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Abstract: Floods are highly perilous and recurring natural disasters that cause extensive property
damage and threaten human life. However, the paucity of hydrological observational data hampers
the precision of physical flood models, particularly in ungauged basins. Recent advances in disaster
monitoring have explored the potential of social media as a valuable source of information. This
study investigates the spatiotemporal consistency of social media data during flooding events and
evaluates its viability as a substitute for hydrological data in ungauged catchments. To assess the
utility of social media as an input factor for flood prediction models, the study conducted time-
series and spatial correlation analyses by employing spatial scan statistics and confusion matrices.
Subsequently, a long short-term memory model was used to forecast the outflow volume in the Ui
Stream basin in South Korea. A comparative analysis of various input factor combinations revealed
that datasets incorporating rainfall, outflow models, and social media data exhibited the highest
accuracy, with a Nash–Sutcliffe efficiency of 94%, correlation coefficient of 97%, and a minimal
normalized root mean square error of 0.92%. This study demonstrated the potential of social media
data as a viable alternative for data-scarce basins, highlighting its effectiveness in enhancing flood
prediction accuracy.

Keywords: flood prediction; long short-term memory; social media; ungauged basin; unstruc-
tured data

1. Introduction

Floods are some of the most dangerous and frequent natural disasters that cause prop-
erty destruction and endanger lives. Among the disasters in the Southwest Pacific region,
floods accounted for 78% and 63% of the number of casualties and property damage, re-
spectively [1]. Changes in management methods are essential, given the growing influence
of flooding caused by heavy rains and urbanization, which is gradually occurring locally
and on a large scale, owing to climate change [2,3]. Using physical data, the hydrological
runoff model, which is widely used for flood prediction, can make predictions similar to
actual observations. However, the number of high-intensity rainfall events, such as flash
floods, continues to increase; thus, existing physical models may not be suitable for flood
prediction since obtaining results takes substantial time, owing to the high computational
requirements, depending on the size of the model.

Recently, various studies using neural network models for flood prediction have been
conducted [4–21]. An artificial neural network (ANN) model is a data-driven model that
can make predictions rapidly, owing to fewer computational requirements than existing
physical models. ANN models can improve the accuracy of predicting hydrological vari-
ables, such as water level, flow rate, and precipitation, as they effectively predict nonlinear
data [4–11]. Several studies have compared the accuracy of neural network models for
outflow prediction [12–14]. Dehghani et al. [15] highlighted that a long short-term memory
(LSTM) model has the best prediction rate for small basins, whereas convolutional neural
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network (CNN) and convolutional LSTM (ConvLSTM) models are best for short-term
streamflow predictions of 1 h in larger basins. Atashi et al. [16] conducted a similar study,
finding that LSTM outperformed 1D-CNN in predicting flood events at the USGS Grand
Forks Station. Despite the improved performance of predictive models, their accuracy
degrades with a lack of hydrological observational data, and predictions for unmeasured
regions remain limited [17,18]. Accordingly, research is actively being conducted to predict
the flow rate of unmeasured areas using various additional data and models. Liu et al. [19]
used the Global Flood Awareness System (GloFAS) and ERA5-Land hydro-meteorological
data with a piecewise random forest to produce more accurate hydrological simulation
results. Furthermore, Xiao et al. and Zhu et al. [20,21] employed the BTOP model for
ungauged basins, resulting in a notable increase in the Nash–Sutcliffe efficiency (NSE).
However, deep learning models, such as LSTM models, surpass accuracy stochastic (e.g.,
autoregressive integrated moving average; ARIMA) and shallow learning models [22].

In addition, several studies have employed social media to monitor floods in real
time and confirmed the high spatiotemporal correlation between social media data and
inundation areas [23–27]. Studies have also been conducted to predict the severity of
flooding by learning photo and text data posted to social media through a neural network
model. Kanth and Sowmya [28] and Songchon and Beevers [29] carried out studies to
predict water levels in two dimensions by analyzing photos from social media. Although
using photographs can provide more accurate data than using text alone, it is unsuitable for
floods caused by recent increases in short and strong rainfall patterns due to the substantial
time required for model simulation. Therefore, this study aimed to establish a 10 min flow
rate prediction model using LSTM, which is suitable for short-term data prediction, and
social media data that can be applied to sudden floods in basins where limited data are
available. The study sought to predict flooding in catchments with ungauged and limited
hydrological data by using social media data. It also examined the feasibility of using social
media as an alternative to hydrological data. The Jungnang Basin in Seoul, South Korea,
was selected as the study area for model verification. The usability of the crowdsourced
data was verified, and the optimal combination of input datasets was analyzed.

