-
sors and numerous international satellite sensors since late 1996 [132]. The aErosol rObotic
NETwork (AERONET) program is a federation of ground-based remote sensing aerosol
networks established by NASA and PHOTONS. For more than 25 years, the project has
provided a long-term, continuous, and readily accessible public domain database of aerosol
optical, microphysical, and radiative properties for aerosol research and characterization,
validation of satellite retrievals, and synergism with other databases. The Global Ocean
Observing System (GOOS) consists of a variety of observation means and is committed
to obtaining and disseminating reliable assessment and forecasting information on the
present and future state of the marine environment for the effective, safe, and sustainable
use of the marine environment.

4.2.3. The Benefit for the Sustainable Utilization of Marine Resources

The relationship between marine resources and the environment determines the sus-
tainable utilization of the ocean, and remote sensing technology for monitoring marine
resources and the environment can enable the effective implementation of marine spatial
planning. In the governance of marine resources, remote sensing methods are used to
strengthen the survey of the reserves and distribution of various marine resources and
monitor the impact of human activities on marine development and environmental pol-
lution. Based on the principle of unified coordination of economic, social, and ecological
benefits, by studying the intensity and methods of human utilization of the ocean, we
improve marine spatial planning, ensure the rational use of marine resources, and promote
sustainable development of the marine economy. In addition, comprehensive monitor-
ing data based on remote sensing databases is also the decision-making basis for marine
scientific utilization.
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