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Abstract: There are many mountain torrent disasters caused by melting icebergs and snow in Xinjiang,
which are very different from traditional mountain torrent disasters. Most of the areas affected by
snowmelt are in areas without data, making it very difficult to predict and warn of disasters. Taking
the Lianggoushan watershed at the southern foot of Boroconu Mountain as the research subject,
the key factors were screened by Pearson correlation coefficient and the factor analysis method,
and the data of rainfall, water level, temperature, air pressure, wind speed, and snow depth were
used as inputs, respectively, with support vector regression (SVR), random forest (RF), k-nearest
neighbor (KNN), artificial neural network (ANN), recurrent neural network (RNN), and long short-
term memory neural network (LSTM) models used to simulate the daily average water level at
the outlet of the watershed. The research results showed that the root mean square error (RMSE)
values of SVR, RF, KNN, ANN, RNN, and LSTM in the training period were 0.033, 0.012, 0.016, 0.022,
0.011, and 0.010, respectively, and in the testing period they were 0.075, 0.072, 0.071, 0.075, 0.075,
and 0.071, respectively. The performance of LSTM was better than that of other models, but it had
more hyperparameters that needed to be optimized. The performance of RF was second only to
LSTM; it had only one hyperparameter and was very easy to determine. The RF model showed that
the simulation results mainly depended on the average wind speed and average sea level pressure
data. The snowmelt model based on machine learning proposed in this study can be widely used in
iceberg snowmelt warning and forecasting in ungauged areas, which is of great significance for the
improvement of mountain flood prevention work in Xinjiang.

Keywords: flash flood; snowmelt; water level prediction; early warning; machine learning

1. Introduction

The rivers and underlying surfaces in Xinjiang have poor permeability, and the eco-
logical environment is extremely fragile. The extreme climate can easily cause natural
disasters such as floods, mudslides, and landslides [1]. Xinjiang has 20,695 glaciers, which
form a natural solid reservoir with an area of approximately 22,600 km2, accounting for
47.97% of China’s ice reserves [2]. The Tianshan Mountains straddle the entire territory
of Xinjiang and are the birthplace of many international rivers. The cross-border rivers
are complex and dense, and it is one of the areas with the most prominent cross-border
river problems in the world, accounting for 20.0~40.0% of the total runoff in the Tianshan
area [3]. Although snowmelt water is important for river runoff recharge, rapid snowmelt
may also cause flood disasters. Snowmelt floods are often mixed with a large amount of
ice, and may be accompanied by secondary disasters such as mudslides and landslides,
causing great damage [4]. At the same time, due to the existence of seasonal frozen soil, the
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melting process of snow cover is uncertain, resulting in frequent occurrence of snowmelt
floods in spring, which seriously threatens the safety of people’s lives and property [5].

The occurrence of extraordinary floods in Xinjiang is highly correlated with tempera-
ture and rainfall [6]. Huai and Muatta et al. used the SRM model to simulate snowmelt
runoff based on factors such as rainfall, temperature, and snow area, and achieved relatively
ideal results in areas without data in Xinjiang. At the same time, they pointed out that the
SRM model is an empirical model and is very sensitive to temperature data. Insufficient
temperature observation data limits the accuracy of the model [7,8]. Therefore, in recent
years, using weather station observation data and satellite remote sensing products as input
to drive the snowmelt runoff model to simulate the flood process has received widespread
attention [9]. The SNTHERM (snow thermal) model [10] and the snowpack model [11] are
multi-layer distributed snowmelt runoff models that can predict snow deposition, strati-
fication, surface energy exchange, and mass balance, and can also predict the occurrence
of avalanches. This type of model has physical meaning, but there are a large number of
model parameters that need to be determined.

In recent years, the application of the machine learning algorithm snowmelt model has
developed rapidly, playing an increasingly important role in hydrological simulation [12].
Vafakhah et al. used artificial neural network (ANN) and adaptive neural fuzzy inference
systems (ANFIS) to simulate snowmelt runoff in Iran, and found that ANN and ANFIS had
good performance in predicting snowmelt runoff [13]. Thapa developed a deep learning-
based long-short-term memory (LSTM) network model for simulating the Himalayan
Basin snowmelt-driven flow model, which uses remote sensing snow products as input
and compares it with support vector regression (SVR) models, pointing out that LSTM is
superior to SVR models [14]. Himan et al. drew an accurate flood susceptibility map for the
Haraz watershed in Iran using a novel modeling approach (DBPGA) based on a deep belief
network (DBN) with back propagation (BP) algorithm optimized by the genetic algorithm
(GA) [15]. Wang et al. used RF and ANN to establish a runoff simulation model and
pointed out that the snow data can effectively improve the accuracy of machine learning
simulations of snowmelt runoff [16]. Yang et al. used the swin transformer model to
evaluate the sensitivity of snowmelt in the Kunlun Mountains and found that altitude and
distance from rivers are the most important factors affecting snowmelt floods in the study
area [17]. Machine learning models are good at mining effective information from a large
amount of basic data. The key of modeling is to determine reasonable hyperparameters.

