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Abstract: Water control dikes, as an important infrastructure for national economic and social
development, play an important supporting and guaranteeing role in flood control, irrigation,
power generation, water supply, tourism, and other aspects. Jiangxi is a major province in water
conservancy, with dense rivers and lakes, and it owns tens of thousands of water control dikes of
various types. Most of the water control dikes exhibit structural aging, continuous medical risks,
and reduced benefits, which urgently require efficient maintenance and standardized management.
Management is a complex task, and the level of management directly affects the functional efficiency
and service life of dikes. In view of these issues, this study takes dikes as essential and typical
water conservancy engineering objects and analyzes the evaluation criteria of safe production and
the demands of engineering management. It establishes an evaluation index system suitable for
normalized management. The Analytic Hierarchy Process (AHP) model is utilized to determine
indicator weights, and a neural network water conservancy engineering evaluation algorithm is
constructed to match the evaluation model. Finally, an improved algorithm for the GA (genetic
algorithm)-BP (backpropagation) neural network is proposed, incorporating additional momentum
factors and considering adaptive learning rates. The developed model is validated through a case
study in Jiangxi, China, and the results demonstrate its accuracy and comprehensiveness in reflecting
the actual situation. This research is relevant to designers, contractors, and governments seeking
solutions to achieve standardized management in water control dikes.

Keywords: Analytic Hierarchy Process; GA-BP artificial neural network; water control dike;
standardization management

1. Introduction

The “14th Five-Year Plan” of China proposes the need to strengthen water conservancy
infrastructure construction to promote the modernization of China’s infrastructure. Dikes,
as an important part of water conservancy infrastructure, play a crucial role in ensuring
and improving people’s livelihoods and promoting social and economic development.
However, dike construction involves land occupation [1], consumption of natural resources
(water, raw materials, etc.), energy consumption [2], greenhouse gas emissions [3], and the
generation of construction waste [4]. The rapid expansion in scale and quantity of dike
construction inevitably leads to environmental issues. Therefore, it is urgent to achieve
sustainable development of water conservancy projects and evaluate the safe production of
dike construction.

Jiangxi Province is a major province in water conservancy, with hundreds of thou-
sands of various types of dikes playing an important role in flood control, irrigation, power
generation, and water supply, making outstanding contributions to regional economic
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development. Most of these dike projects were constructed in the 1950s to 1970s when the
technological level was relatively backward, and there was a lack of strict supervision and
management. After the “98” flood, large-scale reinforcement works were carried out by
national and local governments, and many projects were able to eliminate safety hazards.
However, issues related to operation and management remain prominent, primarily in
four aspects: inadequate implementation of management responsibilities, severe short-
age of management funds, extensive management practices, and low qualifications of
management personnel.

In the context of the national policy of “standardization system construction” and
the new era’s general tone of water conservancy development focusing on addressing
shortcomings and strengthening regulatory measures, water conservancy standardization
has become a key driver for promoting high-quality development in the water conservancy
industry. The Water Resources Department of Jiangxi Province promptly issued the “Notice
on the Comprehensive Implementation of Standardized Management of Water Conservancy
Projects” and various assessment scoring standards for standardized management. In 2019
and 2020, the evaluation indicators were integrated and summarized, resulting in more
than 20 evaluation criteria in four categories: safety management, operation management,
maintenance management, and management support. After three years of comprehensive
implementation, over 13,000 water conservancy projects in the province have passed the
evaluation and met the standards. Starting in 2021, the standardized management of water
conservancy projects has entered the stage of consolidation and improvement, with a focus
on promoting the normalization of standardized management for projects that have already
met the standards.

Currently, research on safe production in water conservancy projects mainly focuses
on three aspects: (1) The development process of green construction and safe production: In
the 1960s, Paola Soleri first emphasized the relationship between construction and the envi-
ronment as a key research topic. In the 1980s, the concept of sustainable development was
formally proposed at environmental conferences [5]. Subsequently, Charles Kibert defined
the concept of sustainable construction, emphasizing the efficient use of resources, mini-
mizing environmental pollution, and its impact on human health during the construction
process [6]. In the 1990s, research on green construction started in China, while interna-
tionally, green construction standards were already being established, such as BREEAM by
the Building Research Establishment Ltd. in the UK and LEED by the US Green Building
Council [7,8]. During this period, Professor Laure Koslda (1992) introduced the concept of
“lean construction”, which aims to reduce environmental damage and minimize the waste
of water, electricity, materials, and oil by improving construction management practices [9].
In the early 21st century, green construction gained increasing attention. Isabelina Nahmens
(2009) argued that the transition from lean construction to green construction signifies a
shift in construction project management from solely pursuing economic maximization
to considering environmental impacts, social contributions, and long-term project bene-
fits [10]. Chrisna (2007) suggested that developing countries should avoid the approach of
“pollute first, then treat” when promoting infrastructure development [11]. Mohd (2012)
and others proposed the promotion of green construction concepts to facilitate sustainable
development in construction projects in Malaysia [12]. Circo (2008) advocated for more
land-use policies by the US government to promote the development of green buildings [13].
L.B. Robichaud (2010) suggested optimizing cost structures to reduce cost control factors
that restrict the development of green construction in the building industry [14]. Other
international scholars have concluded from literature research that companies need to
balance various factors, such as cost and productivity, in the context of green construction.
(2) Research on safe production evaluation: In terms of green construction evaluation, the
Building Research Establishment Ltd. in the UK summarized the evaluation categories as
energy use, ecological environment, transportation facilities, environmental protection, site
utilization, construction materials, water environment, and public health, with rating levels
of excellent, good, fair, and pass. The US Green Building Council’s evaluation of green
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buildings includes site design, indoor environmental quality, technological innovation, and
the utilization of resources, energy, materials, and water, with rating levels of platinum,
gold, silver, and certified. Regarding evaluation methods for safe production, a consider-
able number of scholars used the Analytic Hierarchy Process (AHP) for evaluation in the
early stage [15,16]. (3) Research on intelligent information processing and machine learning
in safe production management: Scholars such as Wang Shou-Jue (2002) from the Institute
of Semiconductors, Chinese Academy of Sciences, conducted application research in the
field of pattern recognition [17]. Zhou Zhihua (2003) and others from Nanjing University
proposed the GAFNE neural network model for medical diagnosis [18]. Liao Xiaofeng
(2001; 2002) and others from Southwest University researched the stability and robustness
of neural networks, which have been widely applied in pattern recognition and automatic
control [19–21]. Scholars such as Ni Shenhai (2000) applied artificial neural network theory
and methods to establish a BP artificial neural network model for groundwater quality
evaluation, significantly improving the accuracy of groundwater quality evaluation for
the Six Eye Wells in Hefei City [22]. Zhu Qihong (2003) proposed an evaluation model for
enterprise knowledge management based on artificial neural networks, which proved to be
feasible and effective in enterprise knowledge management evaluation [23]. Wang Meiling
(2009) proposed an improved BP artificial neural network algorithm, which adjusts the
classical neuron transfer function by introducing new parameters [24]. The algorithm was
applied to actual teaching evaluations, and appropriate parameter values were selected
based on the analysis results of real data. Yan Bin (2008) proposed the application of radial
basis function neural networks in the comprehensive safety evaluation of dikes, which was
applied to dike safety evaluations [25]. Wang Aihua and Sun Jun (2009) proposed a BP
artificial neural network-based model flowchart for engineering project management and
provided corresponding suggestions for the parameter settings of the BP artificial neural
network application [26,27].

