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Abstract: Comprehending the changing patterns of flood magnitudes globally, particularly in the
context of nonstationary conditions, is crucial for effective flood risk management. This study
introduces a unique approach that employs simulated discharge data to unravel these intricate
variations. Through a comprehensive analysis of a substantial ensemble of General Circulation
Models (GCMs) runoff datasets, we examine the dynamics of nonstationary flood magnitudes on
a global scale. A pivotal aspect of our investigation is the development of a reference map, which
helps delineate suitable scenarios for applying stationary or nonstationary methods in estimating
extreme floods. This map is then employed to compare estimations of 100-year flood magnitudes
using both methodologies across specific geographical areas. Our findings distinctly highlight the
disparities arising from the use of stationary versus nonstationary approaches for estimating extreme
floods. These insights underscore the significance of considering nonstationary for accurate flood risk
assessment and mitigation strategies. The practical utility of our reference map in aiding informed
decision making for stakeholders and practitioners further underscores its importance. This study
contributes to the scholarly understanding of the evolving nature of flood phenomena and provides
valuable insights for crafting adaptive measures in response to changing climatic conditions.
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1. Introduction

Floods are among the most common natural devastating hazards with significant
social and economic impacts worldwide [1]. In the period between 1998 and 2017 alone,
floods affected more than two billion people worldwide with approximately 11% fatali-
ties (142,088 deaths) and a 23% economic loss (USD $656 billion) [2]. In recent years, we
have observed that climate change has intensified the water cycle in many areas, chang-
ing rainfall characteristics and increasing flood frequency and magnitudes. The total of
176 flooding disasters in 2022 is slightly higher than the average from 2002 to 2021 (168),
resulting in more than 2800 deaths and 3.3 billion dollars in economic losses [3]. Future
floods will likely be prone to greater magnitudes and occurrences due to climate change.

To minimize flood risks, accurate flood frequency analysis is essential, as it provides a
basis for different flood risk measurements. The traditional approach to flood risk assess-
ment relies on the assumption of stationarity, treating floods as independent and identically
distributed over time. However, emerging evidence suggests that the characteristics of
floods (e.g., frequency and magnitude) are subject to nonstationary changes due to shifts
in climate patterns [4,5], land cover modifications [6,7], and both [8]. As a result, there
is widespread questioning regarding the validity of assuming time-invariant probability
distributions (i.e., stationary methods) to estimate flood risks [9,10]. There is a need for
new methods to better represent time-varying probability distributions and to assess the
evolution of flood characteristics [11,12].
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Nonstationary methods are proposed to estimate changes in the characteristics of
flood extremes, including magnitudes, frequencies, durations, and intensities [13,14]. These
approaches have the advantage of modeling changes in extreme event distributions based
on explanatory variables such as time, climate variability, and land cover [15,16]. Many
distributions (such as the Gumbel or Generalized Extreme Value distributions), are applied
to annual/seasonal series of maximum discharge to estimate extreme floods [17]. In
contrast, the Generalized Additive Models for Location, Scale, and Shape (GAMLSS)
framework has gained prominence [18]. With GAMLSS, a wide range of distributions can
be fitted to the response variable and distribution parameters can be modeled as smooth
functions of time or other relevant covariates, resulting in a flexible and comprehensive
analysis of nonstationary flood behaviors. It has become increasingly popular to use
GAMLSS models as an alternative way to explain changes in design floods and flood
magnitudes in relation to explanatory variables such as time, urbanization, and reservoir
indices [19,20].

Application of nonstationary methods is used in both research and environmental
management authorities, for instance in the design of engineering structures (such as dams,
flood embankments, and bridges) [21]. Using the probability distribution function, the
frequency and magnitudes of different flood extremes can be linked. The T-year (e.g.,
100-year) is usually regarded as the return period (or frequency), the value of the T-year
flood (e.g., 100-year flood) is regarded as the return level (or magnitude). These flood
extremes with given return periods can be estimated and used for setting safety standards
and avoiding potential economic losses [22]. However, despite these advancements, a
comprehensive empirical assessment of nonstationarity in diverse flood extremes and its
geographical variability across climate regions remains a notable research gap [23,24].

Furthermore, the availability of large ensembles of General Circulation Models (GCMs)
offers new opportunities to simulate discharge and assess the nonstationary changes in
flood magnitudes on a global scale [25,26]. These ensemble simulations provide valuable
insights into future climate projections, allowing for the evaluation of flood risks under
different climate scenarios. By integrating GCM-simulated discharge data with nonstation-
ary methods, researchers can better understand the potential impacts of climate change on
flood magnitudes and improve flood risk management strategies.