The remainder of this paper is organized as follows. Section 2 introduces the method-
ology, including the combinations of input datasets, an explanation of the prediction model,
and the analysis methods used for validation. Section 3 presents the results of the accuracy
comparisons between datasets. Finally, Section 4 discusses the research findings and their
implications.

2. Study Area and Data
2.1. Study Area

As illustrated in Figure 1, the study area encompassed the Jungnang River basin,
spanning the regions of Seoul and Gyeonggi-do in South Korea. This basin covers an
area of 296.98 km2, with a flow path that extends over 36.44 km and an average width of
8.13 km. Notably, over 75% of the basin is characterized by high-density urban development,
reflecting a concentrated population. Specifically, 44.4% of the basin area is urban, and an
additional 45% is covered by forests. In Figure 1, the green-shaded area represents the Ui
stream basin, a significant tributary of the Jungnang River, which served as a vital input
element for the model analyzed in this study. As the primary tributary of the Jungnang
river, the Ui stream has a basin area of 27.29 km2 that extends over a length of 12.35 km.
The Jungnang River is susceptible to substantial flood damage downstream. Furthermore,
the presence of roads along the riverbanks raises concerns about potential casualties and
economic losses during river flooding events.
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Figure 1. Location of the Jungnang Basin and Ui Basin.

2.2. Data

Observed hydrological data and social media data were employed as input variables.
To comprehensively grasp hydrological patterns via a model, it is imperative to include
physical factors as input variables. While neural network models are adept at nonlinear
predictions, they encounter limitations in achieving high prediction accuracy while learning
unchanging values, such as physical factors (e.g., permeability), alongside nonlinear data,
such as social media data. Hence, this study incorporated outflow data derived from
the hydrological Hec-1 model from the smaller Ui basin within the broader Jungnang
catchment. These data were employed to represent the hydrological components within
the model as input variables.

2.2.1. Observation Data

Precipitation and flow rate were used for learning, and the model was designed to
predict the observed downstream flow data as the result value. Precipitation data from
upstream of the entire basin, comprising input data from the LSTM model, were used. In
total, 2448 data points were used. Table 1 presents the details of the data employed in
this study.

Precipitation and flow rate data were collected at 10 min intervals. The rainfall
gauge, situated at Point B in Figure 1, is strategically located upstream of the Jungnang
basin. Precipitation data were integrated as one of the input variables alongside others.
Meanwhile, the flow rate data for the Jungnang basin, represented by Point A in Figure 1,
served as the output variable for the prediction task. Both precipitation and flow rate data
were utilized during the training and testing phases, which were carried out at 10 min
intervals.
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Table 1. Observation data used in the study.

Data Unit
(Total Data Count) Usage Location Source

Precipitation
10 min
(2448)

Input Variable
Upstream of

Jungnang Basin
(B)

Korea
Meteorological
Administration

Flow rate Output
Variable

Downstream of
Jungnang Basin

(A)

Han River Flood
Control Office

2.2.2. Flow Rate from the Hec-1 Model

Given the absence of a dedicated water level gauge at the juncture where the Ui stream
converges with the main stream, this study derived a flow rate as a representation of the
Uicheon stream basin. The calculated flow rate was integrated as an input variable for the
prediction process, enabling a more comprehensive prediction of hydrological dynamics
in the study area. Flow rate was simulated equally in the same units with other input
variables at 10 min intervals.

The Hec-1 hydrological model was employed in conjunction with the CLARK wa-
tershed routing method and the Muskingum hydrologic channel flood routing method.
Detailed information on the routing methods and parameters used for the simulation is
specified in Table 2. All the data utilized in this study were sourced from the Jungnang
stream area as part of the latest river basin plan report developed by the Seoul Metropolitan
and Gyeonggi-do governments [30,31]. Within this report, the calculation of the travel
time crucial for the Clark routing method’s primary parameter TC was carried out using
the Kraven (II) formula. Additionally, the storage constant was determined by utilizing
the value prescribed by the Sabol formula. These calculations and formula applications
were fundamental aspects of the methodology used to derive essential parameters for
the present study’s hydrological modeling and analysis. The retention constant K of the
Muskingum method used the K value calculated for the passage time of the peak flood
from the HEC-RAS unsteady flow model for the design frequency flood volume. This
report comprehensively covers the calibration and validation results, and, as a result, no
further verification process was deemed necessary in the present study.

