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Abstract: Water demand forecasting plays an important role in the sustainable management of water
resources, especially in countries facing water scarcity challenges, such as the United Arab Emirates
(UAE). Al-Ain, the second-largest city within the Emirate of Abu Dhabi and the fourth largest in
the UAE, faces the dual challenge of anticipated population growth and forthcoming development
initiatives. These factors are set to exert added pressure on the city’s water resources. Hence, Al-Ain
City requires an immediate assessment of future water demands as a critical step toward achieving
sustainable development. The main objective of this study is to conduct a systematic analysis of
historical consumption patterns and other relevant factors to predict future water demand and to
present a water demand forecasting model to project the water requirements of Al-Ain City up to the
year 2030. The proposed “Linear Forecast Model” for Al-Ain City is developed using the IWR-MAIN
software (Version 6.0), with its core code developed by the U.S. Army Corps of Engineers’ Institute
for Water Resources. The results of this model suggest that the total water demand is projected to
increase by 45% by the year 2030. Among the sectors, the residential sector is expected to have the
highest water demand, accounting for approximately 61% of the total water demand by 2030. The
governmental and agricultural sectors are estimated to contribute 20% and 10% to the total demand,
respectively, with the remaining 9% distributed across the other four sectors.

Keywords: water demand forecast; IWR-MAIN software; sustainability; water scenarios

1. Introduction

Water demand forecasting is a crucial aspect of efficient water resource management
and urban planning to achieve sustainable development. Accurate predictions of water
demand are necessary since the lack of water resources has become a significant barrier
to sustainable economic growth. Forecasting is a planning method that depends heavily
on historical data to help future water supplies [1]. For several reasons, reliable water
demand forecasting is necessary to make long-term operational and strategic decisions
regarding the provision of public water [1]. Moreover, a water demand forecast serves as
a cornerstone in water resources planning, enabling the preparation for projected future
demands. Precise forecasts are instrumental in ensuring the provision of an adequate water
supply, guaranteeing the delivery of safe and abundant water while minimizing associated
costs [2]. Long-term water demand forecasting is imperative for proper water infrastructure
and capital planning, as well as the formulation of effective water policies to prevent
domestic water supply shortages and promote sustainable water resource management [3].
Conversely, short-term forecasting is particularly advantageous for establishing water rates.

Nowadays, several mathematical models and techniques have been employed to
forecast urban water demand, which could be quantitative or qualitative water demand
forecasting [4]. These methods include Time Series Analysis Method [5–8], Artificial Neu-
ral Networks (ANNs) [7,9–11], Regression [12–14], Fuzzy models [15–17], Kalman Filter
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Technique [18–20], Linear Quadratic Estimator (LQE) [19,21], and Hybrid Models [22–24].
All these methods are based on the big data available to forecast the demands. However,
when historical data are not available, qualitative forecasting methods are employed to
forecast water demand based on the opinion of consumers and the judgment of experts [25].
On the other hand, quantitative forecasting models are well-suited for situations where
historical data is accessible since they are designed to predict future data by analyzing
patterns and trends from the past.

The countries in the Middle East, including the UAE, are situated in arid and semi-arid
regions marked by limited rainfall, elevated temperatures, high humidity, and intense
evapotranspiration rates. These challenging environmental conditions, combined with
a scarcity of freshwater resources, present significant obstacles to achieving sustainable
development in these nations [26]. Oil and gas serve as the foundation for economic
development in the Gulf Cooperation Council (GCC) countries [27]. The rapid expansion
of agricultural and industrial activities in recent years has led to an increased demand for
water. While desalination plants have been constructed to address this need for a freshwater
source, they are relatively expensive, and their primary use is predominantly for potable
water purposes [27]. The UAE lacks surface water resources and predominantly renewable
groundwater resources [27]. Moreover, various researchers have reported that the per
capita water consumption in Abu Dhabi is more than double the global average [28]. Water
supply in the UAE is derived from various sources, namely, groundwater, desalinated
seawater, treated sewage, and surface runoff from rainfall [29]. These water sources can be
classified into two categories, potable and non-potable, depending on the type of demands
they are capable of meeting. Desalinated seawater is the sole source that satisfies potable
water demand and is produced by desalination. Groundwater serves as the primary source
for non-potable sectors such as agriculture, forestry, and amenities. Treated sewage and
surface runoff contribute to a lesser extent to non-potable demand. Treated sewage is
specifically supplied to fulfill the requirements of the forestry and amenities sectors. It is an
unconventional water source generated by treating wastewater to a reusable quality. Hence,
it becomes imperative to scale up water policies and conservation methods while also
focusing on wastewater treatment, surface water harvesting, and artificial groundwater
recharge. Simultaneously, there is a pressing need for increased government and research
institute involvement in bridging the gap between water demands and the availability of
water resources. Furthermore, [30] mentioned that if future plans increase the percentage
of treated wastewater to around 50% of domestic water supplies, the GCC countries have a
chance to meet more than 11% of total water demands and more than 14% of agricultural
demands. The Emirate of Abu Dhabi has reduced and is further planning to minimize
groundwater withdrawal in order to extend the sustainability of groundwater reserves [30].
In the literature, several methodologies are presented for forecasting water demand. The
choice of a forecasting methodology depends, to some extent, on the data that can be
obtained through data collection efforts. The forecasting methodologies commonly used
include end-use forecasting, econometric forecasting, and time series forecasting [29,31–37].

