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Abstract: This paper presents the modeling results of tracer test simulations performed using COM-
SOL Multiphysics (version 6.1), a powerful software for multiphysics simulation. The simulations
consist of the propagation of artificial tracers injected into different model configurations. This study
is based on computational fluid dynamics (CFDs), which allows us to take into consideration the
turbulent regime of the water flow in conduits. The objective of this contribution is to identify the
relationship between the tracer dynamics and the geometric parameters of synthetic karstic systems
via a systematic investigation of the occurrence of dual-peaked breakthrough curves (BTCs) in tracer
tests. Various conduit structures were proposed by modifying five key factors: conduit diameter,
presence of pools, connection angle between conduits, distance of the outlet from the inlet, and num-
ber of branches. The next step will be to confront these computational experiments with real-world
tracer test experiments.
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1. Introduction

Karstic aquifers play a significant role in freshwater supply in many regions world-
wide, but they are vulnerable to both contamination and overexploitation. Approximately
20% to 25% of the global population relies heavily or entirely on groundwater from karstic
aquifers [1]. Their hydrogeological heterogeneity is related to highly permeable preferential
flow paths formed by the dissolution of the surrounding rock [2,3]. In general, the karst
aquifer consists of two main hydrogeological compartments: the matrix, which accounts
for over 90% of the aquifer volume and plays a significant role in storage, and the conduits,
which occupy a minimal volume but are responsible for fast flow generation, as they are
responsible for approximately 90% of the total discharge in highly karstified aquifers [4].
Then, hydrogeologists generally conceptualize karst aquifers as dual systems consisting
of fast-flowing groundwater concentrated within conduits included in a less permeable
matrix. The location and size of the conduits generally remain unknown at the aquifer scale,
which implies significant challenges to the potential application of physically distributed
karst models [5,6]. The inability to directly evaluate and precisely ascertain the specific
structure and positioning of conduits in the subsurface presents a significant obstacle to
accurately characterizing and modeling the flow patterns in karst systems. Therefore,
various methods have been developed to characterize groundwater drainage structures in
such systems. One effective way is using artificial tracer tests, which have demonstrated
their significance in studying the dynamics of conduit flow and solute transport, especially
in highly karstified aquifers [7]. These challenges include modeling solute transport in
karst conduits, assessing short-term variations in tracer test responses, and examining
accidental pollution scenarios involving discharge variations during the infiltration and
restitution of contaminants.
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Artificial tracer tests are widely used in the field of hydrogeology as specialized
methodologies for investigating flow-paths, flow dynamics, transport processes, and inter-
actions between water and rocks. Solute transport is investigated in various hydrological
situations, including low and high water levels, corresponding to “dry” and “rainy” peri-
ods. The primary objectives of these techniques include the exploration of interconnections
between multiple locations in karstic watersheds related to travel time and residence
time estimations, research into transport mechanisms, mixing and circulation processes,
water–rock interactions, and the characterization of aquifer parameters, among other appli-
cations [8–25]. Artificial tracer tests are also dedicated to defining catchment boundaries or
recharge areas, identifying pollution sources, or for identifying post-seismic modification
on groundwater flow paths [26–28].

There are three main approaches in tracer test simulations based on numerical, labora-
tory, or field experimental methods. Numerous experimental studies have been conducted
to better assess the relationship between karstic geometry and BTCs, shedding light on the
complex dynamics of fluid flow in karstic systems [9,29–33]. Previous laboratory experi-
ments based on the injection of conservative tracers in a pool-pipe system with variable
pool placements, sizes, and numbers [34–36] have already investigated the relationship be-
tween conduit structures and BTCs, shedding light on the effect of pool volume on BTCs in
karst conduits. However, the experimental results showed that pool position did not affect
BTC, but higher pool sizes or a more significant number of pools increased BTC tailing and
decreased peak concentration. A transfer function approach constitutes another way to
characterize the residence time distribution curves obtained from fluorescent dye tracer
tests [8,36]. This systematic approach comprehensively integrates all pertinent processes
within a conceptual reservoir model. The proposed model comprises three delayed sub-
functions, which account for the time delay in solute transport. This delay can be attributed
to complex structures acting as dead zones and the associated friction effects [36–38].

In a recent study by Wang et al. [39], lab-scale experiments were conducted to investi-
gate the solute transport process in dual-conduit structures examining how the dual-conduit
structure affects the shape of BTCs. Three setups were constructed by varying the length
ratio between the two conduits, the total length of the conduits for a specified length ratio,
and the connection angle between the conduits. Results have shown that increasing the
length ratio between the two conduits resulted in greater separation between the BTC peaks.
Additionally, the concentration value of the first peak increased while the concentration
value of the second peak decreased. Increasing the total length of the conduits also led to
a higher delay between the two peaks. Finally, modifying the connection angle between
the two conduits affected the sizes of the peaks. Specifically, increasing the first angle and
decreasing the second one resulted in a smaller size for the first peak, indicating a reduced
mass transported through the shorter conduit. In contrast, the size of the second peak
increased, suggesting an increased mass transported through the longer conduit. However,
the study has some limitations. The experiments were conducted in a lab-scale setting
using idealized dual-conduit structure models, which may not fully represent the complex
conditions of natural karst aquifers. Additionally, the study focused on the influence
of conduit geometry on BTCs and did not consider other factors that may affect solute
transport in karst aquifers.