With the rapid development of artificial intelligence, dike management is increasingly
integrated with machine learning. The machine-learning-based method, which considers
the nonlinear variation of variables, focuses on the selection of input variables and the opti-
mization of model effects. The method has shown great potential in many fields of science
and engineering involving data-based prediction. Some researchers developed a support
vector regression identification for predicting the behavior of dike structures [28]. Yan et al.
(2022) integrated the Faster Region-Convolutional Neural Network (Faster R-CNN) tech-
nique with Optical gas imaging (OGI) for automated hydrocarbon leak detection [29].
Li et al. (2022) selected 27 influencing parameters to build a hydraulic structure safety
monitoring model based on a Random Forest (RF) intelligent algorithm to predict dam
uplift pressure [30]. Dong et al. (2020) constructed an environmental quantity response
model using an RBF neural network for anomalous data and established a coupling rela-
tionship for tailings dam safety evaluation [31]. Jia et al. (2019) used the GBRT algorithm
based on slope monitoring data to improve risk prevention and control [32]. Some schol-
ars have also introduced machine-learning methods to the tailings dam risk prediction
problem and achieved good results [33]. The interpretability of the model is poor be-
cause machine-learning-based methods cannot extract the significance of each influencing
variable. Furthermore, ML-based models are based on time-domain prediction.

Shortcomings of existing evaluation indicators and methods:
The correlation between indicators affects the accuracy of evaluation results to some

extent. Traditional evaluation methods, such as the coefficient method, assume that the
evaluation indicators are independent of each other. However, if there is a high correla-
tion between evaluation indicators, it can severely affect the accuracy of the evaluation
results. In reality, the selected indicators in the current indicator system are not completely
independent of each other, and some indicators have a strong correlation. This inherent
correlation in the chosen method already implies inaccuracies in the results.

Adjustment is not made for indicators of different natures. In current performance
evaluation practices in China, a weighted comprehensive evaluation is commonly used,
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which requires the weights to be positive. This means that when using these indicators for
a comprehensive evaluation, all indicators must reflect the evaluation results in the same
direction. Taking the weighted average of indicators with different natures will inevitably
lead to a lack of scientific validity in the calculation results. Therefore, it is necessary to
separate appropriate indicators from other indicators.

Inability to accurately reflect the diversity of engineering management practices. First,
existing evaluation criteria consist of predominantly static indicators such as organizational
personnel, funding, systems, and manuals, which carry a higher weightage in scoring. On
the other hand, dynamic indicators such as inspections, observations, maintenance, flood
control, information management, and record-keeping have relatively less importance. As
a result, the evaluation results fail to fully reflect the actual achievements of engineering
management units and personnel in their practical management activities. Second, the
current evaluation methods primarily rely on traditional expert scoring and brainstorming
sessions. The evaluation is mainly based on the records provided by the management units
and the prepared acceptance materials, which do not fully capture the daily management
activities of the personnel. Consequently, the subjectivity and arbitrariness of the experts
during the scoring process are high, therefore impacting the accuracy and objectivity of the
evaluation indicators.

However, the existing evaluation criteria are more suitable for short-term assessment
of standardized management creation and are not suitable for assessing long-term dynamic
standardized management processes. Therefore, this study focuses on key dike projects
in the province and aims to establish a comprehensive evaluation system with reasonable
assessment indicators from the perspectives of safety, operation, and maintenance. Adopt-
ing advanced evaluation methods and techniques can truly reflect the requirements of safe
production in water conservancy projects. The main objectives of this study are:

To improve the management level of management units: By conducting evaluations,
establishing a practical evaluation indicator system, and providing evaluation standards,
it can help management units conduct in-depth, comprehensive, and thorough analysis,
self-assess their current engineering management capabilities, identify strengths, weak-
nesses, and urgent problems that need to be addressed. This will enable management
units to formulate improvement measures and pathways to enhance their engineering
management capabilities.

To achieve management goals: Effective management in water conservancy projects
involves multiple departments and personnel. Through management capacity evaluations,
it is beneficial to assess and supervise the implementation departments and members’ work,
achieve management control during the implementation process, and ultimately achieve
management assessment goals.

To enhance the competitiveness of units: Evaluations can identify the engineering man-
agement capabilities that units possess and areas that need improvement. By implementing
improvement measures, units can further enhance their engineering management capabilities.

The research on the establishment of standardized management indicators and evalu-
ation methods is crucial to prevent engineering management units from focusing solely on
achieving compliance without neglecting actual management practices. It aims to foster a
concept of scientific management and standardized operations among management units
and personnel, which is significant in addressing the issue of “heavy construction and light
management”. It is necessary to genuinely address the standardization of management.

To address these research gaps, this study aims to establish an indicator-based evalua-
tion model for safe production in dikes, using the Analytic Hierarchy Process (AHP) and
GA-BP neural network. The model will systematically and comprehensively assess the
impact of standardized management in water conservancy projects on the environment.
The remaining sections of this paper are organized as follows: Section 2 develops the
AHP-GA-BP network model for evaluating safe production in dikes. Section 3 demon-
strates the developed model through a case study. Section 4 discusses the key factors and
improvements of the case project, as well as the generalization and limitations of the model.
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This section also provides suggestions for future research. Finally, the conclusions are
drawn in Section 5.

2. Materials and Methods

The study area is Jiangxi Province. Jiangxi Province is a major province in water
conservancy, with hundreds of thousands of various water conservancy projects. It has
played an important role in flood control, irrigation, power generation, and water supply
and has made outstanding contributions to the development of the regional economy. Most
of these water conservancy projects were built in the 1950s to 1970s when the technical
level was relatively backward, and the supervision and management were not strict. After
the completion of the projects, there were varying degrees of hidden dangers. The study
area is shown in Figure 1.
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2.1. Standardized Management Indicator System

The evaluation indicators of the standardized management system for dike engi-
neering should comprehensively reflect the various aspects and factors involved in the
management content. Based on the basic characteristics, technical means, and key issues of
local engineering, combined with expert experience and suggestions, an evaluation index
system was constructed. It mainly includes 18 evaluation indicators from 5 categories. The
evaluation index system is shown in Table 1.

Table 1. Evaluation Index System of Standardized Management of Dike Project.