The lack of water resources is a major obstacle to the UAE’s economic development,
and water demand needs to be scientifically estimated at all cities and population centers in
order to implement targeted growth in the country. The key objective goal of this research
is to forecast the long-term water demand in the city of Al Ain in the United Arab Emirates
using the water demand management suite IWR-MAIN (Institute of Water Resources-
Municipal and Industrial Needs). IWR-MAIN is a flexible software package developed for
U.S. Army Corps of Engineers, Institute for Water Resources by Planning and Management
Consultants Ltd (Carbondale, IL, USA). The IWR-MAIN can assist in decision-making
processes across various facets of water resource management, including water demand
forecasting, drought planning, master planning, rate analysis, watershed planning, capital
improvement planning, integrated resource planning, as well as conservation planning
and evaluation, and has been used by water researchers and policymakers [38–41]. In the
Middle East, Mohamed and Mualla [14,42] used IWR-MAIN Software for forecasting water
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demand in a city in the Middle, using two different forecast models. They considered
multiple factors and water use drivers to forecast the long-term water demands of the city
of Umm Al Quwain in the UAE. These capabilities of IWR-MAIN have made it a choice for
water demand forecasting in this study.

In this paper, we propose the development of a water forecast model aimed at predict-
ing the long-term water demand for Al-Ain City, the capital of Saudi Arabia. This study
has two primary objectives. The first objective is to formulate a mathematical model for
estimating water requirements. The second objective is to analyze the long-term water
demand, extending up to the year 2030, and to conduct simulations to assess the impacts of
water strategies, economic and population growth, and variations in water loss scenarios.

The remainder of the paper is organized as follows. In Section 2, the details of the
study area are provided. The methodology in Section 3 discusses how the Linear forecast
model of IWR-MAIN is used to forecast the water demand in Al Ain City. The results of
the model calibration and verification and the water forecast scenarios are discussed in
Section 4. The conclusions from the study are given in Section 5.

2. Study Area

The UAE is a federation comprising seven emirates, with Abu Dhabi as the capital
of the nation. The other emirates are Dubai, Sharjah, Ajman, Umm Al-Quwain, Ras
Al-Khaimah, and Fujairah. The union of these seven emirates was officially established
on 2 December 1971. Since its formation, the UAE has achieved remarkable economic
development, a feat that would be challenging even for some of the most developed
societies. This rapid progress encompasses both social and physical aspects, mainly because
of the revenue generated from its abundant oil resources.

The UAE is situated in the Middle East, north of the equator, positioned between
22◦ and 26◦ 30′ North latitudes and 51◦ and 56◦ 30′ East longitudes. To the north, it is
bordered by the Arabian Gulf, while to the south, it shares borders with the Sultanate
of Oman and the Kingdom of Saudi Arabia. To the east, it is bounded by the Gulf of
Oman, and to the west, it is bordered by the State of Qatar and the Kingdom of Saudi
Arabia. Additionally, the total land area of the UAE is 83,600 km2, and it includes an
archipelago that spans approximately 5900 km2 [43]. Being located on the coastal areas of
both the Arabian Gulf and the Gulf of Oman, the UAE’s climate is influenced by the Indian
Ocean. Consequently, during the summer months, the temperature is consistently high,
accompanied by elevated humidity levels. In contrast, between November and March,
the UAE experiences a moderate warm climate throughout the day (with an average
temperature of 26 ◦C) and a pleasantly cool climate during the night (with an average
temperature of 15 ◦C). Furthermore, humidity levels tend to be higher between June and
August. The prevailing winds in the UAE change direction, alternating between southern
or southeastern, western, or northern, and northwesterly winds. Rainfall is relatively scarce,
with an annual average not exceeding 6.5 cm, primarily occurring from November to April.
Interestingly, more than half of the rainfall is concentrated in the months of December and
January [44].

Al-Ain City, often referred to as the “Garden City of the Gulf”, is the fourth-largest city
in the United Arab Emirates (UAE). This city boasts exceptionally fertile land, abundant
greenery, and a wealth of farms and public parks. Located approximately 160 km to the east
of the UAE’s capital, Abu Dhabi, and about 120 km south of Dubai, Al-Ain City shares its
border with the Sultanate of Oman (see Figure 1). Encompassing an area of approximately
13,100 km2, the city has a population of 690,932 as of the year 2013 [45]. One of its most
renowned landmarks is Hafeet Mountain, which lies to the southeast and stands at an
impressive height of 1249 m.
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Figure 1. Location map of Al Ain city (Google Map, 2014).

Al-Ain City experiences an arid climate characterized by consistently high tempera-
tures throughout the year. In the winter season, temperatures typically range from 10 ◦C to
30 ◦C and rarely drop below 10 ◦C. Conversely, during the summer season, temperatures
can soar to as high as 50 ◦C. Rainfall in the city is sporadic, primarily occurring in the winter
months from November to March, with an average annual rainfall of around 100–120 mm
in most parts of the Emirates. Al-Ain City specifically records a mean annual rainfall of
96.40 mm, while the relative humidity levels vary widely, from a very dry 13% to a very
humid 88% throughout the year [46]. This gives Al-Ain City an advantage during the
summer season, as it boasts low humidity levels, a preference for many people during this
time of the year. Additionally, the city experiences wind speeds ranging from 1 m/s to
8 m/s (from light air to fresh breeze) throughout the year [47].

Currently, the groundwater wells in Al Ain play a crucial role in supplying water
for the irrigation of agricultural and forestry sectors. These wells extract brackish water
from depths of 20 m or more [44]. To supplement its water supply, Al Ain relies on water
transmission systems that import water to the city. The region sources its drinking water
from desalination plants located in Fujairah, Umm Al Nar, and Taweelah. The primary
sectors that utilize this drinking water include residential, commercial, industrial, and
governmental sectors.

