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Abstract: Collapsibility is a unique engineering geological property of loess. Choosing appropriate
parameters to build the prediction model of loess collapsibility is an essential step toward solving
the loess collapsibility problem. A case study was performed for the loess in Xinyuan County of
the Yili River Basin, China. A large amount of data was collected from preliminary geotechnical
tests in this region. Mathematical statistics were applied to analyse the correlations between the
loess collapsibility and soil parameters. Multiple linear regression and neural network theories
were adopted to build this region’s prediction model of loess collapsibility. The results showed that
microscopically, the soils in this region were predominantly flocculated structures. The soil particles
were flaky and in bracket contact, and the pores were round or irregularly shaped. Regarding the
material composition, the soils were primarily composed of quartz and albite, with a low hematite
content. In the study area, the correlation coefficients between the collapsibility coefficient of the
loess vs. the density, dry density, saturation, porosity ratio, and porosity varied between 0.628 and
0.857, indicating a strong or very strong correlation. In terms of predicting loess collapsibility, the
effectiveness of neural networks based on RBF (radial basis function) and multiple linear regression
models was contrasted. The latter was discovered to be more appropriate, dependable, and accurate,
with an accuracy percentage of 94.42%. Simultaneously, the model’s assessment index is 0.014
for the root mean squared error (RMSE), 0.962 for the correlation coefficient (CC), 0.919 for the
Nash–Sutcliffe efficiency coefficient (NSE), and −1.494 percent for the percent bias (PBIAS). It works
well for estimating whether local loess may collapse. Therefore, the RBF neural network model built
in the present study has adequate precision and meets the engineering requirements. Our research
sheds new light on loess collapsibility assessment in this region.

Keywords: loess collapsibility; soil indicators; correlation; prediction model; Ili River Valley

1. Introduction

Collapsible loess refers to soil that undergoes significant additional deformation due
to the structural failure of the soil following water immersion under the self-weight stress
of the overlying soil layer or under the combined action of self-weight stress and additional
stress. It is a type of special soil [1]. At this stage, many geotechnical test data have been
accumulated during extensive engineering practices in the Ili River Valley area; however,
the technicians have not effectively used and mined these data. Therefore, it is necessary
to establish a prediction model that can quickly evaluate the loess collapsibility in the Ili
River Valley area based on the correlation analysis between the collapsibility coefficient of
the loess in Xinyuan County and the soil property indices.

Through the use of mathematical statistics, scholars globally have conducted extensive
research on the correlation between loess collapsibility and soil properties. Shu et al. [2]

Water 2023, 15, 3786. https://doi.org/10.3390/w15213786 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w15213786
https://doi.org/10.3390/w15213786
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://doi.org/10.3390/w15213786
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w15213786?type=check_update&version=1


Water 2023, 15, 3786 2 of 17

established a binary regression relationship between the initial moisture content, the initial
void ratio, and the collapsibility coefficient through the multivariate statistical analysis
method by increasing and decreasing the loess moisture content in the experiments. Su [3]
carried out many double-line indoor loess collapsibility tests and established the regression
equation between the collapsibility coefficient and various soil property indicators with
the help of mathematical statistics. Li [4] analysed the degree of correlation between the
basic physical property indicators of loess-like soil in southern Hebei, and the collapsibil-
ity coefficient and initial pressure of collapse through qualitative and partial correlation
analysis, and ranked these. Zhu [5] used mathematical statistics to analyse the correlation
between the loess collapsibility coefficient and each soil property indicator and used factor
analysis theory to analyse the loess physical property indicators. The author eliminated the
impact of collinearity on the fitting and conducted an evaluation on the non-self-weight
and self-weight collapsible sites. Zhang used mathematical statistics to analyse relevant
loess physical indicators. Lv [6] used mathematical statistics to analyse the correlation
between loess collapsibility and moisture content and studied the correlation between
the collapsibility coefficient and various physical property indicators. Garakani [7] et al.
studied the correlation between loess collapsibility and moisture content under isotropic
and shear loads.