Currently, meteorological indicators and hydrological models are widely used in
Xinjiang to simulate snowmelt floods, and then to forecast and warn of flood disasters [18].
Flash floods usually occur in small and medium-sized catchments that lack of hydrological
data, which are also main objects that need to be protected in flash flood prevention work.
The purpose of this study is to explore a hydrological forecast method that can be used
in practical work under limited data conditions. This time, the study was carried out
on the Lianggoushan catchment of the southern slope of Mount Boroconu to analyze the
internal relationship between data such as temperature, air pressure, wind speed, snow
depth, rainfall, water level, etc., using support vector regression (SVR), random forest
(RF), k-nearest neighbor (KNN), artificial neural network (ANN), recurrent neural network
(RNN), and long short-term memory neural network (LSTM) models to simulate the daily
average water level of the outlet section of the two valleys, optimize hyperparameters
and compare the evaluation results of different models. The flood prediction model based
on machine learning proposed in this paper can provide a reference and basis for flood
forecasting and early warning work in Xinjiang.

2. Materials and Methods
2.1. Study Area

The Lianggoushan catchment is located in Nilek County, Xinjiang, at the southern foot
of Mount Boroconu, with a water catchment area of 162 km2, a longest confluence path of
26 km, a maximum altitude of 4147 m, and a maximum drop of 2440 m. Figure 1 shows
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the geographical location of the Lianggoushan catchment. The Lianggoushan catchment
has a temperate continental climate, which is characterized by long sunshine hours, large
temperature differences between day and night, obvious vertical differences, abundant
precipitation, short frost-free period, sharp temperature changes in spring, rapid cooling in
autumn, and great disparity between winter and summer. The annual average temperature
is 5.4 ◦C, the minimum temperature is −36.5 ◦C, and the maximum temperature is 37.1 ◦C;
the average minimum temperature in January is less than −10 ◦C, which is a severe
cold area. The annual average sunshine is 2795 h, and the annual average precipitation is
561.7 mm. The snow thickness is 34.7 cm, the average wind speed in the area is 2.9 m/s, and
the wind direction is mainly northwest. The frost-free period is generally about 104 days,
the depth of the seasonal frozen soil layer is generally about 0.9 m, and the maximum
frozen soil depth is 1.0 m.
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Figure 1. Location of Lianggoushan catchment.

2.2. Data Collection

In this study, the stage and rainfall observation data of Lianggoushan Station from
May 2020 to July 2023 were collected from the hydrological department of Xinjiang, and
the daily precipitation data and daily average water level data were established after
sorting out. Based on the GSOD meteorological dataset, the concurrent meteorological
data of two meteorological stations (JINGHE and BAYANBULAK) near the Lianggoushan
catchment were sorted out. The daily data of GSOD surface meteorological elements come
from the USAF DATSAV3 surface data and the federal climate integrated surface hour
(ISH) dataset. This time, the daily precipitation, average temperature, average dew point,
average air pressure, average wind speed, maximum sustained wind speed, and snow
cover depth, etc., in the dataset were used. The data items are shown in Table 1. Figure 2
shows the data collation results.
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Table 1. Data item details.

Station Data Source Item Desc Mean Value Precision and Unit

Lianggoushan Hydrological
department

Z Water level 2216.56 0.01 m
DYP Precipitation 1.8 0.1 mm

JINGHE GSOD

TEMP(J) Average temperature 49.4 0.1 ◦F
DEWP(J) Average dew point 30.0 0.1 ◦F

SLP(J) Average sea level pressure 1021.2 0.1 mb
STP(J) Average station pressure 981.2 0.1 mb

WDSP(J) Average wind speed 4.1 0.1 knots
PRCP(J) Daily precipitation 0.14 0.01 inches
SNDP(J) Snow cover depth 0.2 0.1 inches

BAYANBULAK GSOD

TEMP(B) Average temperature 26.1 0.1 ◦F
DEWP(B) Average dew point 15.0 0.1 ◦F

SLP(B) Average sea level pressure 1029.2 0.1 mb
STP(B) Average station pressure 758.2 0.1 mb

WDSP(B) Average wind speed 5.6 0.1 knots
PRCP(B) Daily precipitation 0.05 0.01 inches
SNDP(B) Snow cover depth 1.0 0.1 inches
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Figure 2. Observed data of stations.