3. Materials and Methods

In the study, the Linear Forecasting Model in IWR-MAIN software was used for
projecting long-term demands of different urban water use in Al Ain city. The study
focused on forecasting the future water use in Al-Ain city in two cases, namely, overall
monthly water demand and sector-wise monthly water demand. The water consumption
sectors in Al Ain were identified to be residential, agricultural, commercial, government,
industrial, public services, and non-metered services. Modeling water demand required
data collection of all water sectors in Al Ain for several years. Relevant data were collected
from the Al-Ain Distribution Company (AADC) [45] and the Statistic Centre, Abu Dhabi
(SCAD) [48]. These collected data were classified according to different variables such
as population and consumption pattern to calibrate the linear forecast model and then
to forecast water demand till the year 2030 in Al-Ain City. To accomplish this, data on
water consumption patterns for seven distinct demand sectors (agricultural, residential,
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non-metered services, commercial, government, industrial, and public services) in Al-Ain
City for a 15-year span spanning from 1998 to 2012 was sourced from AADC [45]. The
available dataset primarily consisted of population figures for Al-Ain city, along with
average monthly temperature and average rainfall data for each of the twelve months for
the period 1998 to 2012. To analyze this dataset, the Statistical Package for Social Science
(SPSS), Version 21 for Windows, was employed.

The data were analyzed statistically using analysis of variance (ANOVA). Statistical
significance is achieved when a p-value is equal to or smaller than the chosen significance
level (α), often set at 5%. When the p-value is less than or equal to the significance level,
it leads to the rejection of the null hypothesis, which typically asserts “no difference.” In
the context of this analysis, the relationship between water consumption (the dependent
variable) and population size is considered statistically significant. This conclusion was
drawn because the p-value is equal to 0.000, which is less than the threshold of 0.05. On
the other hand, the analysis showed that water consumption is not significantly associated
with temperature and rainfall. The calculated p-values for these variables were 0.394 and
0.232, respectively, which are both greater than the significance level of 0.05. Consequently,
in this study, the sole independent variable considered is the population size of Al-Ain city.
In summary, based on this analysis, water consumption, the dependent variable, is deemed
to be significantly influenced by the population size, and thus, only the population size of
Al-Ain City is utilized as the independent variable in this study.

This proposed forecasting method calculates the future water demand for each sub-
sector in the future by considering the model intercept and the explanatory variables. The
forecasted subsector water demand is determined using a linear forecasting model within
IWR-MAIN, represented by Equation (1):

qs,m,y = αs,m + ∑j βj,s,m Xj,s,m,y (1)

where:
qs,m,y = Estimated daily use rate per unit in subsector (s) in the month (m) in the base

year (y).
α = Model intercept for subsector (s) in the month (m).
X = Value of explanatory variable (j) in subsector (s) in month (m).
β = Coefficient of per unit use for a variable (j) in subsector (s) in month (m).
Then, the estimated daily use rate per unit per day for the month (q) was then multi-

plied by the number of units (N) and by the number of days in the month to determine the
sub-sector demand as given in Equation (2):

Qs,m,y = Ns,m,y · qs,m,y · dm (2)

where:
Q = Cubic meters of water used in sector (s) in the month (m) in year (y).
N = Number of units in subsector (s) in month (m) in year (y).
q = Average daily use rate per unit in subsector (s) in the month (m) in base year (b).
d = Number of days in the month (m).
The next step in the calibration process was to compare the actual water use and simu-

lated water demand of all selected base years. The calibration with minimum simulated
error was used in the forecast scenarios. Equations (3)–(6) depict how the error calculations
were performed for each of the calibration simulations. These calculations encompass the
Absolute Relative Error (AREi), the Average Absolute Relative Error (AARE), the Standard
Deviation of the Absolute Relative Error (SDARE), and the Average Root Mean Square
Error (ARMSE).

AREi =
CDi − ADi

ADi
× 100 (3)

AARE =
1
n∑n

i=1 AREi (4)
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SDARE =

√
1
n

n

∑
i=1

(AREi − AARE)2 (5)

ARMSE =

√
1
n ∑n

i=1(CDi− ADi)2

ADi
(6)

where:
CDi is the calibrated demand of year i of the calibration period.
ADi is the actual demand of year i of the calibration period.
n is the number of years in the calibration period.
In the study, for the linear forecasting model, the rate of water use per unit (qs,m,y) for

the base year was computed by dividing the base year water use by the number of counting
units in each subsector. This calculated rate of water use remains constant for all forecast
years within each subsector. To project the water, use for each subsector in future years,
this rate (qs,m,y) (cubic meters per unit per day) is multiplied by the forecasted counting
units, and the result is then multiplied by the number of days in the specified month (dm).
This process yields the estimated water demand (Qs,m,y) for the given subsector (s), month
(m), and year (y), with the use rate expressed in cubic meters per unit per day.

The Forecast Manager within the IWR-MAIN program was employed to project the
water demand in Al Ain City for the years leading up to 2030. The study categorizes the
forecasted results into three main classifications: (i) the overall yearly demand, (ii) the
overall monthly demand, and (iii) the sector-wise yearly water demands.

4. Results and Discussion

The IWR-MAIN Specify Forecasting Linear Model is calibrated using available data. In
the calibration process, multiple simulations were conducted using different base years to
identify the base year that most accurately represents the demand. Once this optimal base
year was determined, it was then used as the basis for making the forecast. The calibration
process was conducted independently for both the overall monthly water demand and
sector-wise monthly water consumption. Throughout the calibration period, SPSS was
utilized to calculate the values of intercepts and coefficients. These determined intercepts
and coefficients were subsequently integrated into the IWR-MAIN software for the purpose
of water demand forecasting.

4.1. Model Calibration for Overall Annual Water Demand

Before utilizing the program, the model’s explanatory coefficient and intercept were
determined through the use of SPSS. In this particular study, the sole explanatory variable
for estimating the overall annual demand is the population size of Al-Ain City. The intercept
and coefficient values (α, β) were derived from SPSS, resulting in estimated values of
α = −16,585.61646 and β = 0.122673 for the overall annual demand forecast.