Establishing a prediction model for loess collapsibility is an effective means to solve
the collapsibility problem. Liu [8], Shao [9], Wang [10], Xing [11], and Wang [12] et al. used
univariate linear regression, multiple linear regression, or non-linear regression methods to
conduct regression analysis on the relationship between the collapsibility coefficient and a
single soil property indicator or multiple soil property indicators and established regression
equations. Li [13], Jing [14], Gao [15], and Han [16] et al. used data mining techniques, fuzzy
information technology, and neural networks to predict the loess collapsibility coefficient.
The soil property indicators considered by researchers when establishing the prediction
model were also more diverse. In addition, Ren [17] et al. proposed a discrete binomial
coefficient combination prediction model for loess collapsibility based on a variety of data
mining methods and achieved acceptable prediction accuracy. Zhou [18] established a
matrix calculation equation for the collapsibility coefficient through multiple quadratic
non-linear regression using MATLAB and achieved acceptable prediction accuracy. Zheng
et al. [19] analysed the correlation between moisture content and the mechanical properties
of loess through microscopic means. Sun [20] analysed the correlation between moisture
content and loess collapsibility when identifying the main causes of collapse diseases
of masonry structures in loess areas. Wong et al. [21] evaluated the impact of sedimen-
tary moisture content on the collapse potential of a remoulded sample of natural loess
through microscopic means. Reznik [22] proposed an analytical expression to describe the
relationship between the mechanical properties of collapsible soil and the void ratio and
moisture content of the soil. Parichehr [23] proposed an artificial neural network prediction
model that links compaction characteristics, permeability, and soil shear strength with soil
property indicators.

Due to its special geological conditions and topographic and geomorphic characteris-
tics, the loess in the Ili River Valley area is distinct from that in other regions of China [24].
However, at present, the evaluation of loess collapsibility in China has mainly focused on
the loess in northeast, central, and east China, and few scholars have evaluated the loess
collapsibility in Xinjiang. Therefore, this paper collected various physical, hydraulic, and
mechanical parameters of loess in Xinyuan County and analysed the correlation of various
soil property indicators of collapsible loess by means of mathematical statistics based on ob-
served engineering cases. In addition, a prediction model for loess collapsibility in this area
was established using multiple linear regression theory and the neural network method.
Finally, the rationality, effectiveness, and accuracy of the established prediction model were
verified through observed engineering in the area. By analysing the correlation of various
soil property indicators of collapsible loess in the Ili River Valley area and establishing the
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prediction model, geological bases can be provided for the survey, design, and construction
of engineering projects in the area.

2. Materials and Methods
2.1. Data Sources

This study compiled the results of 197 groups of loess strata in Xinyuan County’s Yili
Valley that underwent geotechnical testing. The geotechnical test data are primarily derived
from the special exploration project of the landslide geological environment from Kalasu to
Alashan Village, Nalati Town, Xinyuan County, Xinjiang, the special exploration project of
the landslide disaster in Kalahaiyisu, Areoletuobie Town, Xinyuan County, Xinjiang, and
the findings of previous studies in this region. Figure 1 depicts the research area’s location.
The research flow chart for this work is shown in Figure 2.
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In the probabilistic statistical analysis of the physical and mechanical parameters of
collapsible loess in Xinyuan County, characteristic statistics, such as mean value, standard
deviation, and coefficient of variation, can be obtained. These characteristic statistics can
characterize the spatial randomness of geotechnical physical and mechanical parameters.
The statistical information of geotechnical test data of loess stratum in the study area is
shown in Table 1.
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Table 1. Soil properties analysis of collapsible loess in the study area.