In the current study, our primary objective is to advance the field of nonstationary
flood analysis by leveraging a substantial ensemble of GCMs and applying the GAMLSS
framework to investigate global shifts in flood magnitudes. Our focus centers on generating
a reference map that delineates the spatial suitability of stationary and nonstationary
methods for extreme flood estimation. This reference map provides a comprehensive
foundation for accurately estimating extreme flood events, accounting for the intricate
interplay between geological characteristics, hydrological dynamics, and climatic variability.
Additionally, we apply this reference map in estimating the 100-year flood magnitude to
exemplify its practical utility. By scrutinizing the spatial distribution of suitable flood
frequency analysis methodologies, we seek to enhance understanding of the nuances in
hydrological behavior and provide a valuable tool for effective flood risk management and
adaptation strategies.

In summary, our study aims to bridge the gap between climatic variability, hydro-
logical dynamics, and flood estimation methodologies. The generated reference map
serves as a powerful guide for methodological selection, harnessing the complexities of
hydrological behavior to enhance the accuracy and reliability of extreme flood estimation.
Amid the era of heightened climate uncertainty, the integration of adaptive methodolo-
gies and robust modeling practices remains paramount for effective flood risk assessment
and management.

2. Materials and Methods

To simulate global river discharges and analyze flood extremes, we employed the
Catchment-based Macro-scale Floodplain Model (CaMa-Flood) [27]. This model is designed



Water 2023, 15, 3835 3 of 17

to simulate the behavior of river systems on a continental scale by discretizing global river
networks into unit catchments. The key advantage of CaMa-Flood is its computational
efficiency, enabling efficient flow computations and accurate flood diagnosis. In the CaMa-
Flood model, the calculation of river flow and floodplain inundation occurs simultaneously
within each unit catchment. By utilizing subgrid topographic parameters, water volume,
water level, and flood extent can be determined. The model incorporates local inertial
equations to accurately replicate backwater effects, which are crucial for precise simulations
of inundated areas. Moreover, the adoption of bifurcated channels in CaMa-Flood enhances
the accuracy of river flow simulations [28]. To drive the CaMa-Flood model, we utilized
runoff data obtained from General Circulation Models (GCMs) for the historical period from
1980 to 2014. Specifically, runoff data from nine GCMs, namely MIROC6, IPSL-CM6A-LR,
GFDL-CM4, NorESM2-MM, ACCESS-CM2, INM-CM5-0, MPI-ESM1-2-HR, MRI-ESM2-0,
and EC-Earth3, were analyzed in this study. Prior to inputting into the CaMa-Flood model,
the GCM runoff data were converted from their original spatial resolution to 30 arcmin
using bilinear interpolation. Consequently, the output of the CaMa-Flood model provided
us with daily discharge data on a grid of 900 × 1440 cells (0.25◦). Subsequently, data
processing techniques were applied to extract the annual maximum discharge values for
each grid cell.

To estimate extreme flood events under nonstationary scenarios, we employed the
Generalized Additive Models for Location, Scale, and Shape (GAMLSS). The GAMLSS
model is a widely used univariate distribution regression model that combines the Gener-
alized Linear Model (GLM) and the Generalized Additive Model (GAM) approaches. In
the GAMLSS framework, all the parameters of the assumed distribution for the response
variable can be represented as additive functions of the explanatory variables. This mod-
eling approach is particularly suitable when analyzing factors such as tails, variances,
quantiles, skewness, and kurtosis, rather than solely focusing on the mean or location of
the distribution. This is the formula of the GAMLSS model in vector form:

Y ∼ F(θ), (1)

With the Generalized linear additive equation:

g1(µt) = θ10 + θ11X11 + · · ·+ θ1n1 X1n1 , (2)

g2(σt) = θ20 + θ21X21 + · · ·+ θ2n2 X2n2 , (3)

g3(ξt) = θ30 + θ31X31 + · · ·+ θ3n3 X3n3 , (4)

Based on the assumption that PDF types for hydrological sequences remain constant,
such as Lognormal PDFs, the GAMLSS model has been extensively applied to study the
relationship between covariates and PDF variability under climate change scenarios [29–32].
In our specific study, we applied the GAMLSS model to estimate flood return periods and
magnitudes by utilizing three different distributions: Lognormal, Gamma, and Weibull.
These distributions were chosen as they are commonly used to describe hydrological
variables and capture the characteristics of extreme events.