Level 1 Indicator (B) Secondary Indicator (C)

Management Foundation (B1)

Management Manual (C1)
Engineering delimitation (C2)

Management Facilities (C3)
Archive Management (C4)

Safety Management (B2)

Responsible person (C5)
Safety Production (C6)

Emergency Management (C7)
Flood prevention and control (C8)

Operation Management (B3)
Engineering Inspection (C9)

Engineering Observation (C10)
Operation (C11)
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Table 1. Cont.

Level 1 Indicator (B) Secondary Indicator (C)

Maintenance Management (B4)
Repair and maintenance (C12)
Equipment maintenance (C13)

Engineering Image (C14)

Management Assurance (B5)

Position personnel (C15)
Informatization level (C16)
Evaluation incentive (C17)

Management and protection funds (C18)

2.1.1. Management Foundation (B1)

In the B1 of Level 1 Indicator, the meanings of Management Manual (C1), Engineering
delimitation (C2), Management Facilities (C3), and Archive Management (C4) are shown in
Table 2.

Table 2. Content of management foundation indicators.

Secondary Indicator (C) Three-Level Indicator (D) Index Content

Management Manual (C1) Pocket Book (D1)
Management and Operations Manual (D2)

Prepare system manuals and operating
procedures as required.
Key systems and operating procedures are
clearly stated on the wall.

Engineering delimitation (C2) Scope delineation (D3)
Boundary Pile Embedding (D4)

Define the scope of engineering management
and protection according to regulations.
Setting up enough boundary stakes within the
scope of engineering management.

Management Facilities (C3) Number of identification plates (D5)
Identification and Signage Category (D6)

The number of identification signs is complete.
Complete categories of identification signs.

Archive Management (C4) Archive facilities (D7)
Data storage (D8)

There is a dedicated archive room or cabinet.
Engineering archives and operational
management data are clearly classified and
stored in an orderly manner.

2.1.2. Safety Management (B2)

In the B2 of Level 1 Indicator, the meanings of Responsible person (C5), Safety Produc-
tion (C6), Emergency Management (C7), Flood prevention and control (C8) are shown in
Table 3.

Table 3. Content of safety management indicators.

Secondary Indicator (C) Three-Level Indicator (D) Index Content

Responsible person (C5) Responsible person implementation (D9) Clarify the person responsible for safety and
make it public.

Safety Production (C6)
Safety inspection (D10)
Safety equipment (D11)

Work with certificate (D12)

Conduct regular safety inspections.
Equip necessary safety production facilities
and maintain safety and reliability.
Key positions must be certified according
to regulations.

Emergency Management (C7) Emergency Plan (D13)
Emergency drill (D14)

Prepare and approve emergency plans for
flood prevention and safety management.
Organize and carry out contingency plan drills.
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Table 3. Cont.

Secondary Indicator (C) Three-Level Indicator (D) Index Content

Flood prevention and
control (C8)

Flood control materials (D15)
Flood Control Traffic (D16)
Flood Control Team (D17)
Flood Control Duty (D18)

Reserve necessary flood control materials and
standardize management.
Smooth flood control roads.
Clarify the personnel and contact information
of the flood prevention and rescue team.
Report any abnormalities or dangerous
situations promptly.

2.1.3. Operation Management (B3)

In the B3 of Level 1 Indicator, the meanings of Engineering Inspection (C9), Engineer-
ing Observation (C10), Operation (C11) are shown in Table 4.

Table 4. Content of operation management indicators.

Secondary Indicator (C) Three-Level Indicator (D) Index Content

Engineering Inspection (C9)
Inspection frequency (D19)

Inspection content (D20)
Inspection Record (D21)

Whether the assessment meets the inspection
frequency specified in the “Operation Manual”.
Comprehensive inspection content.
Record detailed specifications.

Engineering Observation (C10)
Observation facility integrity rate (D22)

Observation content and frequency (D23)
Observation Record (D24)

Intactness rate of observation facilities.
Whether the assessment meets the observation
frequency specified in the “Operation Manual”.
Standardized recording of observation data,
timely compilation, and analysis.

Operation (C11) Operate according to chapter (D25)
Operation Record (D26)

Operate according to operating procedures
and instructions.
Normative records.

2.1.4. Maintenance Management (B4)

In the B4 of Level 1 Indicator, the meanings of Repair and maintenance (C12), Equip-
ment maintenance (C13), Engineering Image (C14) are shown in Table 5.

Table 5. Content of maintenance management indicators.

Secondary Indicator (C) Three-Level Indicator (D) Index Content

Repair and maintenance (C12)

Dike maintenance (D27)
Piercing structures (D28)

Prevention and control measures (D29)
Maintenance Record (D30)

The embankment is smooth, without leakage,
caves, and the slope protection is not damaged
or collapsed.
The structure of the building passing through
the embankment is intact and meets the
requirements for safe operation.
Prevention and control measures for harmful
animals on embankments, without
indiscriminate cultivation, excavation, or
occupation.
Timely carry out maintenance and repair, with
standardized records.

Equipment maintenance (C13)
Metal structure (D31)

Mechanical and Electrical Equipment (D32)
Maintenance Record (D33)

Normal use of metal structures and
lifting equipment.
The use of electromechanical equipment and
auxiliary facilities is normal.
Maintenance Record Specification.
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Table 5. Cont.

Secondary Indicator (C) Three-Level Indicator (D) Index Content

Engineering Image (C14) Embankment Appearance (D34)
Office area (D35)

Keep the appearance of buildings, facilities,
and equipment in the engineering area clean
and tidy.
Keep the office area clean and tidy.

2.1.5. Management Assurance (B5)

In the B5 of Level 1 Indicator, the meanings of Position personnel (C15), Informatiza-
tion level (C16), Evaluation incentive (C17), Management and protection funds (C18) are
shown in Table 6.

Table 6. Content of management assurance indicators.

Secondary Indicator (C) Three-Level Indicator (D) Index Content

Position personnel (C15) Job Setting (D36)
Education and Training (D37)

Position-Personnel-Task List.
Regular education and training for
professional and technical personnel.

Informatization level (C16)
Video surveillance (D38)

Platform Construction (D39)
Platform Operation and Maintenance (D40)

Construction project operation management
platform with complete functions.
The management platform is in normal use
and well maintained.
Conduct video surveillance in important areas
and maintain normal operation of facilities.

Evaluation incentive (C17) Management self-assessment (D41)
Reward and Punishment Hook (D42)

Conduct self-evaluation according to
regulations and link the evaluation results with
personnel rewards and punishments.
Rectify any issues found during inspections
and inspections by superiors.

Management and protection
funds (C18)

Budget (D43)
Fund availability rate (D44)

Calculate maintenance expenses.
Maintenance funds included in the financial
budget and fully implemented.