Table 2. Routing methods and parameters used in the Hec-1 model.

Routing Method Parameters Formula

CLARK watershed
routing method

Travel Time (TC) Kraven (II) [30]

Storage Constant (R) Sabol formula [32]

Muskingum hydrologic
channel flood routing method Retention Constant (K) Passage time of the peak flood from

the HEC-RAS unsteady flow model

2.2.3. Social Media Data

Social media data were extracted via a crawler presented in previous research [25]
from the social media channels Naver, Daum, Instagram, and Twitter. Details of the
extracted text data are shown in Table 3. As the extraction method employed base keywords,
keywords were extracted from the content to categorize disaster types. Time and region
information were also collected. Furthermore, to prevent duplicate data, the web address
of the social media post was extracted. Social media data were collected in units of 1 min
and accumulated in units of 10 min by region.
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Table 3. Variables included in the social media data content.

Variable Description

Keyword Configuring disaster types with keywords

Region Extracting local information where the event occurred

Time Enabled a specified search of the time when the event occurred
and extracted the time when the social media post was created

Title Extracted to determine if the content contained in the body of the
social media post was relevant to local information or crisis eventsArticle

Web address Prevented data from being stored when data from the same
address was extracted to avoid duplicate data

Meteorological data Extracted for comparative analysis with weather-related disasters

3. Methodology
3.1. Long Short-Term Memory Network

The LSTM network is a type of recurrent neural network (RNN) and was originally
introduced by Hochreiter and Schmidhuber [33]. It is particularly well-suited for processing
data sequences that involve long-term dependencies [34]. In contrast to a conventional
RNN, which typically features a single layer of repeating modules, an LSTM network
is designed with a more intricate structure that comprises four interacting layers. This
sophisticated architecture serves to mitigate the issue of information loss over time and
equips the network with the capability to both retain and update its internal memory
states. As a result, LSTM networks excel at handling sequences with varying time intervals
between significant events, making them a valuable tool in various applications involving
sequential data. Figure 2 shows the structure of the LSTM neural network employed in this
research.

Water 2023, 15, x FOR PEER REVIEW 6 of 15 
 

 

 
Figure 2. Structure of the LSTM model used in this study. 

An LSTM network comprises cell and hidden states. The cell state (𝐶௧) represents the 
memory of the LSTM unit cell, which can store propagated information over long time 
sequences. A candidate cell (𝐶′௧) state is used for updating the cell state. The output of the 
LSTM unit cell is called the hidden state, which can carry information propagated to the 
next time step and is used for predictions. The hidden state (ℎ௧) has three gates: forget, 
input, and output. At time t, each gate and state can be expressed as in Equations (1)–(6). 
The forget gate (𝑓௧) determines whether information from the previous cell state should 
be forgotten. The input gate (𝑖௧) determines whether to save the current input in the cell 
state, and the output gate (𝑜௧) controls the exposure to the output. 𝑓௧ =  𝜎൫𝑊௫ ∙ 𝑥௧  𝑊௫ ∙ ℎ௧ିଵ  𝑏൯,  (1)𝑖௧ =  𝜎(𝑊௫ ∙ 𝑥௧  𝑊௫ ∙ ℎ௧ିଵ  𝑏),  (2)𝑜௧ =  𝜎(𝑊௫ ∙ 𝑥௧  𝑊௫ ∙ ℎ௧ିଵ  𝑏),  (3)𝐶′௧ =  𝑡𝑎𝑛ℎ(𝑊௫ ∙ 𝑥௧  𝑊௫ ∙ ℎ௧ିଵ  𝑏),  (4)𝐶௧ =  𝑓௧ ∙ 𝐶௧ିଵ  𝑖௧ ∙ 𝐶ᇱ௧,  (5)ℎ௧ =  𝑜௧ ∙  𝑡𝑎𝑛ℎ(𝐶௧),  (6)

where 𝑥௧ is the input at time step t, ℎ௧ିଵ is the hidden state at the previous time step, 𝑊 
represents the weight matrices, 𝑏 represents the bias factor of each gate, and 𝜎 is the sig-
moid activation function. 

In this study, the LSTM model was harnessed using a mini-batch training methodol-
ogy, where a batch size of 64 was deliberately chosen due to its established effectiveness 
for flow rate prediction [35]. To safeguard against overfitting, the model underwent a total 

Figure 2. Structure of the LSTM model used in this study.