Using the linear forecasting model, changes in estimated water usage from year to
year for different sectors are attributed to alterations in the explanatory variables. Thirteen
distinct simulations were executed, each employing different base years, to pinpoint the
base year that provides a more accurate representation of water demand. Figure 2 depicts
the comparison between actual and simulated overall water usage in a million cubic meters
per year (MCMY) using different base years (B 1998 to B 2010) for the calibration period
spanning from 1998 to 2012, using the historical water consumption data. The actual
water consumption generally exhibits an upward trend over time, with the exception of a
decrease in 2010. The exception of the water consumption trend of 2010 can be attributed to
the reduction in the expat population because of the economic crisis that affected the entire
world. The highest actual water usage occurs in the year 2012. Notably, all calibration
simulations depict a gradual increase in water demand throughout the calibration period.
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Figure 2. Actual and simulated overall annual water demand.

The AARE, SDARE, and ARMSE were computed using Equations (3)–(5) for each
calibration simulation. Figure 3 illustrates that the error values tend to increase in later
base years (2005–2008). This increase is primarily due to fluctuations in actual water usage
in the later years, leading to differences between the actual and simulated water usage.
Interestingly, the simulation based on the year 2010 exhibits the lowest errors in comparison
to other years. Therefore, the calibration simulation utilizing the base year 2010 has been
selected for forecasting water demand scenarios in this model.

Water 2023, 15, x FOR PEER REVIEW 7 of 32 
 

 

decrease in 2010. The exception of the water consumption trend of 2010 can be attributed 

to the reduction in the expat population because of the economic crisis that affected the 

entire world. The highest actual water usage occurs in the year 2012. Notably, all calibra-

tion simulations depict a gradual increase in water demand throughout the calibration 

period. 

 

Figure 2. Actual and simulated overall annual water demand. 

The AARE, SDARE, and ARMSE were computed using Equations (3)–(5) for each 

calibration simulation. Figure 3 illustrates that the error values tend to increase in later 

base years (2005–2008). This increase is primarily due to fluctuations in actual water usage 

in the later years, leading to differences between the actual and simulated water usage. 

Interestingly, the simulation based on the year 2010 exhibits the lowest errors in compar-

ison to other years. Therefore, the calibration simulation utilizing the base year 2010 has 

been selected for forecasting water demand scenarios in this model. 

 

Figure 3. Error-values of all calibration simulations for overall annual water demand. 

4.2. Model Calibration for Overall Monthly Water Demand 

Figure 4 shows the monthly water use data in million cubic meters for the period 

1998–2012, comparing the actual values with those simulated using the IWR-MAIN pro-

gram. Throughout the calibration period, SPSS was utilized to determine the intercepts 

Figure 3. Error-values of all calibration simulations for overall annual water demand.

4.2. Model Calibration for Overall Monthly Water Demand

Figure 4 shows the monthly water use data in million cubic meters for the period
1998–2012, comparing the actual values with those simulated using the IWR-MAIN pro-
gram. Throughout the calibration period, SPSS was utilized to determine the intercepts and
coefficients for the independent variables, as outlined in Equation (1), utilizing historical
water consumption data. Table 1 provides the coefficients and intercepts (β, α) for overall
monthly water demands, which were derived from SPSS.
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Table 1. Explanatory coefficients and intercepts (β, α) for overall monthly water demand.

Month α β

January −1451.229328 0.010592
February −1217.438719 0.009622
March 816.404390 0.006745
April −729.888729 0.009128
May 1668.356303 0.005999
June 1531.240811 0.005908
July −3811.084769 0.014918
August −4918.296586 0.016623
September −5300.964394 0.016890
October −2288.803470 0.012219
November −4542.537992 0.015372
December −104.953726 0.008059

The historical water consumption trends, indicating a general increase over time
with some exceptions during specific months in 2010 and 2011, are shown in Figure 4.
The highest overall consumption was recorded in the year 2012, with the peak monthly
consumption observed in July of the same year. July typically coincides with the hottest
temperatures (with an average of 38 ◦C) in Al-Ain, which results in a substantial increase in
water usage, especially for cooling and other purposes [45]. Conversely, the lowest monthly
consumption is observed in February. This can be attributed to the fact that February is a
rainy month in Al-Ain City, with an average precipitation of 4.3 mm [48]. The presence
of rainfall reduces the demand for irrigation water, contributing to the overall decrease in
water consumption during this month. Additionally, the absolute temperature in February
tends to be lower, with an average of 21 ◦C in the year 2012 [45], further contributing to the
lower total water consumption during that period.

The values of each base year were employed to simulate water demand over the
calibration period, and subsequently, the simulated results were compared to the actual
demand. The base year that demonstrated the least disparities between simulated and
actual water demand was chosen for forecasting future water demands. Error-values
are computed for each calibration simulation, and Figure 5 provides a summary of the
calculated values of AARE, ARMSE, and SDARE for all calibration simulations utilizing
different base years. This analysis helped to identify the most accurate base year for
forecasting purposes.

The simulations using the base year 1999 showed the highest AARE and ARMSE
values for the initial four months, whereas the simulations using the base year 2000 exhib-
ited these highest values for the months of May, June, and July. Notably, for the last five
months of the base year, 1998 simulations showed the highest AARE and ARMSE. The
simulations based on the base year 1998 exhibited the highest SDARE values for the initial
three months of the year (Figure 5). In contrast, May of 1999 recorded the highest SDARE,
while October and December, based on the base year 2005, exhibited the highest SDARE
values. For the remaining six months, the simulations utilizing the base year 2006 showed
the highest SDARE. Applying the same criteria employed during the calibration of overall
annual water demand, Table 2 presents the optimal base year for each month, which was
taken into account for the forecasting scenarios.
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Table 2. Best base years for monthly water demand.