The probability distribution function of Lognormal:

fYt(yt | µt, σt) =
1

ytσt
√

2π
exp{− [log(yt)− µt]

2

2σ2
t

}, (5)

The probability distribution function of Gamma:

fYt(yt | µt, σt) =
(yt)

1/σ2
t −1

Γ(1/σ2
t )(µσ2

t )
1/σ2

t
exp(− yt

µtσ2
t
), (6)
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The probability distribution function of Weibull:

fYt(yt | µt, σt) = (
σt

µt
)(

yt

µt
)

σt−1
exp(−( yt

µt
)

σt
), (7)

To conduct flood frequency analysis in this study, we utilized the GAMLSS package
Version 5.4-12 in R, a statistical software environment. The analysis focused on exploring
nonstationarity, considering time as the only covariate and location and scale parameters
as covariate functions. Notably, the GAMLSS model employed linear covariate functions
exclusively. In total, there were four combinations of covariate functions considered in the
study (Table 1). The first combination involved constant mean (µ) and constant scale (σ),
representing a stationary model. The second combination featured a constant mean and
time-varying scale, reflecting a nonstationary model. The third combination incorporated
time-varying mean and constant scale, also representing a nonstationary model. Finally,
the fourth combination involved time-varying mean and time-varying scale, representing
another nonstationary model. Considering the inclusion of three distribution types (Log-
normal, Gamma, and Weibull) and the aforementioned covariate function combinations,
a total of nine combinations were evaluated within the GAMLSS model. The purpose of
assessing these combinations was to select the most optimal distribution using the Bayesian
Information Criterion (BIC). The BIC serves as a criterion for model selection, aiming to
improve estimation accuracy. For the calculation of the 100-year flood, a nonstationary
method with the lowest BIC value was consistently employed. This approach ensured that
the most appropriate combination of distribution type and covariate functions was selected,
enhancing the accuracy of estimating the extreme flood event with a long return period.

Table 1. Summary of stationary and nonstationary models to estimate the extreme floods.

Changing Mean (µ) Changing Scale (σ)

Stationary - -

Nonstationary
Y -
- Y
Y Y

Notes: Y indicates the location or scale parameter of the distribution is time-varying. In combination with
four combinations of changing parameters and three distributions (Lognormal, Gamma, and Weibull), we have
12 models.

3. Results

3.1. Comparison of the Annual Maximun Discharge Generated with Multiple GCM
Runoff Datasets

Figure 1 illustrates a grid-based comparison of global mean annual maximum dis-
charge generated by CaMa-Flood with nine GCM-based runoff datasets during 1850–2015.
Each panel represents the simulated discharge from a specific GCM-based dataset, and the
map reveals significant spatial variability in discharge across different regions. In Figure 1,
the map uses darker colors to represent regions with high discharge values, indicating
the locations of large rivers in the world. For example, major rivers such as the Amazon
in South America, the Nile in Africa, the Yangtze in Asia, and the Mississippi in North
America could be visualized as darker regions in the figure due to their substantial annual
maximum discharge. Conversely, lighter colors might signify regions with lower discharge
values, indicating dry or arid areas. For instance, parts of deserts such as the Sahara in
Africa, the Arabian Desert in the Middle East, and the Atacama Desert in South America
might appear as lighter shades in the figure, representing the lower annual maximum dis-
charge in these dry regions. The comparison also reveals distinct discharge patterns among
the GCMs, with some consistently overestimating and others underestimating discharge
magnitudes. These differences stem from varying representations of land surface processes,
precipitation patterns, and hydrological parameterizations in the GCMs. Additionally,
certain regions display GCM-induced biases, indicating the necessity of identifying and
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quantifying these discrepancies for accurate hydrological modeling and decision making.
The color patterns further highlight the suitability of specific GCMs in capturing hydrologi-
cal behavior in different regions, with GCMs closely resembling CaMa-Flood’s discharge
distribution being more reliable.
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Figure 1. Mean annual maximum discharge during 1850–2015 using CaMa-Flood model driven by
eight GCM-output runoff products. For the remaining results, please see the Figure A1.