2.2. AHP-Based Weight Calculation

The Analytic Hierarchy Process (AHP) is a multi-criteria decision-making method.
The core theory of the Analytic Hierarchy Process is that by constructing a hierarchical
structure, complex and fuzzy problems can be simplified [34–36]. Combining qualitative
analysis with quantitative analysis has a high degree of reliability, effectiveness, and
conciseness. However, when constructing a judgment matrix, professional personnel are
required to assign values to the elements of the judgment matrix, so subjective judgment
has a significant impact on the evaluation results. The Analytic Hierarchy Process (AHP)
has a wide range of applicability, mostly applicable to decision-making problems with
complex structures, multiple decision criteria, and difficulty in quantification.

2.2.1. Construction of Judgment Matrices

The judgment matrix is constructed by pairwise comparisons of the importance of
factors within the same level under a single criterion, resulting in a matrix of coefficients
representing the pairwise comparisons. It reflects the relative importance of each factor in
the current level to the factors in the previous level. Here, we illustrate the construction
of a judgment matrix using a hypothetical indicator system as an example. Suppose we
want to construct the judgment matrix M1 for the first-level indicator, which has three
second-level indicators: c1, c2, and c3. Experts are invited to make pairwise comparisons
for c1, c2, and c3 to determine their relative importance. The values are assigned based on
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the measurement criteria provided in Tables 1–6. The “0.1–0.9” scale method is used, and
the meanings of each numerical value are shown in Table 7.

Table 7. Determine the scale quantification value of matrix elements.

Quantified Value Meaning

0.9 In comparison, one element is extremely important compared to the other.
0.8 In comparison, one element is much more important than the other.
0.7 In comparison, one element is significantly more important than the other.
0.6 In comparison, one element is slightly more important than the other.
0.5 In comparison, one element is equally important as the other.

0.1~0.4 Anti-comparison
Note: 1© Importance is the result of comparing two elements. 2© The reciprocal comparison rule states that if
element i is judged to be cij compared to element j, then element j is judged to be 1-cij compared to element i.

Using the expert assignment method described above, the relative importance coef-
ficients of the second-level indicators c1, c2, and c3 under the first-level indicator can be
obtained (the values of cij can refer to Table 7), as shown in Table 8.

Table 8. Relative importance row coefficient for pairwise comparisons relative to b1.

b1 c1 c2 c3

c1 c11 c12 c13
c2 c21 c22 c23
c3 c31 c32 c33

From the above table, the judgment matrix M1 relative to b1 can be obtained in
Equation (1).

M1 =

c11 c12 c13
c21 c22 c23
c31 c32 c33

 (1)

Using the above method, the judgment matrix can be constructed for each indicator
system.

2.2.2. Related Weight Calculation of Each Index

1. Consistency of the judgment matrix

Using the obtained judgment matrix M1, the matrix can be made consistent by follow-
ing the steps below, resulting in the fuzzy consistent judgment matrix W in Equation (2):

W =

w11 w12 w13
w21 w22 w23
w31 w32 w33

 (2)

2. Calculation of weights

From W, the weight set A = (A1, A2, . . ., An) can be derived, representing the weight
distribution, which is shown in Equations (3)–(5):

wi =
n
∑

j=1
Cij

wij = (wi − wj)/(2n) + 0.5

i = 1, 2, . . . ; j = 1, 2, . . . , n

(3)
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li =

n
∑

j=1
wij − 0.5

n
∑

i=1
lij =

n(n−1)
2

i = 1, 2, . . . , n

(4)

Ai = li/
n

∑
i=1

li = 2li/[n(n − 1)] (5)

where n is the order of the matrix. li represents the importance of indicator i relative to the
upper-level objective. Normalizing li will yield the weights of each indicator.

By integrating the judgments of multiple experts regarding the relative importance
of evaluation indicators, the weights of the indicator system are determined. This is
achieved by establishing a judgment matrix for a calculation to obtain the weight values of
the evaluation indicators. Expert opinions are sought again for further modifications to
determine the final weights of the evaluation indicators. The weights of the five primary
indicators, namely Management Foundation, Safety Management, Operation Management,
Maintenance Management, and Management Assurance, are 0.09, 0.225, 0.31, 0.265, and
0.11, respectively. Refer to Table 9 for more details.

Table 9. Indicator system and weight coefficients for dike engineering standardized management.

Level 1 Indicator (B) Secondary Indicator (C) Three-Level Indicator (D) Weight

Management Foundation (B1)
0.09

Management Manual (C1) Pocket Book (D1) 0.015
Management and Operations Manual (D2) 0.01

Engineering delimitation (C2) Scope delineation (D3) 0.015
Boundary Pile Embedding (D4) 0.005

Management Facilities (C3) Number of identification plates (D5) 0.005
Identification and Signage Category (D6) 0.01

Archive Management (C4) Archive facilities (D7) 0.02
Data storage (D8) 0.01

Safety Management(B2)
0.225

Responsible person (C5) Responsible person implementation (D9) 0.02

Safety Production (C6)
Safety inspection (D10) 0.02
Safety equipment (D11) 0.01

Work with certificate (D12) 0.005

Emergency Management (C7) Emergency Plan (D13) 0.02
Emergency drill (D14) 0.02

Flood prevention and control (C8)

Flood control materials (D15) 0.03
Flood Control Traffic (D16) 0.03
Flood Control Team (D17) 0.03
Flood Control Duty (D18) 0.04

Operation Management (B3)
0.31

Engineering Inspection (C9)
Inspection frequency (D19) 0.07

Inspection content (D20) 0.07
Inspection Record (D21) 0.03

Engineering Observation (C10)
Observation facility integrity rate (D22) 0.03

Observation content and frequency (D23) 0.02
Observation Record (D24) 0.01

Operation (C11) Operate according to chapter (D25) 0.06
Operation Record (D26) 0.02

Maintenance Management (B4)
0.265

Repair and maintenance (C12)

Dike maintenance (D27) 0.045
Piercing structures (D28) 0.04

Prevention and control measures (D29) 0.045
Maintenance Record (D30) 0.03

Equipment maintenance (C13)
Metal structure (D31) 0.02

Mechanical and Electrical Equipment (D32) 0.02
Maintenance Record (D33) 0.015

Engineering Image (C14) Embankment Appearance (D34) 0.03
Office area (D35) 0.02
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Table 9. Cont.