The dataset was divided into two parts during modeling, with data from May 2020 to
December 2022 used for training the model and data from January 2023 to July 2023 used
for testing.

2.3. Modeling Approaches

In order to eliminate the influence of collinearity among different elements and im-
prove the efficiency of model, the elements of the GSOD dataset were screened, and the
most representative elements were selected by Pearson correlation coefficient, principal
component analysis, and factor analysis methods, and the superimposition of the study
catchment was carried out. Daily rainfall and average water level were used to construct
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the basic dataset, and the elements of the previous t days in the dataset were selected as
inputs to fit the water level residual dZ.

dZ = Zt+1 − Zt (1)

where Zt+1 and Zt are the daily average water level of the watershed on day t + 1 and day t,
respectively. When the model was applied and evaluated, the residual dZ and the water
level Zt of the previous day were superimposed to obtain the Zt+1. In this study, t was
taken as 30; that is, the data of the first 30 days were used to predict the water level residual
on the 31st day. The model structure is shown in Figure 3.

Water 2023, 15, x FOR PEER REVIEW 5 of 18 
 

 

2.3. Modeling Approaches 
In order to eliminate the influence of collinearity among different elements and im-

prove the efficiency of model, the elements of the GSOD dataset were screened, and the 
most representative elements were selected by Pearson correlation coefficient, principal 
component analysis, and factor analysis methods, and the superimposition of the study 
catchment was carried out. Daily rainfall and average water level were used to construct 
the basic dataset, and the elements of the previous t days in the dataset were selected as 
inputs to fit the water level residual dZ. 

𝑑𝑑𝑑𝑑 =  𝑍𝑍𝑡𝑡+1 −  𝑍𝑍𝑡𝑡 (1) 

where Zt+1 and Zt are the daily average water level of the watershed on day t + 1 and day 
t, respectively. When the model was applied and evaluated, the residual dZ and the water 
level Zt of the previous day were superimposed to obtain the Zt+1. In this study, t was taken 
as 30; that is, the data of the first 30 days were used to predict the water level residual on 
the 31st day. The model structure is shown in Figure 3. 

 
Figure 3. Flow chart of modeling. 

2.3.1. Element Screening 
(1) Pearson coefficient 

The Pearson correlation coefficient method was used to examine the degree of linear 
correlation between different elements [19]. For any two n-dimensional vectors X = {x1, 
x2…., xn} and Y = {y1, y2…., yn}, R(X,Y) was used to define their degree of correlation (see 
Formula (2)).  

𝑅𝑅𝑥𝑥𝑥𝑥 =  
∑ 𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖=1 − 𝑛𝑛𝑥𝑥𝑦𝑦
(𝑛𝑛 − 1)𝑠𝑠𝑥𝑥𝑠𝑠𝑦𝑦

=  
𝑛𝑛∑ 𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖𝑛𝑛

𝑖𝑖=1 − ∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 ∑ 𝑦𝑦𝑖𝑖𝑛𝑛

𝑖𝑖=1

�𝑛𝑛∑ 𝑥𝑥𝑖𝑖2𝑛𝑛
𝑖𝑖=1 − (∑ 𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1 )2�𝑛𝑛∑ 𝑦𝑦𝑖𝑖2𝑛𝑛
𝑖𝑖=1 − (∑ 𝑦𝑦𝑖𝑖𝑛𝑛

𝑖𝑖=1 )2
 (2) 

R(X,Y) is a real number between −1 and 1. When R(X,Y) is closer to 1, the linear cor-
relation between X and Y is higher and positive; when R(X,Y) is closer to −1, the linear 
correlation between X and Y is higher and negative; when R(X,Y) is closer to 0, the linear 
correlation between X and Y is lower. 
(2) Principal component analysis 

Principal component analysis (PCA) is a commonly used linear transformation di-
mensionality reduction processing method. Project the raw data into a low-dimensional 
space by calculating the covariance matrix, and sort the variances of the projected data 

Figure 3. Flow chart of modeling.

2.3.1. Element Screening

(1) Pearson coefficient

The Pearson correlation coefficient method was used to examine the degree of lin-
ear correlation between different elements [19]. For any two n-dimensional vectors
X = {x1, x2. . .., xn} and Y = {y1, y2. . .., yn}, R(X,Y) was used to define their degree of
correlation (see Formula (2)).

Rxy =
∑n

i=1 xiyi − nxy
(n− 1)sxsy

=
n∑n

i=1 xiyi −∑n
i=1 xi∑n

i=1 yi√
n∑n

i=1 x2
i − (∑n

i=1 xi)
2
√

n∑n
i=1 y2

i − (∑n
i=1 yi)

2
(2)

R(X,Y) is a real number between −1 and 1. When R(X,Y) is closer to 1, the linear
correlation between X and Y is higher and positive; when R(X,Y) is closer to −1, the linear
correlation between X and Y is higher and negative; when R(X,Y) is closer to 0, the linear
correlation between X and Y is lower.