Figure 2 reveals the slope of the annual maximum discharge trends during 1850–2015
for each grid, providing insights into regional differences and disparities among GCMs
in capturing hydrological behavior. The color-coded representation shows pronounced
regional variability, with some areas displaying positive slopes indicating an increasing
trend in annual maximum discharge, while others show negative slopes indicating a
decreasing trend. In most parts of the world, the color-coded slopes indicate a positive
trend, suggesting an increasing pattern in annual maximum discharge over the study
period. This observation aligns with the general understanding of global hydrological
changes associated with climate variability and human activities [33]. However, within
specific regions, such as the Amazon River basin, negative slopes are evident, indicating
a decreasing trend in annual maximum discharge. These localized variations could be
linked to the complex interactions of regional climate patterns, land use changes, and
hydrological responses. Comparing the panels highlights the influence of different GCMs
on the simulated discharge trends. The discrepancies in capturing the hydrological behavior
of regions, particularly in areas such as the Amazon River basin can be observed in Figure 2.
For some GCMs, the rivers within the Amazon basin show an increasing trend in annual
maximum discharge, while other GCMs exhibit a decreasing trend. These differences
highlight the sensitivity of hydrological modeling to GCM selection and emphasize the
necessity of carefully choosing appropriate GCMs for accurate simulations. Each GCM
exhibits varying spatial patterns in the slopes, leading to disparities in the representation
of hydrological behavior across regions. Some GCMs may capture specific regional trends
more accurately, while others may have biases or uncertainties in their simulations. The
distinct color ranges representing different slopes offer a quantified measure of the trend in
annual maximum discharge. Lighter colors indicate steeper slopes, representing significant
decreases in discharge over time, while darker colors illustrate gentler slopes, indicating
relatively stable or slightly increasing discharge trends.
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Figure 2. Slope of the annual maximum discharge during 1850–2015 using CaMa-Flood model driven
by eight GCM-output runoff products. For the remaining results, please see the Figure A2.

Figure 3 illustrates the slope of the annual maximum discharge across seven discharge groups
for two combinations of GCMs. The data reveal crucial insights into the sensitivity of simulated
discharge to GCM selection within distinct discharge ranges. Among the two combinations of
GCMs, Experiment1 (EC-Earth3 and GFDL-CM4) and Experiment2 (EC-Earth3 and INM-CM4-8),
the slopes vary considerably, indicating substantial disparities in the simulated discharge trends.
For instance, Experiment1, exhibits a diverse range of slope values for different discharge groups.
Notably, in Group1, EC-Earth3 displays a slope of 1.22, while in Group6, the slope decreases
to 0.76, showcasing a decreasing trend. Similarly, GFDL-CM4 portrays varying slope values,
with a relatively higher slope of 1.66 in Group4 and a lower slope of 0.60 in Group7. Conversely,
Experiment2, exhibits a more consistent slope pattern, with relatively minor fluctuations among
the discharge groups. In Group1, both EC-Earth3 and INM-CM4-8 depict slopes of 0.93 and
0.75, respectively, indicating a relatively stable trend in this discharge range. Notably, Group6
shows a significant decrease in slope for INM-CM4-8, reaching 0.25, suggesting a pronounced
decreasing trend compared to the other groups. These findings highlight the importance of GCM
selection in assessing future hydrological changes and emphasize that some discharge groups
may be more sensitive to specific GCMs. Furthermore, the observed variability in slope values
among discharge groups underscores the complex and nonlinear nature of climate–hydrology
relationships, necessitating cautious consideration of GCMs in climate change impact studies for
effective water resource management and flood prediction.
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5000, 10,000, 20,000, 30,000, 40,000, 80,000] m3/s. Each combination of GCMs is used to fit curves
among their respective simulations, and the slope of the simulated discharge is calculated within
each discharge group.
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3.2. Reference Map for Extreme Flood Estimation Using Stationary and Nonstationary Methods

In this section, we present a comprehensive assessment of grid maps’ suitability for
estimating extreme floods using stationary or nonstationary methods. The grid maps
serve as a crucial reference, allowing us to determine the most appropriate approach for
analyzing extreme flood events in different regions. Through this analysis, we aim to
provide valuable insights into the choice of methodologies for accurate and robust extreme
flood estimation in various geographic areas.