Month Base Year Month Base Year

January 2004 July 2010
February 2004 August 2010
March 2009 September 2010
April 2010 October 2010
May 2009 November 2010
June 2009 December 2010
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4.3. Model Calibration of Sector-Wise Monthly Water Demand

Therefore, the calibration of monthly water demand for seven sectors was performed
using different base years. To facilitate the presentation of results, each sector is individually
discussed below. In Table 3, the model coefficients and intercepts (β, α) acquired through
the SPSS program for each sector are included.

Table 3. Explanatory coefficients and intercepts (β, α).

Month Agriculture Commercial Government Non-Metered Industry Public Services Residential

January α −234.46 −65.49 −262.65 −21.97 −6.54 −16.60 −843.53
β 0.00171 0.00048 0.00192 0.00016 0.00005 0.00012 0.00616

February α −109.31 −57.13 −310.31 −20.26 0.06 −12.47 −707.09
β 0.00086 0.00045 0.00245 0.00016 0.00001 0.00010 0.00559

March
α 71.38 49.47 42.69 14.40 3.07 10.50 624.90
β 0.00059 0.00041 0.00035 0.00012 0.00003 0.00009 0.00516

April α −53.92 −45.97 −136.96 −11.61 −1.77 −11.06 −468.60
β 0.00067 0.00058 0.00171 0.00015 0.00002 0.00014 0.00586

May α 184.99 85.88 374.91 35.26 5.86 16.26 964.36
β 0.00067 0.00031 0.00135 0.00013 0.00003 0.00006 0.00347

June
α 161.79 83.02 311.76 24.86 8.17 16.69 924.96
β 0.00062 0.00032 0.00120 0.00010 0.00003 0.00006 0.00357

July α −298.71 −198.18 −736.97 −67.02 −13.97 −42.96 −2453.27
β 0.00117 0.00078 0.00289 0.00026 0.00006 0.00017 0.00960

August α −390.01 −292.71 −1723.40 −110.59 −17.31 −58.46 −2325.83
β 0.00132 0.00099 0.00583 0.00037 0.00006 0.00020 0.00786

September α −409.55 −215.16 −1053.62 −87.15 −15.40 −64.24 −3455.83
β 0.00131 0.00069 0.00336 0.00028 0.00005 0.00021 0.01101

October
α −411.66 −133.20 −537.77 −31.10 −5.82 −30.16 −1139.09
β 0.00220 0.00071 0.00287 0.00017 0.00003 0.00016 0.00608

November
α −401.99 −261.71 −508.35 −90.80 −12.41 −60.57 −3206.69
β 0.00136 0.00089 0.00172 0.00031 0.00004 0.00021 0.01085

December
α −10.34 −5.64 −21.01 −1.85 −0.34 −1.27 −64.50
β 0.00079 0.00043 0.00161 0.00014 0.00003 0.00010 0.00495

4.3.1. Agricultural Sector

The graphical representation of the actual and simulated monthly water usage for
the agricultural sector over twelve months, considering various base years, is shown in
Figure 6. The figure highlights that the peak actual water consumption occurred in 2012.
Notably, within that year, the highest monthly water consumption was recorded in October,
having an average temperature of 31 ◦C [45].

The AARE, ARMSE, and SDARE for all simulated base years are depicted in Figure 7
for the 12 months of the year. It can be observed that the highest AARE and ARMSE for the
first four months of the year are exhibited by the simulation of the base year 1999. The base
year 2000 showed the highest AARE and ARMSE for the months of May, June, and July;
however, the highest AARE and ARMSE for the last five months of the year were obtained
by the simulation of the base year 1998. The first three months got the highest SDARE for
the base year 1998, while the highest SDARE for May was recorded in the base year 1999.
October and November exhibited the highest SDARE values in the base year 2005, while
the other months showed this pattern in the base year 2006. Utilizing the same criteria to
select the most suitable base year, the months of April and the last six months of the year
demonstrated the least AARE and ARMSE when using the base year 2010. However, the
minimum SDARE, considering a longer calibration period, is achieved for March, May,
and June with the base year 2009, whereas the base year 2004 is optimal for the months of
January and February.
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Figure 6. Actual and simulated monthly water use for the agricultural sector. Figure 6. Actual and simulated monthly water use for the agricultural sector.
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4.3.2. Residential Sector

The actual and simulated monthly water usage for the residential sector using various
base years is illustrated in Figure 8. It is evident that the highest actual consumption was
observed in 2012, with the highest monthly consumption recorded in March, characterized
by an average temperature of 24 ◦C and average precipitation of around 0.5 mm. Conversely,
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the lowest monthly consumption was noted in February, with an average temperature of
21 ◦C and average precipitation of approximately 4.3 mm [45,48].
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Figure 8. Actual and simulated monthly water use for the residential sector. Figure 8. Actual and simulated monthly water use for the residential sector.

The calculated AARE, ARMSE, and SDARE for all calibration simulations across the
twelve months of the year are presented in Figure 9. Figure 9 was also employed to select
the best base year for forecasting water demand for specific months. The results indicated
that the base year 2010 is best for April and the last six months of the year, while March,
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May, and June are best with the base year 2009, and the months of January and February
are best with the base year 2004.
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4.3.3. Government Sector

The actual and simulated monthly water use for the government sector is displayed
in Figure 10. In 2012, the highest actual consumption was observed in August (with an
average temperature of 37 ◦C), while the lowest actual consumption was recorded in March
(with an average temperature of 24 ◦C) [45].
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The values of AARE, ARMSE, and SDARE for all calibration simulations are shown in
Figure 11. The year 2010 is identified as the best base year for forecasting future demand in
April and the last six months of the year. Meanwhile, the year 2009 is determined to be the
most suitable base year for March, May, and June, while the year 2004 is considered the
best for January and February.
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4.3.4. Other Sectors

The other four sectors, namely the non-metered services sector (services without a
water meter to measure usage), commercial sector, industrial sector, and public services
sector, underwent an analysis. In the non-metered services sector, the results indicate that
the highest and lowest actual consumption occurred in the year 2012 during the months
of August (with an average temperature of 37 ◦C) and February (with a low average
temperature of 21 ◦C), respectively [45].