(2) Principal component analysis

Principal component analysis (PCA) is a commonly used linear transformation di-
mensionality reduction processing method. Project the raw data into a low-dimensional
space by calculating the covariance matrix, and sort the variances of the projected data
from large to small as different dimensional components of the new space; that is, the
principal components. The principal components have lower dimensions than the original
data and are orthogonal to each other. PCA retains the most important features of the
original dataset to the greatest extent while reducing the dimensionality of the data and
avoiding redundancy [20].
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(3) Factor analysis

Factor analysis is a statistical method for simplifying and analyzing high-dimensional
data [21]. Assume that n-dimensional random vectors set X = {X1, X2,. . . Xm} satisfy
Formula (3):

X = u + A f + ε (3)

where f = {f 1, f2, . . ., fm} is an m-dimensional vector (m ≤ n), and each component of f is a
common factor. ε reflects some inherent characteristics of the dataset and is an unobservable
hidden variable. A = {ai,j|1 ≤ i ≤ n, 1 ≤ j ≤ m} and U = {u1, u2, . . .. . . un} are the load matrix
and special factors, respectively. ai,j reflect the importance of each jth common factor fj, and
ui reflects the unique features in each sample Xi. In factor analysis, weighted least squares
and regression methods can be used to calculate the factor scores of each common factor, in
order to evaluate the importance of each factor.

2.3.2. Machine Learning Methods

In this study, we selected 6 different types of machine learning methods for analysis
and comparison, including support vector regression (SVR), random forest (RF), k-nearest
neighbor (KNN), artificial neural network (ANN), recurrent neural network (RNN), and
long short-term memory neural network (LSTM). The modeling software used in this study
was Python 3.1.1, and the main packages used were Scikit-learn 1.2.2, Keras 2.13.1, and
TensorFlow 2.13.0.

(1) Support Vector Regression (SVR)

Support vector machine (SVM) projects sample data from low-dimensional space to
high-dimensional space, and finds a hyperplane in high-dimensional space that minimizes
the distance between the projection vector and the hyperplane. The hyperplane divides
the high-dimensional space, so SVM can solve the classification problem very well [22].
The principle of support vector regression (SVR) is similar to that of SVM, but the objective
function is different. SVM looks for a separating hyperplane so that the vast majority
of sample points are located outside the two decision boundaries. SVR also considers
maximizing the interval, but considers points within the decision boundary so that as many
sample points as possible are within the interval. SVR inherits the advantages of support
vector machines and is usually used when the number of samples is limited [23]. For a set
of variables {X1, X2, . . . Xn}, define the output function as follows:

f (Xi) = ∑nSV
j=1 ωj ϕ

(
Xi, Xj∗

)
+ b (4)

where Xi is the i-th independent variable; f (Xi) is the model output; Xj* is the support vector
selected by the model (selected from all independent variables during the model training
phase); nSV is the number of support vectors (not greater than the number of independent
variable groups); ω And b are coefficients; ψ(Xi, Xj*) is a kernel function.

(2) Random Forest (RF)

Random forest adopts the ensemble learning mode, which combines multiple classi-
fiers to achieve an integrated classifier with better prediction effect. In the random forest
model [24], CART is used as the classifier [25], and different features are selected from the
original dataset to train each CART by sampling with put back. For classification problems,
all CARTs are first used to predict the sample classification, and then the voting method is
used. The category with the most votes is the final category. For regression problems, a
simple average method is used to obtain the predicted value.

(3) K-Nearest Neighbor (KNN)

The k-nearest neighbor algorithm is a non-parametric classification and regression
algorithm, which can be used to solve classification and regression problems [26]. In
the KNN algorithm, the input is a vector, and the output is the category to which the
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vector belongs or the value of the vector. The core idea of the KNN algorithm is that if a
sample has the most sample points belonging to a certain category among the k-nearest
neighbor samples in the feature space, then the sample also belongs to this category. In the
classification problem, the prediction result of the KNN algorithm is determined by the
most k neighbors belonging to the category. In regression problems, the prediction result
of the KNN algorithm is determined by the average value of k neighbors. The distance
between the two n-dimensional vectors X = {x1, x2. . ., xn} and Y = {y1, y2. . ., yn} in KNN is
defined by the following formula:

D(X, Y) = p
√

∑n
i=1|xi − yi|p (5)

where p is a constant. When p = 1, D (X,Y) is the Manhattan distance; when p = 2, it is the
Euclidean distance.