Level 1 Indicator (B) Secondary Indicator (C) Three-Level Indicator (D) Weight

Management Assurance (B5)
0.11

Position personnel (C15) Job Setting (D36) 0.005
Education and Training (D37) 0.015

Informatization level (C16)
Video surveillance (D38) 0.01

Platform Construction (D39) 0.005
Platform Operation and Maintenance (D40) 0.01

Evaluation incentive (C17)
Management self-assessment (D41) 0.01

Reward and Punishment Hook (D42) 0.025
Management and protection

funds (C18)
Budget (D43) 0.01

Fund availability rate (D44) 0.02

2.3. Evaluation Methods Based on Neural Networks

BP (backpropagation) artificial neural network is a multi-layer feedforward neural
network based on an error backpropagation algorithm, mainly simulating the feedback
behavior of neurons in the human brain in response to external signal stimuli. The BP
artificial neural network has strong self-learning and self-regulation abilities. If it has
training samples, it can construct nonlinear mapping relationships between various factors
and has strong fault tolerance and robustness. The basic idea of using the BP artificial
neural network method for evaluation is first to determine the structure of the BP artificial
neural network and the number of neural nodes in each layer, therefore establishing a
functional model of the BP artificial neural network. Then, we input learning sample data
for cyclic learning training until the set learning accuracy is achieved, save the trained
model, and input the indicator score matrix of the project to be evaluated to obtain the
evaluation results [37].

The genetic algorithm (GA) was first proposed by John Holland in the United States
in the 1970s. The algorithm was designed and proposed based on the evolutionary laws
of organisms in nature [38]. It is a computational model that simulates the natural selec-
tion and genetic mechanisms of Darwin’s biological evolution theory and is a method of
searching for optimal solutions by simulating the natural evolution process. This algorithm
uses mathematical methods and computer simulation operations to transform the problem-
solving process into a process similar to the crossover and mutation of chromosome genes
in biological evolution. When solving complex combinatorial optimization problems,
compared to some conventional optimization algorithms, they can usually achieve better
optimization results quickly. Genetic algorithms have been widely applied in fields such
as combinatorial optimization, machine learning, signal processing, adaptive control, and
artificial life.

2.3.1. Criteria for Management Classification

According to the “Notice on Implementing the Comprehensive Implementation Plan
for Standardized Management of Water Projects in Jiangxi Province” and relevant docu-
ments, the assessment and evaluation of standardized management for large and medium-
sized reservoirs (locks) in Jiangxi Province are governed by the “Assessment and Evaluation
Criteria for Standardized Management of Large and Medium-Sized Reservoirs (Locks) in
Jiangxi Province” (referred to as the “Evaluation Criteria” hereafter).

The “Evaluation Criteria” adopts a scale of one thousand points, with a maximum
evaluation score of 1000. Standardized management is classified into five levels based on
the evaluation scores, with specific criteria as follows:

A score above 900 indicates a first-class evaluation level.
A score above 800 indicates a second-class evaluation level.
A score above 700 indicates a third-class evaluation level.
A score above 600 indicates a fourth-class evaluation level.
Scores below 600 are considered not to meet the standards.
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2.3.2. Construction of the Evaluation Model

The input-output relationship of the BP artificial neural network represents a highly
nonlinear mapping. If the number of input nodes is n and the number of output nodes is m,
the network maps from an n-dimensional Euclidean space to an m-dimensional Euclidean
space. By adjusting the connection weights and the network’s structure, including the
number of hidden nodes, the BP artificial neural network can address nonlinear classifi-
cation problems and approximate any nonlinear function with arbitrary precision. Once
the structure of the BP artificial neural network is determined, training is performed using
input-output sample sets. This involves learning and adjusting the network’s weights and
thresholds to accurately express the given input-output mapping relationship. A trained
BP artificial neural network can provide appropriate outputs even for inputs that were not
part of the training set, demonstrating its generalization capability. From the perspective of
function approximation, this indicates that the BP artificial neural network has interpolation
functionality. The algorithm flow of the BP artificial neural network is shown in Figure 2.
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The essence of the BP artificial neural network model is to find the global minimum
points of a nonlinear function, which represents the error function. A given network model
can have multiple local minimum points, so finding the global optimal solution requires
changing the initial weights of the network multiple times and finding the corresponding
local minimum points. By comparing these points, the minimum value can be determined,
which represents the global optimal solution. Additionally, the performance of the network
model can vary significantly depending on different parameters and network structures.
Therefore, it is necessary to continuously adjust the parameters to compare the performance
of different network models with different structures. A good neural network model refers
to a network with a reasonable number of hidden layers and nodes, appropriate training,
and no overfitting. The determination of the final model requires continuous parameter
adjustment and result comparison.

3.1. Training Sample Selection
3.1.1. Preparation of Training Samples from Dike Data

It is known that the evaluation indicators consist of 2 levels. Among them, the first
level of each category of dike projects contains 5 indicators, corresponding to management
foundation, safety management, operation management, maintenance management, and
management assurance. In the second-level indicators, dike engineering is divided into
44 sub-indicators (three-level indicators).

To determine the training data based on the weights of each indicator, it is gener-
ally required to have 5–10 times or 10–20 times the number of input variables as the
training sample size for BP artificial neural networks. Using the random function round
(rand (1, m) × X) in MATLAB (where m is the number of indicators and X is the weight
vector of the indicators), 196 sets of simulated data are obtained for the simulation eval-
uation of the indicators, as shown in Table 10. In addition, to improve the robustness of
the network, 4 additional data sets are artificially added, representing the critical values of
each indicator.
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Table 10. Sample set of network model training for dike engineering.

Indicator 1 2 3 4 5 6 7 8 · · · 198 199 200

Pocket Book (D1) 1 0.9 1 0.98 1 1 0.98 1 · · · 0.53 0.81 0.61
Management and Operations Manual (D2) 1 1 1 1 0.82 1 1 0.9 · · · 0.75 0.67 0.68

Scope delineation (D3) 0.17 0.21 0.95 0.22 0.85 0.51 0.19 0.58 · · · 0.5 0.93 0.11
Boundary Pile Embedding (D4) 0.88 0.83 1 0.81 1 1 1 0.93 · · · 0.56 0.45 0.41

Number of identification plates (D5) 0.89 1 1 0.84 0.91 1 0.92 0.88 · · · 0.61 0.6 0.8
Identification and Signage Category (D6) 1 0.84 0.95 1 1 1 1 1 · · · 0.83 0.66 0.85

Archive facilities (D7) 1 1 1 1 1 1 1 0.84 · · · 0.77 0.45 0.74
Data storage (D8) 1 1 0.92 0.85 0.93 0.95 1 0.82 · · · 0.68 0.74 0.52

Responsible person implementation (D9) 1 1 1 1 1 1 1 1 · · · 0.62 0.62 0.56
Safety inspection (D10) 0.72 1 1 0.6 0.68 0.55 0.77 1 · · · 0.86 0.82 0.88
Safety equipment (D11) 0.58 0.52 0.47 0.85 1 0.69 0.87 0.97 · · · 0.19 0.62 0.93

Work with certificate (D12) 0.68 0.86 1 0.66 0.83 1 0.55 0.92 · · · 0.58 0.45 0.22
Emergency Plan (D13) 0.59 0.59 1 0.94 1 0.94 0.64 0.76 · · · 0.54 0.26 0.43
Emergency drill (D14) 0.8 0.87 0.56 0.96 1 1 0.57 1 · · · 0.44 0.89 0.67