In the commercial sector, the results showed that the highest actual consumption
occurred in August (with an average temperature of 37 ◦C) in the year 2012, while the
lowest actual consumption was observed in February (with an average temperature of
21 ◦C) in the same year [45].

In the industrial sector, the results indicated that the highest actual consumption was
observed in June of the year 2012, characterized by high temperatures (with an average
of 35 ◦C) and minimal rainfall (with an average of 0.0 mm). Conversely, the lowest actual
consumption was recorded in the same year in February, a month with lower temperatures
(averaging 21 ◦C) and increased rainfall (with an average of around 4.3 mm) [45,48].

The simulation results for the public services sector indicate that the highest and
lowest actual consumption occurred in the year 2012, with the highest consumption in
April (with an average temperature of 30 ◦C) and the lowest consumption in February
(with an average temperature of 21 ◦C) [45]. Figures 12–14 represent the calculated AARE,
ARMSE, and SDARE, respectively, for all calibration simulations for the four sectors.
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The results from Figures 12–14 indicate that for the non-metered services sector, the
base year 2010 is best for April and the last six months of the year. The base year 2009 is
selected for March, May, and June, while the base year 2004 is chosen for the months of
January and February. In the case of the commercial sector, the results suggest that the
base year 2010 is suitable for April and the last six months of the year. For March, May,
and June, the best base year is 2009, while January and February are best represented by
the base year 2004. Figures 12–14 also reveal that for the industrial sector, the base year
2010 is appropriate for April, May, and the last six months of the year. However, for March
and June, the calibration simulation with the base year 2009 is selected, and the base years
2004 and 2005 are chosen for January and February, respectively. Lastly, for the public
services sector, the base year 2010 is recommended for April and the last six months of
the year. March, May, and June are best represented by the base year 2009, while January
and February are accurately captured by the base year 2004. Table 4 summarizes the best
base year for monthly water use for each sector that will be considered for the forecasting
scenarios.



Water 2023, 15, 3800 20 of 29Water 2023, 15, x FOR PEER REVIEW 22 of 32 
 

 

  
(A) (B) 

  

(C) (D) 

Figure 14. The SDARE values of all calibration simulations for (A) non-metered services, (B) com-

mercial, (C) industrial, and (D) public services. 

The results from Figures 12–14 indicate that for the non-metered services sector, the 

base year 2010 is best for April and the last six months of the year. The base year 2009 is 

selected for March, May, and June, while the base year 2004 is chosen for the months of 

January and February. In the case of the commercial sector, the results suggest that the 

base year 2010 is suitable for April and the last six months of the year. For March, May, 

and June, the best base year is 2009, while January and February are best represented by 

the base year 2004. Figures 12–14 also reveal that for the industrial sector, the base year 

2010 is appropriate for April, May, and the last six months of the year. However, for March 

and June, the calibration simulation with the base year 2009 is selected, and the base years 

2004 and 2005 are chosen for January and February, respectively. Lastly, for the public 

services sector, the base year 2010 is recommended for April and the last six months of the 

year. March, May, and June are best represented by the base year 2009, while January and 

February are accurately captured by the base year 2004. Table 4 summarizes the best base 

year for monthly water use for each sector that will be considered for the forecasting sce-

narios. 

Table 4. Sector-wise, the best base year for demand forecast. 

Month Industrial Sector 
Commercial, Non-Metered & Public 

Services Sectors 

Residential, Agricultural & 

Governmental 

January 2004 2004 2010 

February 2005 2004 2010 

Figure 14. The SDARE values of all calibration simulations for (A) non-metered services,
(B) commercial, (C) industrial, and (D) public services.

Table 4. Sector-wise, the best base year for demand forecast.

Month Industrial Sector Commercial, Non-Metered &
Public Services Sectors

Residential, Agricultural &
Governmental

January 2004 2004 2010
February 2005 2004 2010
March 2009 2009 2010
April 2010 2010 2010
May 2010 2009 2010
June 2009 2009 2010
July 2010 2010 2010
August 2010 2010 2010
September 2010 2010 2010
October 2010 2010 2010
November 2010 2010 2010
December 2010 2010 2010

4.4. Model Verification

The purpose of model verification is to ensure the accuracy of the model’s implemen-
tation. In this study, verification was carried out using data from the years 2009 to 2012
out of the total available data spanning from 1998 to 2012. Two different base years, 2008
and 2010, were employed for model verification. The results clearly demonstrated that
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the optimal base year for forecasting water demand is 2010, consistent with the findings
from model calibration. These results, as shown in Figure 15, provided assurance regarding
the correct implementation of the IWR-MAIN program, and were subsequently utilized to
simulate various water demand scenarios. It is noteworthy that the average errors did not
exceed 3% when comparing the model’s output to the actual data, affirming the model’s
reliability.
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4.5. Water Scenarios Development

Demand forecasting involves the process of estimating future water demand. Scenarios
play a crucial role in helping decision-makers explore various options, anticipate potential
developments, and formulate new strategies. The Forecast Manager within the IWR-MAIN
program is a valuable tool that can assist water planners in projecting future water demands
under different scenarios. Indeed, the future water demand in Al Ain city is influenced by
a multitude of factors, including population growth, urbanization trends, improvements
in living standards, income levels, and more. The Al-Ain 2030 plan outlines a vision for
the city’s future development, with a strong emphasis on achieving sustainability across
environmental, economic, cultural, and social dimensions. To align with this vision and
support the goal of water sustainability, this study has developed scenarios to explore
and anticipate the city’s future water demand. These scenarios provide valuable insights
for effective water resource management and planning, ensuring that Al Ain can thrive
while maintaining a sustainable and balanced approach to its development. Nonetheless,
in order to maintain an equilibrium between development and conservation, the Al-Ain
2030 strategy aims to foster genuine Arabic cultural heritage while also supporting the
progression toward a more contemporary nation [49]. Additionally, the future development
of Al-Ain City involves strategies to enhance renewable water sources and reduce the
utilization of non-renewable water resources [50].