Mean Value Standard
Deviation

Coefficient of
Variation Maximum Value Minimum Value

Sampling depth, h 11.93 13.44 1.13 74.8 0.60
Moisture content, ω (%) 12.73 5.32 0.42 26.97 3.39

Density, ρ (g/cm3) 1.58 0.23 0.14 2.13 1.232
Dry density, ρd (g/cm3) 1.4 0.17 0.12 1.90 1.06

Porosity ratio, e 0.95 0.23 0.24 1.53 0.42
Saturation, Sr (%) 39.96 23.33 0.58 110.05 8.31

Porosity, n (%) 47.88 6.3 0.13 60.51 29.51
Liquid limit, ωL (%) 26.59 1.46 0.06 31.6 24.00
Plastic limit, ωp (%) 17.65 1.43 0.08 22.6 14.80
Plasticity index, Ip 8.94 0.72 0.08 9.96 6.10
Liquidity index, IL −0.54 0.57 −1.05 1.11 −1.54

2.2. Test Method

Firstly, indoor geotechnical tests were conducted on the collapsible loess in the study
area. The testing of physical and mechanical parameters was conducted in accordance
with the “Standard for Soil Test Methods” (2019, China) [25]. Afterwards, the micro-
structure and material composition of collapsible loess in the study area were tested at
the Physical and Chemical Testing Centre of Xinjiang University. The SU8000 series field
emission scanning electron microscope and D8 Advance series X-ray powder diffractometer
were utilised.
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2.3. Physical Properties

1. Particle size composition analysis

The soil samples obtained from the Kalasu–Alashan Village landslide in Nalati Town,
Xinyuan County, were tested for particle analysis, and their particle grading curves were
plotted, as shown in Figure 3.
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Figure 3. Grading curve of loess in the study area.

According to “Soil Properties and Soil Mechanics (Fifth Edition) [26]”, when the
cumulative curve of the soil concaves upward, the slope is gentle, the non-uniformity
coefficient (Cu) is greater than 5, and the curvature coefficient Cs = 1–3; this indicates that
the particle size grading of the soil is good. From Figure 3, the Cu and Cs of the loess in the
study area are 6.12 and 1.47, respectively, indicating a good particle size grading.

2. Micro-structure analysis

With a field emission scanning electron microscope of the SU8000 series, the pore size
and contact relationship of the loess particles in Xinyuan County were studied. Figure 4a to
Figure 4d display the loess observation data obtained using a scanning electron microscope
in Xinyuan County.

Figure 4 shows that the loess exhibits a flocculent structure, mainly in the form of
support contact. Mineral particles often appear in thin flakes. Thin minerals form a stacked
structure and are arranged in a relatively scattered manner. Mineral particles and loess
particles are interconnected in a support–inlay contact manner. The pore structure is often
porous or irregular.

3. Material composition analysis

As seen in Figure 5a, the primary mineral components of collapsible loess in the
research area were examined by X-ray diffraction. As can be seen, quartz, albite, and
hematite make up the majority of the collapsible loess’ mineral composition in the study
area. Other important minerals are SiO2, Na (ALSi3O8), Fe2O3, and others. Figure 5b was
produced using a quantitative analysis of the XRD test data. As can be shown, the loess
samples in the study area have a Na (ALSi3O8) content of 52.5%, a SiO2 content of 41.8%,
and a Fe2O3 content of 5.7%.
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3. Correlation Analysis between Soil Properties and Loess Collapsibility
3.1. Correlation Analysis Data

In this study, the collapsibility coefficient and soil index of the loess were correlated
using the Pearson correlation analysis method and SPSS 26 software. Table 2 displays the
details of the analysis.

Table 2. Correlation analysis between the collapsibility coefficient and each soil property parameter
in the study area.