Figure 4 reveals the spatial variation and GCM differences in the best distribution for extreme
flood estimation using the CaMa-Flood model with different GCM-output runoff datasets. The
results reveal that the majority of the regions exhibit a constant distribution, indicating a stationary
method. However, upon closer examination, notable variations are observed in specific areas.
For instance, regions such as the United States, the Amazon basin, and parts of northern Asia
and Africa exhibit changing mean (changing mu), suggesting the utilization of nonstationary
approaches in those locations. This spatial difference highlights the importance of considering
nonstationary methods in certain regions to better capture the complexities of extreme flood events.
Moreover, the variations among GCMs are also apparent, with some regions favoring changing
mean (mu), while others show a preference for changing scale (sigma). Remarkably, the spatial vari-
ation is not the only contributing factor to the differences in best distribution. Distinct GCM-output
runoff datasets also lead to disparities in the estimated flood frequency. Certain regions are more
compatible with changing µ in one GCM, while others exhibit changing σ in another GCM. No-
tably, in the Amazon River basin, for instance, the ISPL-CM6A-LR GCM suggests that the changing
mean (changing µ) approach yields the most accurate results, while other GCMs indicate that the
stationary method is more appropriate. On the other hand, for the GFDL-CM4 GCM, regions such
as the United States, northern Asia, and Africa exhibit characteristics that favor the nonstationary
method as the best fit. In particular, the changing scale (changingσ) approach provides a better esti-
mation for extreme floods in these areas, as indicated by the lowest BIC values. Furthermore, when
analyzing the results from the INM-CM4-8 GCM, the regions in India demonstrate a preference for
the nonstationary method, suggesting that both changing mean (changing µ) and changing scale
(changing σ) covariate functions are necessary for an accurate flood frequency estimation. For a
more detailed analysis of geological variations and GCM-specific results, refer to Figures 4 and A4.
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Figure 5 presents a comprehensive assessment of the best distribution models for
extreme flood estimation using the CaMa-Flood model in conjunction with various GCM-
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output runoff datasets. The selection of the optimal model is determined by the Bayesian
Information Criterion (BIC), a widely accepted metric that balances model complexity
and goodness-of-fit. This figure provides valuable insights into the suitability of different
distribution models—specifically, the Lognormal (LONGO), Generalized Extreme Value
(GA), and Weibull (WEI) distributions—across diverse geographical regions. The results
unveil most regions characterized by a consistent distribution pattern, suggestive of a
LONGO model. However, upon closer scrutiny, significant divergences come to light
in specific geographic areas. Notably, regions including Australia, the Amazon basin,
and portions of northern Asia and North America exhibit distinctive model preferences,
indicating the need for employing GA or WEI approaches. This geographical contrast
underscores the significance of tailoring methodologies to capture the intricacies of extreme
flood events in specific regions. Furthermore, the disparities in model preferences are
notably influenced by variations among GCMs. Different regions exhibit a propensity for
specific model types, with some favoring a particular model parameterization. Interestingly,
the geological characteristics are not the sole driver of these discrepancies. Disparate GCM-
output runoff datasets also contribute to variations in estimated flood frequency. Specific
regions align more closely with a certain model in one GCM, while in another GCM, a
different model may be more suitable. For example, in the Amazon River basin, the ISPL-
CM6A-LR GCM suggests that the LONGO yields the most accurate results, while GFDL-
CM4 GCM propose the WEI model as more appropriate. Similarly, for the GFDL-CM4
GCM, regions such as the United States, northern Asia, and Africa exhibit characteristics
that favor a specific model, specifically the GA and WEI models. Additionally, when
assessing outcomes from the EC-Earth3 GCM, regions in European exhibit a preference for
the LONGO and WEI models.
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Figure 6 presents a pivotal reference map for the estimation of extreme floods, adeptly
merging outcomes from all nine GCM runoff products in conjunction with the CaMa-Flood
model. This synthesis offers a comprehensive global overview, shedding light on the geo-
graphic suitability of stationary and nonstationary methods for extreme flood estimation.
The analysis employs the Generalized Additive Models for Location, Scale, and Shape
(GAMLSS) methodology, encompassing three distinct models characterized by four param-
eter types: changing mean (µ), changing scale (σ), a combination of both (nonstationary),
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and the stationary method with constant parameters. This approach provides a robust
framework for discerning the dominant methodological choice across diverse geographical
regions. Notably, this reference map underscores the dynamic interplay between geo-
logical attributes and the appropriateness of different flood estimation approaches. As
demonstrated by the results, a clear pattern emerges, revealing regions where the stationary
method is well-suited and areas where nonstationary methods offer enhanced accuracy.
To illustrate, consider the Amazon basin. Here, the intricate hydrological dynamics ne-
cessitate a nonstationary approach, specifically employing the changing mean (µ) models,
as evidenced by the merger of GCM-specific outcomes. In contrast, most regions char-
acterized by relatively stable hydrological regimes, exhibit a strong propensity for the
stationary method, underlining the importance of tailoring methodologies to the distinct
characteristics of each geographic area. Of particular interest, the nonstationary method is
spatially dispersed across the globe and of limited size. The proportional representation of
nonstationary and stationary methods on this map underscores the selective prevalence
of these methodologies, demonstrating a proportion of approximately 1:23. While the
stationary method dominates most regions, critical clusters necessitate the nonstationary
framework for accurate flood estimation. This nuanced depiction guides the selection of
methodologies, contributing to more effective flood risk assessments and management
strategies. The reference map provides a quantitative depiction of this dichotomy, allowing
us to discern the proportional distribution of stationary and nonstationary methods across
the globe.
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3.3. Application of Referenced Map for Estimating Flood Magnitudes Using Stationary and
Nonstationary Methods