Water 2023, 15, 3818 6 of 13

An LSTM network comprises cell and hidden states. The cell state ( Ct) represents the
memory of the LSTM unit cell, which can store propagated information over long time
sequences. A candidate cell ( C′t) state is used for updating the cell state. The output of
the LSTM unit cell is called the hidden state, which can carry information propagated to
the next time step and is used for predictions. The hidden state (ht) has three gates: forget,
input, and output. At time t, each gate and state can be expressed as in Equations (1)–(6).
The forget gate ( ft) determines whether information from the previous cell state should be
forgotten. The input gate ( it) determines whether to save the current input in the cell state,
and the output gate ( ot) controls the exposure to the output.

ft = σ
(

Wx f ·xt + Wx f ·ht−1 + b f

)
, (1)

it = σ(Wxi·xt + Wxi·ht−1 + bi), (2)

ot = σ(Wxo·xt + Wxo·ht−1 + bo), (3)

C′t = tanh(Wxc·xt + Wxc·ht−1 + bc), (4)

Ct = ft·Ct−1 + it·C′t, (5)

ht = ot·tanh(Ct), (6)

where xt is the input at time step t, ht−1 is the hidden state at the previous time step, W
represents the weight matrices, b represents the bias factor of each gate, and σ is the sigmoid
activation function.

In this study, the LSTM model was harnessed using a mini-batch training methodology,
where a batch size of 64 was deliberately chosen due to its established effectiveness for
flow rate prediction [35]. To safeguard against overfitting, the model underwent a total of
1000 epochs, benefiting from the inclusion of an early stopping mechanism in the Keras
API. This mechanism intelligently halted the training process at the onset of any increase
in validation loss. In the pursuit of optimal weight and bias adjustments, the model was
equipped with the highly regarded Adam optimizer, which is acknowledged for its superior
performance relative to alternative optimization algorithms [36]. The mean squared error
was used as the core loss function, whereas the final model layer was enhanced with a
rectified linear unit activation function.

3.2. Training Data Settings and Predictive Accuracy Assessment Method
3.2.1. Training Data Settings

In this study, nonlinear data were used in addition to existing hydrological data;
therefore, it was necessary to select the optimal combination of input data. To maximize
the lead time for predictions of sudden flooding, a method for reducing the number of
calculations using minimal input data should be adopted. To select the optimal combination
of input data, experiments were performed with different input data compositions, as listed
in Table 4. Cases 1, 2, and 3 were cases without social media data. Cases 1, 2, and 4
were datasets that included only rainfall data, model simulation outflow values for owned
areas, and social media data, respectively. Cases 3, 5, and 6 were datasets comprising
precipitation and simulated runoff data, precipitation and social media data, and simulated
runoff values and social media data, respectively. Case 7 comprised all data types. For the
training periods, flooding events that occurred from April to August 2018 were used. For
the testing periods used in validation, data from flooding events that occurred in September
and October 2018 were employed.
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Table 4. Composition of each input dataset.

Dataset
Case No.

Training
Periods

Testing
Periods

Input Data Composition

Precipitation Flow Rate (Model) Social Media

1
22–24 April

2018
16–18 May

2018
26–28 June

2018
1–3 July 2018
26–28 August

2018

3–5 September
2018

6–8 October
2018

#

2 #

3 # #

4 #

5 # #

6 # #

7 # # #

3.2.2. Predictive Accuracy Assessment Method

The NSE metric was used to identify the fit of the runoff patterns of the LSTM model
using various dataset compositions with crowdsourced data. This metric compares the
predictive power of a model against the mean observed value and serves as a measure
of the accuracy of the model predictions with the observed data. The CC values were
calculated using Equation (7). The NSE is a widely used metric in hydrological modeling
and other fields, where predictive accuracy assessment is important [37].

NSE = 1− ∑T
t=1
(
Qt

o −Qt
m
)2

∑T
t=1
(
Qt

o −Qo
)2 , (7)

where Qt
o represents the observed flow rate at time t, Qt

m represents the flow rate predicted
from the model simulation at time t, and Qo represents the mean observed flow rate. NSE
values range from infinity to 1. The closer the error variance of the estimated value to 0,
the closer the NSE to 1. A value of 1 indicates a perfect match between the predicted and
observed values.

The Pearson correlation coefficient (r), an efficient metric for quantifying linear dis-
tance, is a statistical measure that is widely used to understand the degree of linear trend
between two variables [38]. Equation (8) shows the formula for r. r ranges from −1 to 1,
where −1 indicates a perfect negative correlation, 1 indicates a perfect positive correlation,
and 0 indicates no linear correlation.