Correlation Index Regression Equation Saliency Score Correlation Coefficient Correlation

δs − ρ δs = −0.194ρ + 0.375 0.000 −0.857 extremely strong
δs − Sr δs = −0.002Sr + 0.138 0.000 −0.800 extremely strong
δs − n δs = 0.006n − 0.233 0.000 0.768 strong
δs − ρd δs = −0.233ρd + 0.395 0.000 −0.768 strong
δs − e δs = 0.172e − 0.095 0.000 0.757 strong
δs − ω δs = −0.006ω + 0.145 0.000 −0.628 strong
δs − IL δs = −0.054IL + 0.039 0.000 −0.595 medium
δs − h δs = −0.001h + 0.086 0.000 −0.385 weak
δs − IP δs = 0.015Ip − 0.066 0.003 0.211 weak
δs − ωP δs = −0.005ωp + 0.161 0.039 −0.147 extremely weak
δs − Es δs = 8.134E − 4Es + 0.059 0.197 0.092 no
δs − a δs = 0.017a + 0.063 0.305 0.073 no

δs − ωL δs = −0.001ωL + 0.106 0.571 −0.041 no

δs is the collapsibility coefficients, ρ is the density, Sr is the saturation, n is the porosity, ρd is the dry density,
e is the porosity ratio, ω is the moisture content, IL is the liquidity index, h is the sampling depth, IP is the
plasticity index, ωP is the Plastic limit, Es is the compression modulus, a is the compressibility coefficient, ωL is the
liquid limit.

According to conventional wisdom, a correlation coefficient |r| between 0.8 and
1.0 indicates an extremely strong correlation; 0.6 to 0.8 indicates a strong correlation; 0.4
to 0.6 indicates a moderate correlation; 0.2 to 0.4 indicates a weak correlation; and 0 to 0.
2 indicates either no correlation or an extremely weak correlation. Table 2’s correlation
analysis findings show that. As can be seen, there is a strong, moderate, medium, weak,
and no link between the collapsibility and soil indexes in the research area [27–29]. The
following is a strong specific analysis and strong correlation:

1. Between 0.800 and 0.857, or a substantial association, is shown by the Pearson correla-
tion coefficient between the collapsibility coefficients δs, density ρ, and saturation Sr.
The density ρ, saturation Sr, and collapsibility coefficients δs all have an extremely
strong negative connection. Figure 6a through Figure 6b display the scatter plots.
The scatter plots of the sample points in the figures show that they are ordered in a
systematic way, with a high correlation trend and great significance.

2. Between 0.628 and 0.768, or a strong association, is indicated by the Pearson correlation
coefficient between the collapsibility coefficient δs, porosity n, dry density ρd, void
ratio e, and moisture content ω. The collapsibility coefficient δs and porosity n and
void ratio e have a strong positive correlation, whereas the collapsibility coefficient
δs and dry density ρd and moisture content ω have a strong negative correlation.
Figure 6c through Figure 6f display the scatter plots. The scatter plots of the sample
points in the figures can be seen to be organized and to have a high correlation trend
and great significance.
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moisture content; (e) collapsibility coefficient and dry density; (f) collapsibility coefficient and po-
rosity. 
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Figure 6. Fitted graphs of the relationship between the loess collapsibility coefficient and the physical
property indicators in the study area. (a) Collapsibility coefficient and density; (b) collapsibility
coefficient and saturation; (c) collapsibility coefficient and porosity; (d) collapsibility coefficient
and moisture content; (e) collapsibility coefficient and dry density; (f) collapsibility coefficient
and porosity.

3.2. Correlation Analysis between Collapsibility Index and Single Physical Index

Six characteristics of loess density, saturation Sr, porosity n, dry density ρd, void ratio
e, and moisture content in the study area were chosen to discuss their correlation with the
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collapsibility coefficient based on the findings of the correlation analysis of the loess in
the area.