(4) Artificial Neural Network (ANN)

An artificial neural network is an abstraction and simulation of the brain’s neuron
structure. Its structure consists of multiple layers, and each layer has a certain number of
neurons. Neurons between different layers are connected through transfer functions, and
weights are used to modify the output values [27]. The form of transfer functions is very
simple, as shown in the following formula:

f (x) = ωx + b (6)

where x is the input, ω is the weight coefficient, and b is the constant term. The model
has the characteristics of self-adaptation, self-organization, and real-time learning. It can
simulate linear and nonlinear functions very well and is widely used in hydrological
simulation. The BP neural network model is a multi-layer feedforward neural network
that performs error correction through the error back propagation algorithm [28]. Its core
feature is that the signal is forward propagated, and the error is reverse propagated. During
the forward propagation process, the input signal is processed layer by layer through
the input layer and hidden layer to obtain the output result; if the result does not meet
expectations, it enters the back propagation process, returns the error forward, and then
modifies the weight of each layer.

(5) Recurrent Neural Network (RNN)

A recurrent neural network (RNN) is a special artificial neural network model. It
is proposed based on the view that human cognition is based on past experience and
memory. It not only considers the input at the previous moment, but also gives the network
a memory for the previous content. An RNN usually takes sequence data as inputs and
builds corresponding layers based on the input sequence. The calculation results of the
previous layer will be brought to the next layer to participate in the calculation [29], so
it can interpret the correlation of contextual data to a certain extent. An RNN is often
used in natural language processing and time series prediction. RNNs have good time
series memory ability, and it is better than that of ordinary neural network in nonlinear
relationship fitting of time series data [30]. For the time series {X1, X2, . . . XT}, the cycle
unit at time t of an RNN is expressed by the following formula:{

ht = f (st−1, Xt, θ)
ot = ωht + b

(7)

where h is the system state, s is the internal state, related to the system state, f is the
excitation function or feedforward neural network, θ is the weight coefficient inside the
cyclic unit, and t has nothing to do with t. o is the output result, ω is the weight coefficient,
and b is a constant term.

(6) Long Short-Term Memory Neural Network (LSTM)
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Long short-term memory neural networks are a special recursive neural network [31].
An LSTM is proposed to solve the long-term dependence problem of RNNs caused by
the disappearance of error gradient over time in an RNN. Unlike the RNN network, the
chain structure of an LSTM is composed of memory blocks. An LSTM effectively solves
the long sequence problem by introducing concepts such as memory units, input gates,
output gates and forgetting gates, thus making up for the problem that RNNs perform
better in short-term memory but perform worse in long-term memory. Corresponding
solutions were proposed for the gradient vanishing and explosion problem, and achieved
good results in predicting long sequence time [32]. For the time series {X1, X2, . . . XT}, each
LSTM unit has a dedicated unit memory, and at time t, the LSTM unit status is c and h is
the output hidden state. The forgetting gate f, input gate i, and output gate o are used to
control the model’s access to the storage unit. The calculation process of an LSTM unit is
as follows: 

ft = σ
(

ω f [ht−1, Xt] + b f

)
it = σ(ωi[ht−1, Xt] + bi)
ot = σ(ωo[ht−1, Xt] + bo)
∼
Ct = tanh(ωc[ht−1, Xt] + bc)

ct = ft·ct−1 + it·
∼
ct

ht = ot·tanh(ct)

(8)

where σ is the sigmoidal function, ω is the weight coefficient, and b is a constant term.

2.3.3. Evaluation Criteria

To evaluate the suitability of the proposed model for the studied basin, the root mean
square error (RMSE) and coefficient of determination were chosen to analyze the degree of
goodness of fit.

RMSE is the standard deviation of the errors. A lower RMSE value shows a better fit.
Its calculation formula is as follows:

RMSE =

√
∑N

i=1(Qs(i)−Q0(i))
2

N
(9)

where N is the number of data points, Qs(i) is the simulated flow at the i-th moment, Qo(i)
is the observed flow at the i-th moment.

The coefficient of determination (R2) measures the explanatory proportion of indepen-
dent variables and reflects the goodness of fit of the regression equation The value range
of R2 is [0, 1]. When R2 is close to 0, the correlation is low. When R2 is closer to 1, the
correlation is higher. Its calculation formula is as follows:

R2 =

 ∑N
i=1 (Qs(i)−Qs)(Qo(i)−Qo)√

∑N
i=1 (Qs(i)−Qs)

2
√

∑N
i=1 (Qo(i)−Qo)

2

2

(10)

where Qs is the average simulated flow, and Qo is the average measured flow.