Population growth, governmental policies, and other external drivers, such as water
loss, served as the foundation for the scenario development in Al Ain. Two clusters
of scenarios are developed. Namely, population-tied scenarios and water loss impact
scenarios.

4.5.1. Population-Tied Scenarios

In the suite of Population-tied Scenarios, a reference scenario named Baseline Water
Scenario, and four other sub-scenarios named Moderate Population Growth (MPG) water
scenario, Megaprojects (MP) water scenario, Tourism Focused (TF) water scenario and
High Population Growth (HPG) water scenario were developed to study the change in
water demands of Al Ain. Figure 16 illustrates the population projections for the various
scenarios.
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Base Water Scenario

A plausible future water demand scenario was developed for Al Ain, considering
the natural population growth of Al Ain. For the scenario named as the base scenario,
the expected population growth in Al Ain was considered to grow exponentially rather
than linearly. By 2030, it is projected that the population will nearly double. According to
the Urban Structure Framework Plan [48], the population of Al Ain city in the year 2005
stood at 338,970. By the baseline year of 2007, the population had grown to 374,000, with
an annual tourist visitation rate of 200,000 in that same year. Therefore, the population of
Al Ain was predicted using exponential regression in SPSS based on the available data, as
shown in Figure 16.

Moderate Population Growth Water Scenario

The MPG scenario explores the impact of moderate population growth on water
demand in Al Ain city. This scenario envisions a population size for residents in 2030
that is approximately 8% higher than the population size expected in the base scenario
(Figure 16). This scenario assumes that all essential factors and elements remain the same as
in the base year, with socioeconomic and demographic parameters growing at the officially
anticipated rate. Within this scenario, it is assumed that water usage remains sustainable,
with a medium percentage change that is higher than that of the base scenario.

Megaprojects Water Scenario

The MP scenario examines the potential impact of immigration to fulfill the labor
needs for expected megaprojects in Al Ain city. In a world characterized by continuous
progress, cities aim for advanced technology and a very high standard of living through
the development of megaprojects and industries. This scenario places a strong emphasis
on market solutions and globalization, which suggests that cities will likely experience
significant migration. Accordingly, this scenario was designed to assess the trend in water
demand in Al Ain resulting from a potential increase in immigrants to the city. Given the
UAE government’s emphasis on security and the implementation of barriers, we assumed a
moderate level of migration to Al Ain, primarily driven by improved access to high-quality
education and healthcare services, which are part of the megaprojects planned for Al Ain.

Tourism-Focused Water Scenario

The TF scenario took into account the expected visitors to Al-Ain city, which includes
the population size derived from the Megaprojects scenario, as well as the number of
tourists expected to spend two to four weeks in Al-Ain. Al-Ain city boasts a wide range of
tourist attractions, including Al Ain Museum, Al Ain Zoo, Ain Al Fayda Resort, and Al
Hili Fun City. In this scenario, as tourism continues to grow in Al Ain, the city experiences
the emergence of a middle class.
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High Population Growth Water Scenario

The HPG scenario takes into account the impacts of population growth resulting
from various plausible causes, including tourism, immigration, and megaprojects. This
sub-scenario considers a high population growth rate without a balanced focus on environ-
mental and economic growth rates. This is achieved by assuming high economic growth
rates, as outlined in The Abu Dhabi Water Strategy [51], which would result in higher
immigration rates of workers into Al Ain.

4.5.2. Water Loss Scenarios

One of the major external drivers of water demand is the significant water losses
occurring in the distribution network system, making it challenging to quantify these losses
accurately. These water losses are categorized into two main groups: losses stemming from
pipe networks and ad losses resulting from illegal connections and government-subsidized
water. Data obtained from the Al-Ain Distribution Company [45] indicated that losses
within the water distribution system of Al Ain City account for approximately 20%. In
the broader context, the UAE addresses its potable water deficit by supplying desalinated
water [48]. Therefore, accounting for water loss is essential when estimating water demand.
It is crucial to reduce the volume of lost water, as numerous studies have highlighted
the environmental consequences of desalination plants in the Arabian Gulf [26]. Hence,
effective management of desalinated water supply is vital for the long-term water resource
development of the region. Consequently, this study considers water loss in the distribution
system of desalinated water to create a range of water scenarios, aiming to assess their
impact on overall water demand. These scenarios investigate the effects of gradually
increasing the percentage of lost water from the current 20%.

4.6. Simulation Results for Population-Tied Water Scenarios

The simulation results from IWR-MAIN for the population-tied water scenarios are
discussed in this section.