Because of the destruction of the soil structure caused by immersion and the overlying
pressure when the loess is in a high−porosity and low−density state, a significant portion
of the soil pores are filled with soil particles. This is why density, dry density, the void ratio,
and porosity are strongly correlated with the loess collapsibility coefficient. Reduced soil
pores, higher compactness, decreased volume, and a significant collapsible deformation
are all produced. Loess’s collapsibility coefficient and its moisture content and saturation
are highly correlated. This is due to the fact that as the moisture content rises, the loess’s
structural strength will vary substantially. High friction, high shear strength, and strong
bonding forces between soil particles are present when the natural moisture content in the
soil is low. Natural loess hence typically has a strong structural strength at a low moisture
content, easily creates an overhead loose structure, and is easily capable of producing
substantial collapsible deformation when subjected to external loads and water intrusion.
Large amounts of water in loess cause an increase in pore water pressure and a drop in
effective normal stress. Additionally, when the amount of free water increases and the water
film thickens, there will be less friction between soil particles, which will result in a fall in
molecular gravity. It lacks the overhead structure required to create strong collapsibility,
has poor structural strength, and gradually forms a rather thick structure under its own
weight. Loess has a weak collapsibility in conditions of high natural moisture content and
saturation [30,31].

3.3. Selection of Prediction Model Indicators

According to the correlation analysis between the loess collapsibility coefficient and
the loess property indicators in the study area, the correlation degrees of the six parameters,
density ρ, dry density ρd, void ratio e, degree of saturation Sr, porosity n, and moisture
content ω, of loess in the study area were extremely strong and strong. There was a
computational relationship between density ρ and dry density ρd, as well as between
porosity n and the void ratio e, and their physical meaning was similar. In addition, in the
prediction model, they lead to a strong collinearity relationship, affecting the significance
and effectiveness of the prediction model. Therefore, this paper selected four parameters,
density ρ, degree of saturation Sr, porosity n, and moisture content ω, as the discriminative
indicators of the prediction model.

4. Construction of the Prediction Model of Loess Collapsibility
4.1. Multiple Linear Regression Model

With the help of prior research findings and 197 sets of geotechnical test data from
typical projects in Xinyuan County, Xinjiang, the regression model for this study was
created. Using SPSS 26 software, it was then tested to see how well the chosen index
parameters fit the study area. Table 3 displays the test results.

Table 3. Constant statistics.

Model R R2 ¯
R2

The Error of the
Standard Estimate (S)

1 0.903 0.816 0.812 0.02233

Table 3 shows that the regression model for predicting the loess collapsibility in the
study area had a multiple correlation coefficient of R = 0.903, the square of which was
R2 = 0.816. The square of the modified correlation coefficient was R2 = 0.812, and the error
of the standard estimate was S = 0.02233. When 0.8 < R < 1, this indicates that the fitting
degree of the prediction regression model is extremely high [28].
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Based on the fitting degree of the regression model and the test results of significance in
Table 4, a prediction regression model for loess collapsibility in the region was established,
as shown in Equation (1):

δs = −0.672 − 0.013ω + 0.116ρ + 0.002Sr + 0.013n (1)

where ω is the moisture content, ρ is the density, Sr is the saturation, and n is the porosity.

Table 4. Variance analysis.

Model Parameter
Non−Normalized Coefficients Normal

Coefficient
t Sig

B Standard Error

1

(Constant) −0.672 0.904 −0.743 0.458
Moisture content, ω (%) −0.013 0.003 −1.379 4.330 0.00

Density, ρ (g/cm3) 0.116 0.334 0.513 0.349 0.728
Degree of saturation, Sr (%) 0.002 0.001 1.063 3.217 0.002

Porosity, n (%) 0.013 0.009 1.614 1.444 0.150

Table 3 shows that the Sig values of the model constant, density ρ, and porosity n were
greater than 0.05, so further optimization was needed for this model.