In this section, we delve into the practical implications of the referenced map, obtained
through a meticulous evaluation of grid suitability for stationary and nonstationary meth-
ods using the Bayesian Information Criterion (BIC) analysis. We begin by showcasing the
application of these methods in estimating global 100-year flood magnitudes and subse-
quently provide compelling examples that vividly illustrate the disparities between the
two approaches.

Figure 7 vividly portrays the global distribution of estimated 100-year flood magni-
tudes utilizing the stationary method. This depiction emerges from the utilization of the
CaMa-Flood model, driven by diverse GCM-output runoff datasets. The figure serves
as a visual guide to the spatial variability of flood magnitudes across the globe. The
amalgamation of these datasets culminates in a comprehensive assessment of flood mag-
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nitudes, unraveling the intricate interplay between climatic nuances and hydrological
responses. The variegated palette of colors across the map signifies distinct hydrological
regimes, reflecting the multifaceted nature of flood dynamics. Of paramount significance
is the discernible spatial heterogeneity in estimated flood magnitudes. The color grada-
tions on the map reflect variations in flood magnitudes. Darker shades correspond to
regions with higher discharge values, highlighting areas with significant annual maximum
discharge such as major rivers such as the Amazon, Nile, Yangtze, and Mississippi. In
contrast, lighter shades indicate lower discharge values, often associated with arid or
drier regions. Regions exhibiting profound color transitions indicate zones of heightened
hydrological activity, underscoring their vulnerability to extreme flood events. This visual
narrative reinforces the pivotal role of nonstationary methods, as climatic fluctuations
and hydrological shifts accentuate the limitations of stationary approaches in accurately
predicting and preparing for such events. The map also underscores divergent discharge
patterns arising from the utilization of different GCMs, showcasing the variability intro-
duced by distinct representations of land surface processes, precipitation patterns, and
hydrological parameterizations.
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Figure 7. One hundred-year flood magnitudes (m3/s) estimated by stationary method based on the
annual maximum discharge simulated by CaMa-Flood with different GCM-output runoff datasets.

Figure 8 serves as a focal point in our investigation, spotlighting the crucial disparities
between stationary and nonstationary methods. It exemplifies selected representative grids
from the reference map, each identified as necessitating nonstationary methodologies due
to specific hydrological nuances. The nonstationary method, encompassing three pivotal
scenarios—changing µ, altering σ, and simultaneous variations in both—delineates the
intricate interplay of hydrological parameters. The significance of nonstationary methods
becomes evident as we analyze the changing patterns of flood magnitudes over time. When
µ is subjected to variations, it leads to discernible shifts in the central tendency of flood
magnitudes, reflecting alterations in hydrological behavior. The alteration of σ, conversely,
translates to shifts in the variability of flood magnitudes, indicative of changing flood
patterns. Notably, when both µ and σ are simultaneously altered, it highlights the intri-
cate interplay between multiple hydrological factors. In contrast, the stationary method
presents a static perspective of flood magnitudes, failing to capture the temporal evolu-
tion inherent to hydrological systems. This simplified approach overlooks the nuanced
interplay between climatic shifts and hydrological responses. The referenced map informs
our estimation of flood magnitudes, guiding us towards an understanding of the spatial
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variability. Figure 8 accentuates the necessity of accommodating nonstationarity, offering
a sobering reminder of the importance of adaptive methodologies for accurate flood risk
assessment and management.