The objective of this contribution is to propose a parametric study through simulations
of artificial tracer tests using COMSOL Multiphysics. The numerical simulations focus
on the influence of the geometric parameters of the system, such as conduit lengths,
connection angles, conduit diameters, pool size, and exchange between matrix and conduits.
That allows improvements in the comprehensive analysis of the relationship between the
input parameters and the resulting tracer breakthrough curves, residence time distribution
estimations, or other relevant output variables.
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2. Materials and Methods

2.1. COMSOL Multiphysics®

COMSOL Multiphysics (version 6.1), a finite element-based simulation software,
offers various predefined interfaces, including computational fluid dynamics (CFDs). It has
gained considerable recognition in environmental applications in recent years. COMSOL
Multiphysics is a simulation platform that allows researchers and engineers to model
complex systems. By providing an easy-to-use environment for virtual experimentation, it
facilitates high-speed calculations. The COMSOL material library offers an extensive array
of features that integrate multiphysics phenomena that allow researchers to explore the
intricate interactions of multiple physical domains in one comprehensive study. Moreover,
the model library implements prebuilt models and templates that can streamline the
simulation setup process.

The CFD Module, an optional package within COMSOL Multiphysics, enhances
the software’s capabilities by providing customized physics interfaces and specialized
functionality for analyzing fluid flow in all its forms.

2.2. Physical Interfaces
2.2.1. Turbulent Flow

In karst conduits, if one considers a mean diameter of 1 m and a mean flow velocity
of 0.1 ms−1 mostly characteristic of a low-flow period, a minimum Reynolds number
of 10,000 can be estimated. Therefore, we obviously choose to operate in turbulent flow
regimes [40,41]. The incorporation of turbulence equations aims to capture the intricate flow
characteristics and complexities inherent in high-Reynolds-number scenarios, providing a
more comprehensive understanding of the tracer test behavior in several karst conduits
geometries. The CFD module within COMSOL Multiphysics incorporates the single-
phase flow branch, which consists of various subbranches with physics interfaces. The
turbulent flow k–ε interface appears as the more relevant, since it is designed to simulate
single-phase flows at elevated Reynolds numbers. It allows a numerical resolution of the
Reynolds-averaged Navier–Stokes (RANS) equations coupled to the continuity equation
to ensure mass conservation. The model introduces two additional transport equations
and two dependent variables: the turbulent kinetic energy, k, and the turbulent dissipation
rate, ε. In turbulent flow, the Navier–Stokes equation maintains its identity with the
laminar counterpart, yet an additional component emerges in the transport equation [42].
Equation (1) represents the transport equation for k, where Pk is the production term
presented in Equation (2). The transport equation for ε is shown in Equation (3).
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where µT represents the turbulent viscosity shown in Equation (4) and Cµ is a model constant.

µT = ρCµ
k2

ε
, (4)

The model constants in Equations (1)–(4) are summed up in Table 1.
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Table 1. Values of the parameters of the k epsilon turbulence model, which is a widely used approach
in computational fluid dynamics (CFDs) to simulate turbulent flows by solving transport equations
for turbulence kinetic energy and its dissipation rate.

Constant Value

Cµ 0.09
Cε1 1.44
Cε2 1.92
σk 1.0
σε 1.3

2.2.2. Transport of Diluted Species (TDS)

The TDS (transport of diluted species) interface, located within the chemical species
transport branch, computes the concentration distribution of a diluted solute in a solvent.
This interface considers various transport mechanisms, including diffusion based on Fick’s
law and convection when coupled with a flow field. Considering these driving forces,
the TDS interface allows for accurately calculating solute concentration profiles in a given
system. Using the transport of diluted species interface, we solve the initial concentration
of the model, which follows a Gaussian distribution. Equation (5) represents the transport
of a species in a fluid. It describes the change in concentration (c) concerning time (t)
and includes terms related to advection (u∇ci) and flux divergence (u∇Ji). The advection
term accounts for the transport of the species due to the fluid velocity (u), while the flux
divergence term represents the spatial variation of the species flux (ji) in the direction of
the velocity vector. Ri represents any additional contributions to the species concentration,
such as chemical reactions or external sources. Equation (6) represents the flux of a species
in a fluid. It relates the flux (Ji) to the concentration gradient (∇ci) through the diffusion
coefficient (Di). The negative sign indicates that the species flows from regions of higher
concentration to regions of lower concentration, following the concentration gradient.

∂c
∂t

+ u · ∇ci + u · ∇Ji = Ri (5)

Ji = −Di ∇ Ci (6)

2.3. Case Studies

The methodology of this study focuses on investigating the influence of synthetic
conduit geometry characterized by the presence of mixing zones but also of networks of
conduits with different connections on TDS function statistics [43].