This paper used the stepwise regression method to further optimize the established
multiple linear regression model. After optimization and parameter selection, a prediction
regression model for loess collapsibility in the region was established, as shown in Equation (2):

δs = 0.633 − 0.364ρ − 0.009ω + 0.003Sr (2)

where ω is the moisture content, ρ is the density, Sr is the saturation.
To further confirm the prediction regression model’s accuracy in the study area,

197 sets of geotechnical test data from previous research findings and a collection of typical
projects in Xinyuan County were substituted into the model using the loess collapsibility
criteria found in the “Engineering Geological Handbook [32]”. Figure 7 displays the specific
verification results.
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Figure 7. Comparison between the actual loess collapsibility coefficient and the predicted value of
the regression model.
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As shown in Figure 7, the verification of the multiple linear regression model can
yield the following results. Among the 197 sets of sample data, 157 sets predicted by the
multiple linear regression model had the same degree of collapsibility as the actual value,
while 40 sets had predicted degree of collapsibility that differed from the actual value. The
effectiveness of the multiple linear regression model was 79.70%.

4.2. Neural Network−Based Prediction Model

The MLP (multi−layer perceptron) and RBF (radial basis function) are the two fun-
damental components of the neural network prediction model creation process. The RBF
(radial basis function) method stands out among the rest due to its self−adaptive structure
determination and output value independence from beginning weights. In prediction and
classification, the activation function is employed as the mean square error function, and
the RBF network has faster training times than the MLP. As a result, the RBF (radial basis
function) method was mostly used in this research to develop the prediction model of
the loess collapsibility in the studied area. RBF neural networks are capable of accurately
approximating any continuous function. The input of an RBF neural network is mapped
non−linearly to the hidden layer, while the hidden layer is mapped linearly to the out-
put. The local minimum problem is avoided, and the learning speed is increased with
this structure [33].

In this work, the prediction model of loess collapsibility in the investigated area was
established using the RBF neural network. In Xinyuan County, the model’s partition setting
designates 62.9% of the sample data as the training set, 26.4% as the test set, and 10.7%
as the persistence set. Table 5 displays a summary of how the model data values were
processed. The assigned data were then fed into the neural network model as the model’s
input layer. The buried layer space was directly transferred to the input data. The final
model was obtained by mapping the vector from the low dimension to the high latitude
using the linear weighted sum of the hidden layer space [34,35].

Table 5. Data value processing summary.

Data Message Number of Samples N (Group) Percentage

Train 124 62.9%
Test 52 26.4%

Reservation 21 10.7%
Valid 197 100%

Excluded 0
Grand total 197

The prediction model was substituted into the 197 sets of geotechnical parameters
obtained from the typical projects in Xinyuan County, and the predicted value of collapsi-
bility was obtained. This further verifies the accuracy of the RBF neural network prediction
model of loess collapsibility in the study area. To assess the accuracy and validity of the
prediction model, the predicted and actual collapsibility degrees were compared. Figure 8
displays the particular outcomes of the verification.

Figure 8 shows that among the 197 sets of geotechnical test data collected from typical
projects in Xinyuan County, 186 sets of RBF neural network models have the same degree
of collapsibility with the actual value, and 11 sets of RBF neural network models have
different degrees of collapsibility with the actual value. The effectiveness of the RBF neural
network prediction model reached 94.42%. Therefore, the established RBF neural network
prediction model can effectively predict the grade of loess collapsibility in the study area.
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4.3. Model Simulation Effect Evaluation Index

The following four performance indicators were extensively employed to qualitatively
assess the performance of the generated models in order to further assess the established
regression model and neural network model: The following expressions were used to
express the root mean squared error (RMSE), correlation coefficient (CC), Nash–Sutcliffe
efficiency coefficient (NSE), and percent bias (PBIAS) [36–39]:

RMSE =

√
∑n

i=1 (δsim − δobs)
2

n
(3)

CC =
∑n

i=1 (δobs − δobs)(δsim − δsim)√
∑n

i=1 (δobs − δobs)
2
∑n

i=1
(
δsim − δsim

)2
(4)

NSE = 1 − ∑n
i=1 (δobs − δsim)

2

∑n
i=1 (δsim − δobs)

2 (5)

PBIAS(%) =
∑n

i=1 (δsim − δobs)

∑n
i=1 δobs

× 100 (6)

where n is the number of measured values; δobs represents the measured collapsibility
coefficient; δsim represents the collapsible coefficient δobs simulated by the prediction model;
δobs and δsim represent the average value of the measured collapsible coefficient and the
collapsible coefficient simulated by the prediction model. Table 6 is the evaluation index of
the model simulation effect.