4. Discussion
4.1. GCMs Unveiling Spatial Suitability: Reference Map for Methodological Selection

Our study introduces a pioneering approach to enhance flood risk assessment by
constructing a reference map that delineates the spatial suitability of stationary and nonsta-
tionary methods. This map, as depicted in Figure 6, encapsulates a wealth of information
critical to flood estimation, making it an invaluable tool for policymakers, hydrologists, and
decision makers. The delineation of regions where stationary methods prevail and areas
where nonstationary approaches are imperative lays the foundation for a more refined
and contextually appropriate flood analysis. The map’s spatial patterns are deeply rooted
in the intricate interplay between geological characteristics, hydrological dynamics, and
climatic variability. The regions favoring nonstationary methods, exemplified by changing
mean (µ) or changing scale (σ) scenarios, underscore the underlying shifts in hydrological
behavior [33]. In contrast, the prevalence of stationary methods in more stable hydrological
regimes reflects their adequacy for capturing long-term trends. This nuanced approach
recognizes the inherent complexity of hydrological systems and provides a comprehensive
basis for methodological selection.
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stationary and nonstationary methods (a,c,e). Note that nonstationary conditions have three cases:
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reference map, each identified as necessitating nonstationary methodologies, encompassing three
pivotal scenarios—changing µ (b), altering σ (d), and simultaneous variations in both (f).

The map provides valuable insights into the spatial distribution of suitable flood
frequency analysis methodologies across the study area. Most regions are character-
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ized by the constant distribution, representing the stationary method, where both the
mean (µ) and scale (σ) parameters remain constant over time and space. This consistency
indicates areas where the flood magnitudes exhibit relatively stable behavior, unaffected by
significant temporal or spatial variations. In contrast, certain locations stand out with the
changing µ distribution, which implies that the mean flood magnitude exhibits temporal
variations. These regions experience dynamic hydrological conditions, and the flood events’
mean intensity varies over different time periods. These areas demand nonstationary ap-
proaches to account for these temporal fluctuations and obtain accurate flood estimations.
Similarly, other areas exhibit the changing σ distribution, indicating spatial variations in
flood variability while maintaining a constant mean flood magnitude. These regions may
face altered flood characteristics due to factors such as land use changes, urbanization,
or climate-induced alterations in precipitation patterns. Such changes in flood variability
necessitate the application of nonstationary methods for precise flood estimations. Dis-
tinct GCM-output runoff datasets also lead to disparities in the estimated flood frequency.
Certain regions are more compatible with changing µ in one GCM, while others exhibit
changing σ in another GCM. This highlights the significance of understanding the nuances
introduced by each GCM and its impact on flood frequency analysis. The identification of
geological differences and GCM disparities in the best distribution is crucial for tailored
flood risk management strategies. By accounting for spatial variations and considering the
influence of different GCMs, decision makers and researchers can adopt suitable modeling
approaches for each region, leading to more accurate estimations and improved flood
risk preparedness.

4.2. Implications of Nonstationarity on Extreme Flood Estimation

The implications of our study transcend theoretical musings, manifesting tangibly
in the realm of practical flood risk management [34–36]. Figure 8 illuminates the stark
divergence between stationary and nonstationary approaches, serving as a visual allegory
for the consequential differences in extreme flood estimation. The scenarios of changing
mean (µ) and changing scale (σ) underscore the intrinsic dynamism within hydrological
systems, where flood magnitudes are not static entities but evolve over time. This realiza-
tion underscores a paradigm shift in our understanding of extreme events, emphasizing
the role of nonstationary methodologies as torchbearers of accurate estimation. A poignant
message emanates from Figure 8—the potential underestimation of extreme flood magni-
tudes by stationary methods. The inherent assumption of stationarity, rooted in historical
data and temporal constancy, falls short in capturing the inherent variability introduced
by changing climatic conditions. Such underestimations have profound implications for
risk assessment and preparedness. The consequences of underestimating extreme flood
magnitudes could be dire, resulting in inadequately designed infrastructure, ineffective
floodplain management, and compromised disaster response strategies. Nonstationary
methodologies emerge as the guiding light, providing a nuanced and comprehensive lens
through which extreme flood events can be understood. By accounting for temporal and
spatial variability, these approaches offer a realistic portrayal of the evolving hydrological
landscape. This resonates deeply in the realm of policy formulation, where accurate esti-
mations underpin effective decision making. Resilient infrastructure, adaptive land use
planning, and robust emergency response mechanisms can only be realized by embracing
the dynamic nature of hydrological systems—a realization underscored by the implications
of nonstationary methodologies.