3. Result and Discussion
3.1. Element Screening

In this study, we selected 14 elements (see Table 1) from two weather stations (JINGHE
and BAYANBULAK) for modeling. It can be seen from Figure 4 that quite a few of the
elements had a high linear correlation, including TEMP, DEWP, and SLP. In order to reduce
the impact of these factors on the model, we needed to screen the most representative
factors from 14 elements.
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Principal component analysis is used to reduce the dimensionality of data. On the one
hand, it is necessary to reduce the data dimension as much as possible, and on the other
hand, it is necessary to retain the details of the original data as much as possible. These
two options have conflicting requirements for data dimensions, so a balance needs to be
established between the two requirements.

Figure 5 shows the cumulative PCA contributions. It can be seen from Figure 5 that the
cumulative contribution of 6 principal components reached 90%, which means that at least
6 dimensions were needed to approximately describe most features of the original dataset.
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Table 2 shows the factor analysis results. The Pearson coefficient method determines
the degree of linear correlation between various elements, and the PCA method determines
the minimum dimensions needed to describe the dataset. Finally, the input elements of the
machine learning model were determined through the factor analysis method. The five
elements of SLP(J), WDSP(J), STP(B), SNDP(B), and SNDP(J) were selected and combined
with the precipitation and water level of Lianggoushan Station to form a modeling dataset.

Table 2. Factor analysis results.

Item Com1 Com 2 Com 3 Com 4 Com 5

TEMP(J) 0.91 0.26 0.11 −0.21 −0.16
TEMP(B) 0.85 0.28 0.04 −0.41 −0.15
DEWP(J) 0.90 0.21 0.05 −0.14 −0.15
DEWP(B) 0.85 0.30 0.01 −0.36 −0.13

SLP(J) −0.95 −0.16 0.16 0.08 0.12
SLP(B) −0.82 −0.32 0.19 0.40 0.14
STP(J) −0.95 −0.13 0.22 0.05 0.11
STP(B) −0.11 −0.16 0.97 −0.02 −0.03

WDSP(J) 0.35 0.70 −0.08 0.00 −0.05
WDSP(B) 0.18 0.62 −0.14 −0.25 −0.09
PRCP(J) −0.24 −0.14 −0.14 0.23 −0.14
PRCP(B) 0.05 0.03 −0.06 0.01 −0.02
SNDP(J) −0.26 −0.10 −0.03 0.09 0.78
SNDP(B) −0.45 −0.14 0.00 0.58 0.21

3.2. Machine Learning Results

The choice of hyperparameters will have an important impact on the results of machine
learning. For the 6 different models, we designed and calculated 24 sets of results. The
models and parameters corresponding to each set of results are shown in Table 3. The best
performance results of each machine learning method are shown in Table 4, and the water
level process corresponding to training and testing is shown in Figures 6 and 7.

Table 3. Hyperparameter settings and results.

Algorithm Setting Items Hyperparameter Training Testing
RMSE R2 RMSE R2

SVR Kernel function

kernel = linear 0.041 0.985 0.082 0.960
kernel= rbf 0.033 0.990 0.075 0.967

kernel = poly 0.036 0.988 0.078 0.964
kernel = sigmoid 5884 −3.2 × 108 3251 −6.2 × 108

RF Estimator number

Estimators = 10 0.014 0.998 0.073 0.969
Estimators = 50 0.013 0.998 0.072 0.969

Estimators = 100 0.012 0.999 0.072 0.970
Estimators = 500 0.012 0.999 0.072 0.969

KNN Neighbor number

Neighbors = 2 0.016 0.997 0.071 0.970
Neighbor = 10 0.029 0.992 0.071 0.970
Neighbor = 30 0.033 0.990 0.070 0.971

Neighbor = 100 0.035 0.989 0.070 0.971

ANN
Number of neurons

and layers

16 × 16 0.038 0.986 0.074 0.968
32 × 32 0.040 0.985 0.078 0.964
64 × 64 0.031 0.991 0.075 0.967

256 × 256 0.022 0.995 0.075 0.967
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Table 3. Cont.

Algorithm Setting Items Hyperparameter Training Testing
RMSE R2 RMSE R2

RNN
Number of neurons

and layers

1024 0.011 0.999 0.083 0.959
64 × 32 0.010 0.999 0.076 0.966

128 × 64 × 32 0.012 0.999 0.076 0.966
256 × 128 × 64 × 32 0.011 0.999 0.075 0.967

LSTM
Number of neurons

and layers

1024 0.013 0.998 0.076 0.966
64 × 32 0.012 0.999 0.072 0.969

128 × 64 × 32 0.012 0.999 0.073 0.968
256 × 128 × 64 × 32 0.010 0.999 0.071 0.970

Table 4. Best results of each method.