Regression and neural network model performance indicators were computed in order
to assess the model. Table 7 presents the evaluation outcomes.
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Table 6. Simulation effect evaluation indicators.

Name Definition Value Ranges Optimal Value

Root Mean Squared Error (RMSE) Measure the deviation between the
predicted value and the true value [0, +∞] 0

Correlation Coefficient (CC) Evaluate the simulated value and the
measured value [−1, 1] 1 or −1

Nash–Sutcliffe Efficiency
Coefficient (NSE)

The prediction accuracy of the
quantitative simulation model [0, 1] 1

Percent Bias (PBIAS) Evaluate the simulated value and the
measured value [−∞, +∞] 0

Table 7. Model’s assessment index.

Forecasting Model
Evaluating Indicator

RMSE CC NSE PBIAS (%)

Regression model 0.022 0.903 0.773 −0.007

RBF neural network model 0.014 0.962 0.919 −1.494

The evaluation index of the model indicates that both the RBF neural network model
and the regression model are effective and that their evaluation indices are near the ideal
value. The regression model is not as good as the RBF neural network model in terms of
prediction accuracy or the degree of fitting between the measured and simulated values.
This is seen with the higher RMSE, CC, and NSE values of the RBF neural network model.
The percentage variation between the expected and actual values of the RBF neural network
model is somewhat more than that of the regression model, and the PBIAS value of the
regression model is superior to that of the RBF neural network model. It is evident from
a thorough investigation that the RBF neural network model outperforms the regression
model by a wide margin.

5. Discussion
5.1. Comprehensive Comparative Analysis of the Models

The two loess collapsibility prediction models were thoroughly compared and ana-
lyzed in order to further verify the adaptability and accuracy of the established multiple
linear regression model and RBF neural network model in Xinyuan County. The best pre-
diction model suitable for the study area was then chosen. Figure 9 displays the comparison
outcomes between the regression model and RBF neural network model for the research
area’s prediction of loess collapsibility.

Figure 9 shows that the actual collapsibility coefficient in the study area ranged from 0
to 0.162 with a mean value of 0.068. The predicted value of the regression model ranged
from −0.003 to 0.156 with a mean value of 0.068. The predicted value of the RBF neural
network ranged from 0 to 0.195 with a mean value of 0.067. In addition, according to the
evaluation criteria for loess collapsibility, 157 out of 197 sets of sample data in the study
area predicted by the multiple linear regression model had the same degree of collapsibility
as the actual value. For the remaining 40 sets of sample data, the predicted degree of
collapsibility was different from the actual value. Thus, the prediction effectiveness was
79.70%. There were 186 groups of sample data predicted by the RBF neural network model
to have the same degree of collapsibility as the actual value, and 11 groups of data predicted
to have different degrees of collapsibility from the actual value. The effectiveness of the
RBF neural network prediction model reached 94.42%.
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Figure 9. Comparison of prediction models for loess collapsibility in the study area.

The RBF neural network model and the regression model were assessed based on the
model assessment indicator. The regression model’s values were as follows: The correlation
coefficient (CC) was 0.903, the Nash–Sackliff efficiency coefficient (NSE) was 0.773, the
percentage of deviation (PBIAS) was −0.007%, and the root mean square error (RMSE) was
0.022. The RBF neural network model has the following values: The correlation coefficient
(CC) was 0.962, the Nash–Sutcliffe efficiency coefficient (NSE) was 0.919, the percentage of
deviation (PBIAS) was −1.494%, and the root mean square error (RMSE) was 0.014.