Flood control materials (D15) 0.54 0.57 0.56 0.83 0.98 0.43 1 1 · · · 0.36 0.87 0.36
Flood Control Traffic (D16) 0.97 1 0.82 1 1 0.95 1 0.85 · · · 0.47 0.58 0.63
Flood Control Team (D17) 1 1 0.83 0.96 0.7 0.77 0.58 0.98 · · · 0.73 0.78 0.46
Flood Control Duty (D18) 0.95 0.95 1 0.79 0.78 1 0.89 0.57 · · · 0.6 0.33 0.33

Inspection frequency (D19) 1 1 0.92 1 1 1 1 0.92 · · · 0.37 0.4 0.47
Inspection content (D20) 0.69 1 1 1 0.84 1 1 1 · · · 0.56 0.56 0.52
Inspection Record (D21) 1 0.94 0.96 1 1 0.87 0.93 1 · · · 0.65 0.51 0.47

Observation facility integrity rate (D22) 1 0.67 0.88 0.52 0.63 1 0.79 1 · · · 0.53 0.59 0.6
Observation content and frequency (D23) 0.93 1 0.62 0.83 1 0.9 1 1 · · · 0.76 0.82 0.72

Observation Record (D24) 1 1 0.95 1 0.98 0.98 1 1 · · · 0.83 0.71 0.45
Operate according to chapter (D25) 1 1 1 1 1 0.84 0.93 1 · · · 0.75 0.64 0.7

Operation Record (D26) 0.95 0.82 1 0.96 1 1 1 1 · · · 0.85 0.69 0.48
Dike maintenance (D27) 0.76 0.89 0.94 1 0.68 0.73 0.91 0.77 · · · 0.74 0.59 0.62
Piercing structures (D28) 1 1 1 1 1 1 0.86 1 · · · 0.81 0.64 0.49

Prevention and control measures (D29) 1 1 1 1 1 1 1 1 · · · 0.58 0.48 0.54
Maintenance Record (D30) 1 1 1 0.95 1 0.95 0.88 1 · · · 0.38 0.66 0.56

Metal structure (D31) 0.88 1 1 1 1 1 0.91 1 · · · 0.71 0.73 0.85
Mechanical and Electrical Equipment (D32) 1 1 1 1 1 0.92 1 0.99 · · · 0.5 0.79 0.78

Maintenance Record (D33) 0.88 1 0.87 1 1 1 1 0.89 · · · 0.65 0.71 0.52
Embankment Appearance (D34) 0.86 0.98 1 1 1 0.91 0.99 0.9 · · · 0.61 0.43 0.46

Office area (D35) 1 1 0.9 0.81 0.9 1 0.91 1 · · · 0.46 0.72 0.7
Job Setting (D36) 1 0.92 0.89 1 1 0.91 1 1 · · · 0.79 0.45 0.83

Education and Training (D37) 1 1 1 1 0.96 1 1 1 · · · 0.38 0.44 0.81
Video surveillance (D38) 1 1 1 1 1 1 1 1 · · · 0.52 0.67 0.62

Platform Construction (D39) 1 1 1 0.96 1 1 1 0.81 · · · 0.66 0.64 0.68
Platform Operation and Maintenance (D40) 0.83 0.9 1 1 0.99 1 1 1 · · · 0.7 0.75 0.65

Management self-assessment (D41) 0.9 0.93 0.97 1 1 1 0.92 1 · · · 0.47 0.41 0.6
Reward and Punishment Hook (D42) 0.48 0.1 0.22 0.97 0.01 0.56 0.67 0.88 · · · 0.53 0.92 0.77

Budget (D43) 1 1 1 0.85 1 1 1 1 · · · 0.8 0.4 0.62
Fund availability rate (D44) 0.99 1 1 1 1 1 1 1 · · · 0.48 0.46 0.81

Desired output 0.89 0.91 0.91 0.93 0.90 0.91 0.91 0.93 0.60 0.61 0.58

Through comparative analysis and expert judgment of the evaluation indicators for
various types of engineering management, the expert evaluation values of the samples
are calculated. The comprehensive evaluation values obtained using the AHP method are
used here. Finally, the training data and the comprehensive evaluation values are saved
in an Excel spreadsheet as an import file (xls). The first row represents the data index, the
last row represents the comprehensive evaluation values, the first column represents the
indicator names, and columns 1 to 200 are reserved for data storage.

3.1.2. Data Preprocessing

To improve the fitting effect of the model, the first step is to discretize all the indicators.
Since the second-level indicators are qualitative, no further discretization is required. The
main focus is on type normalization and dimensionless processing of the data, transforming
all input and output data to the range of 0 to 1. The reason for data normalization is that the
BP artificial neural network commonly deals with nonlinear functions, and the nonlinear
process is implemented by the activation function of the network. The sigmoid function is
the most commonly used activation function, with a value range of [0, 1]. Without data
normalization, there may be significant differences in the magnitude of the data, where
smaller values correspond to smaller errors, and larger values correspond to larger errors.
As mentioned earlier, the training process of the BP artificial neural network adjusts the
network weights based on the total error. Without data normalization, components with
smaller errors will have a larger proportion of the total error than components with larger
errors. This can be detrimental to the optimization of the network within a certain number
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of iterations. Data normalization effectively reduces the impact of this issue on the accuracy
of the model, which has been proven by many researchers.

Data normalization can be done using the maximum-minimum method or the mean-
variance method. In this paper, the maximum-minimum method is used, and the function
is defined in Equation (6).

y = (ymax − ymin)× (xk − xmin)/(xmax − xmin) + ymin (6)

The equation is defined as follows: ymax and ymin are parameters that can be set by the
user, with a default value of −1 and 1, respectively. xk represents the k-th indicator value.
xmin and xmax is the minimum number and the maximum number in the data sequence. y
represents the normalized value.

Similarly, the output values are also normalized and transformed to values between 0
and 1.

3.2. Determination of Network Topology Structure

The determination of network topology structure is crucial for ensuring the objectivity,
accuracy, and applicability of the evaluation results in the BP artificial neural network
model. It is one of the key focuses in establishing the model. The determination of network
topology structure includes several aspects: the number of network layers, the number of
nodes in the input layer, the number of hidden layers, the number of nodes in each hidden
layer, and the number of nodes in the output layer.

3.3. Determination of Network Layers

The number of hidden layers in the BP artificial neural network model has been
subject to theoretical research by many scholars. Hecht Nielsen has proven that when
each node has different thresholds, a continuous function within a closed interval can
be approximated by a network with a single hidden layer. A three-layer network can
achieve arbitrary n-dimensional to m-dimensional mapping. Research in relevant literature
suggests that compared to BP artificial neural network models with only one hidden layer,
networks with two hidden layers are more prone to local minima and are more difficult to
train. Therefore, for the establishment of the standardization management evaluation, the
network model consists of an input layer, a hidden layer, and an output layer.