4.6.1. Overall Annual Water Demand

The total annual water demand forecast from 2013 to 2030 (in million cubic meters
per year) is presented in Figure 17. It shows that the simulated result depends on the
model coefficient and intercept (β, α) that depends on the population growth. By 2030,
the estimated annual demand will reach 722 million cubic meters per year, and the water
demand increase will be around 46% by 2030 as compared to 2012.
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Furthermore, a comparison of yearly water demands for other water scenarios that
were developed was carried out. It is evident from Figure 17 that changes in water demand
projections are directly correlated with changes in the population size. In general, water
demand is projected to increase by 1.5%, 2%, and 2.5% in 2020, 2025, and 2030, respectively,
compared to water use in 2013. Additionally, Figure 17 illustrates that the difference
between the baseline scenario and the MPG water scenario is nearly 10% and 8% in 2020 and
2030, respectively. Scenario 2’s water demand projection indicates that mega-developments
will require 16.5% more water than the base scenario in 2020 due to the increased number
of workers, and this demand will decrease to 8% in 2030 as construction work concludes.
The HPG water scenario shows a 2.8% increase in water demand compared to the TF water
scenario.

4.6.2. Overall Monthly Water Demand

This simulation was aimed to identify the month with the highest water demand in
Al Ain. The simulation results for the baseline scenario carried out until the year 2030 are
depicted in Figure 18. It is evident that the months of August and September exhibit the
highest water demand. August records the highest water demand from 2013 to 2025, while
September surpasses it from 2026 to 2030. Conversely, June consistently has the lowest
water demand in the majority of years within the study period.
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4.6.3. Sector-Wise Monthly Water Demand Forecast

The monthly water demand forecasts for seven sectors considered in the study in Al
Ain are shown in Figure 19. The simulations of the Linear Forecasting Model are dependent
on the model’s intercept and coefficient (α, β). As a result, the water demand for certain
months does not consistently increase over the years. In Figure 19, it is evident that the
agricultural sector exhibits the highest water demand in October, while April shows the
lowest demand. Both the commercial and government sectors experienced their peak water
demand in August. On the other hand, the government sector has the lowest demand in
March, while the commercial sector has its lowest demand in February from 2013 to 2023
and in May from 2024 to 2030. November witnessed the most significant increase in water
demand for the residential and public services sectors. The non-metered services sector
shows the lowest water demand from June 2017 to 2030 and the highest demand in August.
As for the industrial sector, June and August have the lowest estimated water demand
during the periods of 2013–2021 and 2022–2030, respectively, with the least amount of
water required in February. Figure 19 also illustrates that for the government and industrial
sectors, the months with the lowest demand, March and February, respectively, maintain a
relatively constant pattern.
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A simulation was conducted to determine the month with the highest water demand
in Al Ain. The simulation results for the baseline scenario carried out until the year 2030 are
presented in Figure 18. It is evident that the months of August and September consistently
have the highest water demand. Specifically, August exhibits the highest water demand
from 2013 to 2025, while September takes over as the month with the highest demand from
2026 to 2030. Conversely, June consistently has the lowest water demand for the majority
of the years in the study period.
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4.7. Simulation Results for Water Loss Scenarios

Three sub-scenarios, namely, Low Loss (LL), Medium Loss (ML), and High Loss (ML)
were simulated. The water loss was assumed to reach 25%, 30%, and 35% of the total water
production for the scenarios LL, ML, and HL, respectively. Therefore, in IWR-MAIN, the
expected percentages of lost/ unaccounted water were entered for the forecasting years.
Figure 20 shows the comparison of the water demands as simulated by the model.
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Figure 20 illustrates the increase in total water demand across three scenarios over
the years. As previously mentioned, the IWR-MAIN program computes losses based on
provided values. Consequently, as long as loss percentages continue to rise in all projected
years, the total water demand (comprising metered, unmetered, and losses) will also
continue to climb. Figure 20 unmistakably highlights that the total demand in the HL
scenarios surpasses that of the other two scenarios, with the difference becoming more
pronounced as it approaches 2030.

5. Conclusions

This study has provided water demand predictions for Al-Ain city till year 2030. The
research utilized various available databases across different water use sectors, population
size, average temperature, and average rainfall. Through simulations conducted with the
SPSS program, it was determined that population size is the sole significant independent
variable in this study, whereas average temperature and rainfall amount did not exhibit
significant correlations with water consumption. The calibration and prediction of the
Linear Forecasting Model were carried out in this study using the IWR-MAIN program.
This model relies on population size, model coefficient (β), and model intercept (α). Cali-
bration of the model involved the utilization of two datasets: total monthly water usage
and monthly water usage for seven distinct sectors. These sectors encompass agricultural,
residential, non-metered services, commercial, government, industrial, and public services.

Several factors contribute to uncertainties in the provided data by AADC, including
uncertainties in reading and recording procedures. For instance, if a reading was not taken
for a specific month, an average consumption reading is often used. It is important to
note that the uncertainty in projected water demand tends to rise as the projection period
increases. Additionally, the uncertainty in forecasting water demand is intrinsically linked
to the prediction of population growth. As a result, the accuracy of the assumptions made
plays a crucial role in determining the reliability of the results.

The results indicate that the peak water demand takes place in August until 2025 and
then shifts to September from 2026 to 2030. Additionally, the agricultural sector experienced
its highest water demand in October. As for the commercial and government sectors, their
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highest water demand is anticipated in August. Furthermore, the industrial sector is
projected to have the lowest water demand in the month of August until 2030.

To achieve the necessary supply for water demand outlined in each scenario, it is
crucial to implement specific programs. Regulations and water conservation alone will
not suffice to reach these goals unless there is a recognition of the necessity for change.
The potential for integrating water supply and renewable energy sources in Abu Dhabi
to enhance sustainability has to be explored. In this context, the integration refers to the
use of renewable energy technologies to power water supply and treatment processes,
making them more environmentally friendly and efficient. By integrating renewable energy
into water supply and treatment processes, the UAE can reduce its reliance on fossil fuels,
decrease greenhouse gas emissions, and move towards a more sustainable and environ-
mentally friendly water management system. This not only benefits the environment but
also enhances the long-term resilience of the water supply in the face of climate change and
resource constraints.
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