The box diagram in Figure 10 shows the predicted value of the RBF neural network
model, the predicted value of the regression model, and the measured value of the loess
collapsibility coefficient. The box plot illustrates how well the upper and lower lines of the
measured value and the predicted value of the RBF neural network model correspond and
how the overall data distribution trend is similar to the measured value data distribution
trend. Overall, the RBF neural network model’s projected value box plot score is greater
than the regression model’s, and the surface RBF neural network model is more effective
than the regression model [40].
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After a comprehensive comparison, the RBF neural network prediction model was
more suitable for the prediction of loess collapsibility in this area.

5.2. The Advantages and Limitations of RBF Neural Network Model

In an effort to offer a quick method for the analysis and evaluation of Loess collapsibil-
ity in the study area, the RBF neural network prediction model has been shown through
thorough comparative analysis to have higher reliability and accuracy than the regression
model. Additionally, the model’s validity and accuracy were further verified through a
variety of evaluation indicators. The fast learning curve, arbitrary precision of arbitrary
continuous function approximation, internal force of multi−dimensional nonlinear map-
ping, and an easy to understand learning algorithm are some of the benefits of the RBF
neural network model. It can also predict and assess the collapsibility of loess with speed.
However, there are still several issues with this study.

The establishment of an RBF neural network model requires a large amount of data.
When the amount of data is too small, there may be overfitting, which will lead to the
accuracy of the prediction model in the use process. At the same time, the model is very
sensitive to the abnormal use of data. When the data used has a large discrete type, it may
lead to the instability of the training results of the model.

6. Conclusions

This paper collected many physical, hydraulic, and mechanical parameters of col-
lapsible loess in Xinyuan County, Ili River Valley, and analysed the correlations of soil
parameters of collapsible loess with the collapsibility coefficient via mathematical statistics.
In addition, the optimal parameters were selected as the determination indicators for the
prediction model. Finally, the collapsibility prediction model of loess in Xinyuan County, Ili
River Valley, was established with multiple linear regression theory and the neural network
method. The following main conclusions were drawn:

1. The engineering geological conditions and the physical properties of the loess in
the study area were analyzed. The single−layer soil of the Quaternary loess in the
research area is mostly collapsible and self−weight collapsible, with poor engineering
geological conditions. The loess particle structure in this area is mainly cylindrical, flat,
and irregular. The main contact between particles is support contact, supplemented
by inlay contact, forming many inter−particle pores and some large pores. The loess
in the study area is mainly composed of quartz and albite, with less hematite.

2. The correlation between the loess collapsibility coefficient and soil property indicators
in the study area was analyzed. The correlation analysis results showed that the loess
collapsibility coefficient δs in the study area was extremely strongly correlated with
the density ρ and the degree of saturation Sr; strongly correlated with the porosity n,
dry density ρd, void ratio e, and moisture contentω; moderately correlated with the
liquidity index IL; weakly correlated with the sampling depth h and plasticity index
Ip; extremely weakly correlated with the plastic limit ωp; and not correlated with the
compression modulus Es, compression coefficient a, and liquid limit ωL. Finally, four
parameters, the density ρ, degree of saturation Sr, porosity n, and moisture content ω,
were selected as determination indicators for the prediction model.

3. In the studied region, a prediction model for loess collapsibility was developed.
According to the prediction model’s results, the likelihood that a given event will
occur is predicted with a 76.70% accuracy for multiple linear regression and a 94.42%
accuracy for RBF neural network prediction. Simultaneously, the RBF neural network
prediction model’s evaluation index clearly outperforms the regression prediction
model’s. As a result, the thorough comparison analysis demonstrates that the RBF
neural network prediction model outperforms the regression prediction model in
terms of accuracy and dependability.

4. The collapsibility of loess is the primary subject of this investigation. Subsequent
research can take into account the relationship between additional soil indicators, such
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as the relationship between soil physical parameters and the compression coefficient,
and develop a prediction model. At the same time, how to further deal with the results
of this study, so that one can carry out rapid evaluation in engineering construction,
is a direction of future research.

Supplementary Materials: The following supporting information can be downloaded at: https:
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