3.4. Determination of Input Layer Nodes

The number of input layer nodes is determined by the nature of the actual problem
that the model needs to solve. For the standardization management evaluation problem,
the indicator system used in this study consists of 18 influencing factors. These factors can
comprehensively reflect the management status of a project and are commonly chosen as
evaluation criteria for most water resources engineering management evaluations. There-
fore, the input layer of the established standardization management evaluation network
model contains 18 input nodes.

3.5. Determination of Hidden Layer Nodes

To determine the number of hidden layer nodes, the node growth method is used in
this paper. The node growth method starts with the smallest neural network structure as a
starting point and continuously increases the number of nodes until a satisfactory number
is reached. This method of node splitting is also known as cell division. Refer to Figure 4
for a detailed illustration of the specific procedure.
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In this project, the BP artificial neural network is established with 18 nodes in the
input layer, 1 node in the output layer, and a total of 200 training samples. The number of
hidden layer nodes is determined using the node growth method. Initially, the number of
hidden layer nodes is set to 5, and through iterative trials, the optimal number of hidden
layer nodes for this model is determined.

3.6. Analysis of the BP Artificial Neural Network Model

MATLAB provides a built-in computational tool for neural networks called “newff”.
However, using this tool makes it difficult to obtain hidden parameters such as weight
values, reduces optimization flexibility, and is less suitable for later system development.
Therefore, in this study, a custom BP artificial neural network code was developed in the
MATLAB environment. The results of the computational analysis of dike engineering are
as follows:

Figure 5 shows the variation of the total training sample error with different numbers
of hidden nodes. Overall, the trend of the curves is similar. The error rapidly decreases
in the initial phase and then levels off, eventually converging. However, at a local level,
the speed of descent varies among different curves. In the range of 11 to 15 hidden nodes
and 4 to 6 hidden nodes, the curves start at a higher position and converge relatively
slowly. On the other hand, when the number of hidden nodes is in the range of 7 to 9,
the convergence speed is faster, and the total error is relatively smaller, resulting in better
prediction performance. The total error after convergence falls between 5% and 7%, with
an average error of approximately 2%.

Figure 6 shows the error rate curves for different numbers of hidden nodes. The curves
exhibit a concave parabolic distribution with higher error rates on both ends and lower
rates in the middle. Specifically, when the number of hidden nodes is 8, the error rate is at
its lowest, only 0.5%. However, for numbers above 10, the error rate ranges between 1%
and 2%.
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In Figure 7, in the case of the optimal number of hidden nodes, it can be observed that
the output error value falls below 0.00001 after 300 iterations, meeting the desired accuracy
requirement, and the computation is terminated.
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Table 11 presents the validation results of 20 test data points. The error rates for
each measurement point are relatively small, except for sample number 11, which has an
error of 3%. The errors for the other samples are generally around 2%, with an average
error of 1.2%. This indicates the good feasibility of the model, with the errors meeting
the evaluation requirements. Using the built-in neural network tool “newff” in MATLAB
and inputting the training data for analysis, the calculated average error is around 2%,
slightly higher than the results obtained from the custom code developed in this study.
This suggests that the code developed in this study is scientifically reasonable and meets
the expected requirements.

Table 11. Error rates for dike engineering.

Sample Serial Number 1 2 3 4 5 6 7 8 9 10

Desired output 0.602 0.679 0.795 0.919 0.721 0.826 0.908 0.854 0.828 0.658
Actual output 0.600 0.666 0.786 0.923 0.732 0.859 0.897 0.850 0.822 0.657

Error −0.002 −0.013 −0.008 0.004 0.011 0.034 −0.011 −0.004 −0.006 −0.001
Error rate 0% −2% −1% 0% 2% 4% −1% 0% −1% 0%

Sample Serial Number 11 12 13 14 15 16 17 18 19 20

Desired output 0.853 0.576 0.899 0.928 0.691 0.704 0.922 0.695 0.553 0.588
Actual output 0.853 0.565 0.890 0.925 0.688 0.717 0.906 0.685 0.541 0.580

Error 0.001 −0.011 −0.009 −0.004 −0.003 0.013 −0.016 −0.010 −0.012 −0.008
Error rate 0% −2% −1% 0% 0% 2% −2% −1% −2% −1%

4. Discussion
4.1. Optimization of Initial Weights

In neural networks, random initial weights are assigned, which can result in slightly
different final weights and training iterations. This lack of uniqueness in weight optimiza-
tion may lead to local minima, where the network converges to a local optimal solution
instead of a global optimal solution. Randomly assigning initial weights can also result in
excessive training iterations, slow convergence, and low efficiency. Additionally, there is
greater uncertainty in the evaluation conclusions of neural network models, as the same
input can yield different levels of accuracy.

Basic approach: 1© Establish an improved BP artificial neural network using all
training samples and encode the connection weights of the improved network to generate
an initial population. 2© Utilize a genetic algorithm to optimize the initial population and
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define a superior search space in the solution space. Optimize the weights of the improved
BP artificial neural network during this process. 3© Use the decoded solutions from the
genetic algorithm optimization as the initial weights of the improved BP artificial neural
network to establish the nonlinear mapping relationship from input to output. 4© Utilize
the trained network to evaluate the modernization level of water conservancy engineering
management in the evaluated area.

Implementation steps:

1. Chromosome Encoding and Population Encode the data to determine the chromo-
some. In this study, real number encoding is used, directly using the connection
weights as the chromosome for encoding. For the 3-layer BP artificial neural network
established, the chromosome can be represented by a set of weights, denoted as W in
Equation (7).

Wi =
{

ωi j, ωjk, bj, bk

}
(7)

In the equation, ωi j represents the weights from the input layer to the hidden layer;
ωjk represents the weights from the hidden layer to the output layer; bj represents the
output threshold of the hidden layer, and bk represents the output threshold of the
output layer. The initial population is generated randomly using the small interval
generation method. This involves dividing the range of values for the parameters to
be optimized into smaller intervals equal to the total population size. Then, within
each interval, a random individual is generated, forming the initial population.

2. Fitness Function. The fitness function calculates the absolute difference between the
predicted values and the actual values, sums them up, and takes the reciprocal. The
formula is as follows in Equation (8):

F = 1/(
n

∑
i=1

abs(yi − ai)) (8)

In the equation, yi represents the actual value, ai represents the predicted value, and n
represents the number of output nodes.

3. Selection Operator. The selection operator utilizes a random sampling method and the
best preservation strategy, with the main objective of identifying the best individuals
in the population. However, selecting only the best individuals may overlook the
diversity of the rest of the population, leading to local optima. To address this, each
generation’s population is sorted based on fitness in ascending order. Then, the
individuals are divided into segments using the ratios of 0.6, 0.8, and 1. From the end
of each segment, individuals are randomly sampled to compensate for the potential
loss of diversity. This approach maintains both global convergence characteristics and
population diversity.