Algorithm Training Testing
RMSE R2 RMSE R2

SVR 0.033 0.990 0.075 0.967
RF 0.012 0.999 0.072 0.969

KNN 0.016 0.997 0.071 0.970
ANN 0.022 0.995 0.075 0.967
RNN 0.011 0.999 0.075 0.967
LSTM 0.010 0.999 0.071 0.970
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3.3. Selection of Hyperparameters

In the SVR model, we tried 4 kinds of kernel functions, including linear (linear kernel),
poly (polynomial kernel), RBF (radical basis function) and sigmoid (sigmoid tanh). As can
be seen from Table 3, the simulation results of RBF were better than those of other kernel
functions, and the results of sigmoid were relatively poor, which made it unsuitable for
this model.

The performance of the random forest model was excellent. This study compared the
results of using different numbers of estimators. From Table 3, it can be seen that the results
of using 10, 50, 100, and 500 estimators were not significantly different, and the ranking
of all four results was relatively high. From this set of results, it can be seen that the more
estimators there were, the better the results. However, after a certain number of estimators,
the improvement of the results was negligible.

The KNN performance was best in testing. It can be seen from Table 3 that fewer
neighbors can produce better simulation results, so we ran some additional tests, changing
the neighbors from 2 to 10 for each test. Among these results, the best result for the number
of neighbors was 2. In these tests of KNN, the distance function adopted the default value
‘minkowski’, and p = 2, which is equivalent to the standard Euclidean distance.

In the ANN algorithm, in order to speed up the convergence, we used the Adam
algorithm to adaptively modify the learning rate. We compared 4 kinds of activation
functions, including identity, logistic, tanh, and relu, the results of relu were relatively
better, so finally relu was selected as the activation function here. It can be seen from Table 3
that the more neurons, the better the simulation results of ANN. Determining a reasonable
number of neurons was the key to improving the performance of ANN.

In the RNN algorithm, we used the Adam algorithm to modify the learning rate, used
relu as the activation function, and mean square error (MSE) as a loss function. It can be
seen from Table 3 that the performance of the RNN algorithm in training was the best
among several methods, but the performance in testing was poor. In order to prevent
overfitting, we added a dropout layer to the model mechanism, and the discard rate was
set to 0.05; that is, we randomly discarded 5% of the data. It can be seen from Table 3 that
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the performance of RNN improved steadily with the increase of the number of neurons
and layers.

As can be seen from Table 3, the comprehensive performance of LSTM was the best
among several models. In order to better compare RNN and LSTM, we used the same
parameter settings as RNN in LSTM. When the 4-layer LSTM structure was adopted and
the number of hidden nodes was set to 256, 128, 64, and 32 respectively, the model achieved
the best results among the 24 groups both in the training and the testing. Juna et al. believe
that the number of layers of LSTM is not important, and there is little difference between
using a single-layer structure and a multi-layer structure [22]. This is inconsistent with the
results of this study. This may be related to the dimension of the input data. In the study of
Juna et al., the dimension of input data did not exceed 10 dimensions, and the dimension
of the input data for this study was 7 × 30. This leads to a more complex LSTM model
structure required for optimization but this does not mean that more neurons and layers
will lead to better results. When using a 4-layer LSTM structure and setting the number of
hidden nodes to 1024, 512, 256, and 128, the model training RMSE changed from 0.10 to
0.13, and the test RMSE changed from 0.071 to 0.073. The results became worse.

3.4. Result Analysis

The best results of each machine learning method were selected from the 24 sets of
results, and Figure 8 shows the boxplots of their error distributions during the training
and testing periods. It can be seen from the figure that the median errors of LSTM and
RNN were relatively close to 0 in both the training period and the test period, and these
two models performed especially well in the training. In addition, the performance of the
RF model was quite good, with lower errors in the test period and the training period than
the SVR, KNN, and ANN models.
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It can be seen from Table 4 that the results of LSTM were the best, with RMSE of 0.011
and 0.071 in the training period and testing period, and R2 of 0.999 and 0.970, respectively.
The next best results were from RF, whose RMSEs in the training period and the test period
were 0.012 and 0.072, respectively; R2 values were 0.999 and 0.969, respectively. From an
application point of view, RF may be a better choice, because as long as the number of
classifiers is set large enough, an ideal model can be obtained through training. The LSTM
model requires more work on model structure design and parameter tuning.