=
∑n

i=1 (xi − x)(yi − y)√
∑n

i=0 (xi − x)2∑n
i=0(yi − y)2

, (8)

where the numerator (∑n
i=1 (xi − x)(yi − y)) represents the variances of x and y, and the

denominator (
√

∑n
i=0 (xi − x)2∑n

i=0(yi − y)2) represents the variances of each x and y.
The normalized root mean square error (NRMSE) was also used to evaluate the model

accuracy. The NRMSE quantifies the difference between the observed and predicted values
at different scales. In this study, the NRMSE between the observed and predicted data
values was calculated to examine quantitative differences and easily compare accuracy.
The NRMSE is expressed as in Equation (9).

NRMSE(%) =

√
∑n

i=1(yi−ŷi)
2

n
ymax − ymin

× 100, (9)

where yi and ŷi are the observed and predicted values from the model, respectively, and
(yi − ŷi)

2 indicates the squared difference between two data points.
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4. Experiment Results

As lead time is important in the case of sudden flooding, the outflow of the Jungnang
stream was predicted at 30 min, 1 h, 2 h, and 3 h before the flood event for Cases 1–7,
and the results were compared. Figure 3 summarizes the prediction results for each case.
Contrary to the belief that the shorter the lead time, the higher the accuracy, the accuracy
was higher for a lead time of 1 h than for 30 min in all cases.
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Cases 1 and 5, 2 and 6, and 3 and 7 were compared to evaluate whether social media
data contributed to the model’s predictive power. The results showed that the NSE and
r values increased, and the NRMSE decreased, indicating more accurate predictions. In
particular, in Case 1 and Case 4, which were predicted using only rainfall data and social
media data, respectively, the r was low, and the NSE was negative. In Case 1, rainfall data
from the point located upstream were used; therefore, it is likely that there was a limit to
predicting the flow rate of the entire watershed. The outcome in Case 4 can be attributed to
the time lag between the occurrence of rainfall and flow rate changes and the subsequent
generation of social media content. Thus, this outcome leads to the conclusion that relying
solely on social media data has its limitations. In the prediction with a 60 min lead time for
Case 5, the accuracy was lower than for the other datasets for the same reason. However,
comparing the overall indicator change, the NSE increased by approximately 77% from
0.35 to 0.62, and r increased by 0.07 from 0.76 to 0.83, demonstrating a 9% increase. The
NRMSE also decreased by 0.27, corresponding to a 14% reduction. This was similar for
Cases 2, 6, 3, and 7.

Cases 2, 3, 6, and 7 exhibited high accuracy in modeling the outflows. Figure 3
compares the observed values of Cases 2, 3, 6, and 7, indicating high accuracy with the
prediction values obtained through the model. The 60 min prediction for Case 2 showed
an NSE of 0.89, r of 0.95, and NRMSE of 1.16%. However, the accuracy indicators NSE,
r, and r2 increased in Cases 3 and 6 compared with those in Case 2. The 30 min lead
time prediction results in Cases 2 and 3 were similar; for other lead times, they showed
better results than when modeling values alone were used. The 30 min and 1 h predictions
were more accurate with the combination of social media and model values than with the
combination of rainfall and model values. The 2 h and 3 h predictions were more accurate
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with combinations of rainfall and model values. Reflecting the outflow was expected to
take time as rainfall data were used as an input. Case 7 was the most accurate. Unlike other
cases, where achieving 80% accuracy was challenging, Case 7 yielded an NSE of 0.82 and r
of 0.91 for the 2 h prediction.

As above-mentioned, Case 7, in which all data were included as input factors, was the
most accurate. Case 4, which used only social media data, had the lowest accuracy. The
results confirmed that social media data helped improve prediction accuracy; however,
the bias was large when social media was the only input factor. In addition, in the graphs
for Case 2 (Figure 4), which used only the modeling flow values for the prediction, the
loop shape was less visible in the 30 min and 1 h lead-time predictions but clear in the
2 h and 3 h predictions. This result was expected from the time-series prediction with
a time delay. The loop shape disappeared when social media data were included as an
input factor (Cases 6 and 7). The time-series prediction results were compared to determine
the peak flow rate consistency and occurrence time, which are the most significant factors
in predicting sudden flooding. Figure 5 compares the predicted and observed values for
Cases 3, 6, and 7.
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Figure 5. Comparison between observed and predicted flow rates (Cases 3, 6, and 7) and three peak
points with different predictive power (A, B, and C).