4. Crossover Operation. Crossover involves selecting two individuals from the pop-
ulation and performing crossover at certain positions with a certain probability of
generating new individuals. Since real number encoding is used in this study, real
number crossover is applied. Specifically, at the i-th position, a crossover is performed
between the m-th chromosome (am) and the n-th chromosome (an) in Equation (9):{

ami = ami(1 − b) + anib
ani = ani(1 − b) + amib

) (9)

In the equation, b represents a random number between 0 and 1.
5. Mutation Operation. Mutation is the process of randomly selecting an individual and

applying mutation to its chromosome with a certain probability of generating a new
individual. The method is shown in Equation (10):

amn =

{
amn + (a mn − amax)× f (g), r > 0.5
amn + (a min − amn)× f (g), r ≤ 0.5

(10)
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In the equation, the upper bound of the gene amn is amax, and the lower bound is
amin. f (g) = r2(1 − g/Gmax), where g is the current iteration count, Gmax is the
maximum evolution count, r is a random number between 0 and 1, and r2 is another
random number.

6. Apply the chromosome to the neural network, calculate the fitness, and analyze if
the set requirements are met. If the requirements are satisfied, decode the optimal
individual as the optimal initial weights of the BP artificial neural network and
proceed to the next step. Otherwise, go to step 3.

7. Set the learning rate n, momentum coefficient m, allowable error c, and maximum
training count N for BP artificial neural network as part of the loop step I.

8. Input the normalized samples into the network, train the BP artificial neural network
by adjusting the network weights, and calculate the network output and total error E.

9. If E ≤ e (the desired training accuracy), then training is complete, and proceed to the
next step. Otherwise, take the optimized connection weights from this iteration as the
initial weights for the next training. Adjust the network weights and biases and go to
step 7.

10. Output the network connection weights that meet the training accuracy requirement
(i.e., E ≤ e).

11. Evaluate the standardized management level of the water conservancy project for the
evaluated object and calculate the evaluation results. The program flow of the GA-BP
artificial neural network evaluation algorithm for improving the modernization of
water conservancy project management is shown in Figure 8.
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4.2. GA-BP Network Model Computational Analysis

In the GA-BP model algorithm, the crossover probability is set to 0.7, the mutation
probability is set to 0.2, and the population size is set to 10.

As shown in Figure 9 for dike engineering, the error curve decreases rapidly, and the
desired accuracy is achieved in approximately 100 iterations, leading to the termination of
the computation. The GA-BP model demonstrates faster computation speed compared to
the BP artificial neural network model.
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In terms of computational accuracy, as shown in Table 12, the errors for each sample are
relatively small, generally within 1%. The average error is 1.3%, which is an improvement
compared to the BP neural network model. This indicates that an improved evaluation
model is more reasonable and capable of performing evaluations.

Table 12. Error rates for dike engineering.

Sample Serial Number 1 2 3 4 5 6 7 8 9 10

Desired output 0.811 0.738 0.679 0.922 0.840 0.613 0.614 0.607 0.793 0.676
Actual output 0.801 0.721 0.676 0.916 0.830 0.603 0.597 0.612 0.787 0.664

Error −0.01 −0.02 0.00 −0.01 −0.01 −0.01 −0.02 0.00 −0.01 −0.01
Error rate −1.3% −2.4% −0.5% −0.7% −1.3% −1.6% −2.8% 0.8% −0.7% −1.7%

Sample Serial Number 11 12 13 14 15 16 17 18 19 20

Desired output 0.562 0.900 0.871 0.595 0.730 0.897 0.897 0.687 0.693 0.556
Actual output 0.567 0.903 0.861 0.592 0.743 0.881 0.884 0.693 0.702 0.569

Error 0.00 0.00 −0.01 0.00 0.01 −0.02 −0.01 0.01 0.01 0.01
Error rate 0.9% 0.4% −1.2% −0.5% 1.9% −1.8% −1.4% 1.0% 1.3% 2.3%

5. Conclusions

This research constructed an evaluation index system. Based on the existing evaluation
index system, it analyzed the principles and methods for determining evaluation indicators
for the main type of engineering projects, namely dikes. The evaluation indicators were
divided into three levels, and the hierarchical structure of the index system was clear,
facilitating normalized management.

This research used the Analytic Hierarchy Process (AHP) to determine weights. Based
on expert knowledge and subjective experience, it used mathematical methods to remove
subjective components as much as possible and calculated the weights of the indicators.
This approach made the weights more in line with objective reality and easier to quantify,
therefore improving the reliability, accuracy, and objectivity of the evaluation.

This research studied the technical methods of artificial neural networks in hydraulic
engineering management evaluation. By incorporating momentum factors and adaptive
learning rates for improvement and coupling genetic algorithms with modified backprop-
agation algorithms, it enhanced the search speed and accuracy of the neural network
algorithm. Combining the characteristics of modernized management evaluation in hy-
draulic engineering, it calibrated relevant parameters, established the improved GA-BP
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evaluation algorithm, and applied this algorithm to hydraulic engineering management
evaluation for the first time. The evaluation results demonstrated that this method better
reflects the importance of maintenance management and operation management.

Based on the MATLAB platform, this research developed the code for the improved
GA-BP evaluation algorithm, which can be further integrated into the Jiangxi Province
Hydraulic Engineering Operation Management Information System. The evaluation of
hydraulic engineering management is based on the standardized management evaluation
in our province. It conducted research on the evaluation methods, selection of evalua-
tion indicators, and assignment of indicator weights within a systematic framework. The
various components of the entire system are interconnected, aiming to establish math-
ematical models, evaluation steps, and corresponding practical techniques. The fuzzy
comprehensive evaluation method based on the Analytic Hierarchy Process and the appli-
cation of neural network methods in evaluation have broad application prospects and high
promotion value.

The standardized management of water conservancy engineering is still in its infancy
in China, and the working methods and technical requirements will continue to improve
with the progress of time. Based on absorbing advanced management experience, this
project actively introduces advanced AHP comprehensive evaluation technology and
neural network technology, forming its own unique standardized management evaluation
method. Given the limited conditions, the results have not yet been widely applied, and
the understanding of standardized management needs to be improved. In the future,
we hope to conduct more in-depth research to make the results more reasonable and
feasible. For example, standardized management of water conservancy engineering is
a large-scale project that involves a wide range of aspects. How to better establish a
standardized management system in our province based on existing work achievements
and provide a structurally sound, reasonable, and feasible theoretical basis is an effective
measure to promote standardized management in a normalized manner. Establishing a
more comprehensive and clear standardized management evaluation index system is an
important content. Establishing a realistic evaluation model requires repeated practice and
continuous improvement, which is a “learning” process. In the future, the achievements of
standardized management in water conservancy engineering should be widely utilized
to conduct multi-level and multi-angle research and evaluate the effectiveness of this
evaluation model. In addition, we will actively try other methods that could be used
(TOPSIS, SIMUS, SAW, PROMETHEE, etc.).
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