4.3. Navigating Uncertainty: GCMs and Model Selection

Our exploration of GCMs introduces a layer of uncertainty into the tapestry of flood
estimation. The intricate interplay between GCMs and distribution models, highlighted
by the disparities in model preferences across regions (Figure 5), is a microcosm of the
challenges inherent in climate and hydrological research. This uncertainty magnifies the
importance of meticulous GCM evaluation, calibration, and validation. Accurate flood pre-
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dictions hinge upon a nuanced understanding of the strengths and limitations of each GCM,
illuminating a path towards robust modeling practices. The fusion of GCM characteristics
with distribution model selection elucidates the multifaceted nature of climate–hydrology
interactions. It beckons us to acknowledge the complexity of the climate system and its
cascading influence on hydrological behavior. The impact transcends the realm of flood
estimation, permeating diverse disciplines that rely on accurate climate projections. From
agricultural planning to urban design, from water resource management to biodiversity
conservation, the fidelity of climate models reverberates across societal and ecological
domains. In navigating this sea of uncertainty, the onus lies upon researchers and stake-
holders to collaboratively unravel the intricacies of GCMs. Rigorous scrutiny, ensemble
modeling, and validation against real-world observations can chip away at the veil of
uncertainty, enhancing the reliability of flood predictions. Beyond the immediate scope
of hydrological research, this endeavor underscores the interconnectedness of disciplines
under the umbrella of climate science.

4.4. Limitation and Future Research

While our research marks a significant step in improving flood risk assessment by
introducing a reference map for methodological selection, several limitations warrant
consideration. The use of Generalized Additive Models for Location, Scale, and Shape
(GAMLSS) presents certain constraints, and future investigations could explore alternative
statistical methods or hybrids for enhanced model selection. Additionally, the reference
map’s resolution may not capture localized variations in hydrological behavior, suggesting
a need for higher-resolution mapping. The choice of a 0.25-degree spatial resolution in
our reference map was influenced by the availability of Global Climate Model (GCM)
outputs. While this resolution serves the purpose of large-domain flood-related decision
making, it is important to acknowledge that it may result in some underestimation of
peak flow at smaller scales. Future research endeavors could explore the feasibility of
employing higher resolutions, such as 0.01 degrees, for more localized studies, which could
provide a more fine-grained representation of hydrological conditions. Looking ahead,
the reference map offers a versatile platform for various lines of inquiry. Researchers can
leverage this map to estimate extreme flood characteristics, encompassing flood magnitudes
and inundation extents. Validation, a critical step, involves comparing model-derived
estimates with historical flood events, field observations, or remote sensing data to ensure
the reliability of our methodology. Furthermore, future research can delve into exploring
the disparities between nonstationary and stationary methods for estimating extreme floods.
This investigation can shed light on the contrasting performance of these methodologies
and the implications for flood risk assessment. Additionally, there is ample scope for
conducting flood analyses under climate change scenarios, utilizing the reference map
as a foundation for understanding how evolving climatic conditions may impact future
flood events. In summary, while the 0.25-degree spatial resolution was chosen due to GCM
data constraints and the requirements of large-scale flood-related decision making, the
potential exists for future research to employ higher resolutions for localized investigations.
The reference map serves as a valuable resource for estimating and validating extreme
flood events, exploring methodological disparities, and considering the influence of climate
change on future flood scenarios.

5. Conclusions

Our study makes significant strides in advancing flood risk assessment by introducing
a reference map that guides the selection of suitable methodologies for extreme flood
estimation. The map encapsulates the spatial intricacies of hydrological behavior, unveiling
the spatial divide between stationary and nonstationary methods. This novel approach,
rooted in robust hydrological modeling and GCM data, provides a comprehensive frame-
work for accurately estimating extreme flood events. As climate change intensifies, the
need for adaptive and contextually tailored methodologies becomes ever more apparent.
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Our findings emphasize the inadequacy of static approaches and illuminate the potential
of nonstationary methods to provide a more comprehensive understanding of evolving
hydrological dynamics. The implications for flood risk management are profound, with
direct relevance to infrastructure design, policy formulation, and disaster preparedness.
In conclusion, our study bridges the gap between climatic variability, hydrological dy-
namics, and flood estimation methodologies. The reference map serves as a powerful
tool to guide methodological selection, harnessing the intricate nuances of hydrological
behavior to enhance the accuracy and reliability of extreme flood estimation. As we navi-
gate an era of heightened climate uncertainty, the integration of adaptive methodologies
and robust modeling practices remains paramount for effective flood risk assessment
and management.
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