Figure 9a shows the importance of various elements in the random forest model.
It can be seen from the figure that the most important thing in predicting the residual



Water 2023, 15, 3620 14 of 18

result was the average sea level pressure of the previous day, followed by the average
wind speed of the 30 days ago. Figure 9b shows the cumulative importance of various
elements. It can be seen from the figure that the average wind speed had the highest
cumulative importance, followed by the average sea level pressure, and then the average
station pressure of BAYANBULAK station and Lianggoushan station. The water level of
Lianggoushan Station was less important to the model than the daily precipitation. It can
also be inferred that the flood at Lianggoushan was mainly caused by snowmelt, with
relatively less runoff caused by rainfall.
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Table 5 and Figure 10 show the average error, maximum error, and minimum error
of the LSTM model for each month. It can be seen from Table 5 that the monthly average
water level error of the LSTM model was relatively stable, mostly not exceeding ±0.01 m.
The overall error range was [−0.465, 0.240]. It can be seen from Figure 10 that the model
was largest in March and April, and its performance was unstable. This period is a critical
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period for the annual snowmelt for glaciers in Xinjiang. This also shows that the currently
selected elements cannot fully explain the process of glacier snowmelt runoff. How to
optimize the error of LSTM and further reduce the error range is another direction that
needs to be studied next.

Table 5. Monthly water level errors of RF model and LSTM model.

Month Mean Water Level (m)
Error of LSTM Model

Mean Min Max

Jan. 2216.29 −0.009 −0.014 0.000

Feb. 2216.24 0.001 −0.068 0.144

Mar. 2216.22 −0.005 −0.465 0.102

Apr. 2216.47 −0.003 −0.361 0.240

May 2216.45 0.000 −0.132 0.171

Jun. 2216.97 0.004 −0.092 0.101

Jul. 2216.92 0.002 −0.061 0.096

Aug. 2216.74 0.008 −0.037 0.048

Sep. 2216.59 −0.009 −0.014 −0.003

Oct. 2216.33 −0.010 −0.015 −0.004

Nov. 2216.33 −0.011 −0.018 −0.007

Dec. 2216.53 −0.010 −0.017 −0.007
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In addition, it should be pointed out that the choice of fitting data has a great influence
on the results. In the initial study, the first choice was to fit the water level data, and the
result was so poor that it could not be put into practical use at all. After choosing the water
level residual, the simulation results were significantly improved. In addition to the daily
average water level, the model can also predict the daily minimum water level and daily
maximum water level after simple modification.
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4. Conclusions

In this study, a daily water level prediction model of the Lianggoushan catchment
was constructed. Combined with the daily meteorological and hydrological observation
data of the previous month, it could predict the average water level of the following day.
Comparing the simulation results of SCR, RF, KNN, ANN, RNN, and LSTM, the main
conclusions are as follows:

(1) We used Pearson coefficient, principal component analysis, and factor analysis to
screen input elements, screen 14 kinds of meteorological observation data from
JINGHE and BAYANBULAK stations, and finally select 5 kinds of elements for mod-
eling, including average sea level pressure, average wind speed, snow cover depth of
JINGHE and average station pressure, and snow cover depth of BAYANBULAK. From
the perspective of Pearson coefficient, the average temperature, average dew point,
and average sea level pressure had a very high linear correlation. When constructing
the model, we approximated that they were equivalent and only retained one.

(2) SVR, RF, KNN, ANN, RNN, and LSTM were selected to construct 24 sets of models
with different hyperparameters. Among all the models, LSTM had the best results,
and the RMSEs in the training period and the testing period were respectively 0.011
and 0.071, and R2 values were 0.999 and 0.970, respectively. Next best were the
results of RF, whose RMSEs in the training period and the test period were 0.012
and 0.072, respectively; R2 values were 0.999 and 0.969, respectively. Compared to
other models, LSTM performed best, but it had more hyperparameters to optimize.
From an application point of view, RF may be a better choice, because as long as
the number of classifiers is set large enough, a model with good performance can
be obtained. The LSTM model requires more work on model structure design and
parameter optimization.

(3) From the contribution rate results of the RF model, when the model made predictions,
the contribution of meteorological elements was higher, and the contribution of rainfall
in the basin was lower. From the prediction results of LSTM, the average error of each
month was relatively stable, most of which did not exceed ±0.01 m, and the errors
fluctuated greatly in March and April. The selection of fitting data is very important
when modeling. The results obtained by directly fitting the water level were not
ideal. Adjusting the model to try to fit the water level residuals (i.e., the difference
between future water levels and known water levels), and calculating future water
levels based on the predicted residuals, would significantly improve the accuracy of
the simulation.

(4) The purpose of this study was to explore a hydrological forecast method that can be
used in practical work under limited data conditions. Hydrological sensors have been
widely constructed in Xinjiang, and as time goes by, more and more hydrological data
will be available for modeling. For areas with rich hydrological data, there are more
and better choices when modeling. Physical models, distributed models, or combina-
tions of different types of models can obtain richer conclusions and results. Therefore,
the method proposed in this study is a temporary solution when hydrological data
are limited, and subsequent research on snowmelt models and forecasting and early
warning technologies in Xinjiang should be continued.
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