The peak flow rate and its time of occurrence are vital to flood forecasting. Case 7 more
accurately predicted the peak flow rate than Cases 3 and 6. This was particularly evident in
Section A, where two peak flow generation intervals of 60 Qms or more were observed. In
Case 3, a flow rate of approximately 80 Qms was adjusted relatively accurately; however,
the result was predicted at 90 Qms at an observed flow rate of 110 Qms. This result was
similar to that of Case 6. Case 7 accurately matched 80 Qms and showed better results
than the previous combination, although it was less than 110 Qms at the second peak. This
was similar to the results of Case 3, which used the rainfall and model flow values and
implemented the shapes of the two peaks similarly; however, the difference in the peak
flow was large. In Case 7, the shape of the peak was not implemented, but the result was
most similar to the peak flow rate. The difference in the flow rate was predicted the least
in Section C. These results indicate that social media data influence prediction accuracy;
however, the peak flow rate can be more accurately predicted only when rainfall, social
media, and modeling flow values are used together.

5. Discussion

Accurate flood prediction is of paramount importance for enabling swift evacuation
measures and effective road control, ultimately mitigating the risks associated with flood-
related human harm and property damage. Nevertheless, attaining precision in rapid
response to flash floods remains a formidable challenge, particularly in ungauged basins
lacking hydrological data. This study introduced an innovative approach by harnessing
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unstructured social media data in conjunction with an LSTM network model to predict flood
events. The study also assessed the feasibility of utilizing social media as an alternative data
source to hydrological input for ungauged basins. The findings underscore the enhanced
accuracy achieved through the incorporation of social media data, revealing its substantial
predictive potential when integrated with other input variables.

This study’s results corroborate those of Songchon et al., who pointed out that un-
certainty in flood forecasting models can be reduced by employing social media data [29].
Abas and Addou also indicated that social media is a considerable variable in predicting
flooding on a map [29]. In addition, it has been demonstrated that social media records
can be used to improve local flood forecasting by storing the conditions in a database [39].
Although the accuracy of the discharge predictions in the present study was slightly lower
than in prior studies [14–16], a commendable level of over 90% accuracy in terms of the
NSE was maintained. Given the prevalent reliance on similar methodologies for hourly
unit forecasts, models achieving an NSE of 0.94 and a correlation coefficient of 0.97 are
deemed appropriate when focusing on 10 min predictions to ensure accuracy during flash
flood occurrences.

This study has several limitations that present opportunities for future research. First,
social media may contain inaccurate information or exhibit biases because they rely on data
generated by humans. Therefore, solely assessing the quantity of data may not provide a
precise gauge of the severity of a flood. Furthermore, many researchers have conducted
studies on flood detection and estimation using social media images in addition to text
data [40–47] since photos and videos can serve as crucial indicators of real-time field
conditions [43]. The authors of the present study intend to incorporate additional image
data analysis and sentiment analysis of textual data into future research to enhance the
predictive accuracy of flood assessment. Second, this study only employed an LSTM model,
which focused on identifying the optimal combination of input variables; however, it is
imperative to analyze alternative models. Furthermore, developing a novel model for
optimizing various combinations is necessary while considering the creation of previously
unused input factors.

6. Conclusions

This study proposed optimized input variables to enhance flood prediction accuracy
for ungauged basins, i.e., basins that lack hydrological data, using an LSTM network model
and social media data as an alternative to observation data. Several cases were divided by
different combinations of crowdsourced data and existing hydrological elements to find
the optimal dataset for prediction. An analysis of the influence of social media data on the
model’s predictive power revealed significant improvements in accuracy, as indicated by
metrics such as the NSE and r values, and a reduction in the NRMSE. The main findings of
this study can be summarized as follows.

(1) In general, the model’s prediction accuracy improved when social media data were
used as an input factor along with other factors.

(2) The study found that combinations of social media and modeling data yielded better
accuracy for 1 h predictions, whereas combinations of rainfall and modeling data
provided more accuracy in the 30 min, 2 h, and 3 h predictions.

(3) Notably, cases that included all data as input factors demonstrated the highest accu-
racy, achieving an NSE of 82 and r of 0.91 in the 2 h predictions.

The study demonstrated that using social media as an alternative data source in LSTM
models has the potential to enhance flood prediction accuracy in regions with limited data
availability. Future studies should focus on constructing a neural network model that
can improve the accuracy of the optimal input factors identified in this study. Moreover,
research on predicting the severity of flooding by configuring the results of sentence
analyses of social media text data, with words as input factors, is necessary.
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