Numerical experiments were conducted based on idealized pool-conduit structure
models with a fixed diameter of 2 m under turbulent flow conditions. This pool-conduit
structure comprises three distinct sections: the inlet, the conduit-pool system, and the
outlet. The inflow velocity was set at 0.1 ms−1, which aligns with field velocities within a
realistic field range. The concentration at the inflow is estimated by Equation (7)

C(t) =
1

σ
√

2π
e−

1
2 ( t−µ

σ )
2
. C0 (7)

where t represents time, C0 is the initial concentration established at 1 mol/m3, and σ and
µ represent the mean and standard deviation of the distribution.

The investigation consists of six cases (Table 2), each focusing on different factors
influencing solute transport in karst conduits. The inlets are considered points of entry
for the solute, allowing controlled injection into the system. The outlets are considered
exit points, where the solute was monitored and sampled to measure its concentration and
behavior. Cavities within the conduit system added complexity to the flow and transport
processes as they introduced additional pathways and zones of interaction. The reservoir’s
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characteristics, such as its size, shape, and connectivity, significantly impact the movement
of water and the formation of karst features. This affects the flow paths, velocity, and
direction of groundwater, influencing the distribution of dissolved substances and the
development of features like springs, caves, and underground rivers. The reservoir refers
to a storage space for water, which can accumulate during periods of precipitation. It plays
a crucial role in the storage and movement of water within the system [44–46].

Table 2. Presentation of the different geometries considered in CFD simulation affecting BTCs within
complex karst conduit systems. Each case investigates specific aspects: Case 1: variable inlet-outlet
distance/Cases 2–3: impact of pool characteristics (size and position)/Case 4: conduit diameter/Case 5:
connection angles between conduits/Case 6: number of branches from 1 up to 3. They correspond to
the main geometries already identified in karst networks on a large scale [11] that can be of interest in
artificial tracer dispersion discussion.

Cases Conditions Parameters Illustration

Case 1 Distance of the outlet
from the inlet (D0 = Dconduit = 2 m)

L = L0
L = 10 m
L = 20 m
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The different geometries considered in this contribution are shown in Table 2. They
correspond to the main geometries already identified in karst networks on a large scale [11]
that can be of interest in artificial tracer dispersion discussion. The first case examines
the variation in distance of the outlet from the inlet and refers to changes in the spatial
separation between the points where water enters the system (inlet) and the point where it
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exits (outlet). This distance variation is particularly relevant in studying how water travels
through underground karst formations, characterized by complex networks of conduits,
caves, and fractures. The second case considers the influence of pools within the conduit
system, considering both their size and position. Additionally, the diameter of a single
conduit is analyzed in the third case to study its influence on the output signal of BTCs.
Furthermore, the investigation examines the angle connection between the conduits in
case four. This can provide insights into the effect of solute dispersion and mixing. Case
five concerns the influence of connection angle in the exchange of solutes between the
conduits, potentially affecting the overall solute transport within the system. Case six refers
to the number of branches. The number of branches within this network can impact critical
aspects such as flow distribution, dispersion, and mixing.

2.4. Residence Time Distribution

The tracer test involves injecting a conservative tracer into an unknown system to
assess the transit time or response of the system. To comprehend the mixing conditions
within the complex system, it is essential to determine the residence times of each volume
element within the system. When a tracer is introduced instantaneously, its components
exit the system at various intervals. These intervals are calculated by observing fluctuations
in tracer concentration at the system outlet or other specific points within the system [7].
Mathematically, if a tracer mass M is added at a time t = 0 s, its concentration at the
outlet, denoted as c(t), can be expressed as a function of time involving the spring flow
function Q(t) (Equation (8)). This brings us to the residence time distribution (RTD) concept,
denoted as E(t), which can be estimated by integrating the product of concentration and
flow functions (Equation (9)). This concept encapsulates the system’s behavior over time.
The critical parameters derived from the RTD function include the mean residence time θ
(Equation (10), calculated by integrating the product of time and the RTD function. This
parameter offers insights into the average time a substance spends within the system. The
analysis of RTD contributes to the understanding of fluid behavior, facilitating enhanced
management and comprehension of dynamic systems [7].

M =
∫ t=∞

t=0
c(t)Q(t)dt, (8)

E(t) =
c(t)Q(t)∫ t=∞

t=0 c(t)Q(t)dt
Where

∫ t=∞

t=0
E(t)dt = 1, (9)

θ =
∫ t=∞

t=0
t E(t)dt, (10)

The RTD function is a fundamental parameter to understand the behavior of solute
transport within the system. By normalizing the concentration values, the RTD function
allows one to focus on the temporal aspects of solute movement without being influenced
by the absolute concentration values. The extracted parameters from the output signal
include the following elements: the value of RTD, the peak time, and the arrival time
(Table 3).

Table 3. Description of the main parameters of the output signal.

Notations Definitions Units

RTD Distribution of the time that solutes spend within the system [s−1]
Tpeak Elapsed time to peak concentration [s]

Tarrival Elapsed time to solute last detected [s]
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3. Results and Discussions
3.1. Simulation Results Using COMSOL Multiphysics
3.1.1. Case 1: Influence of the Distance of the Outlet from the Inlet

Through our observations (Figure 1, Table 4), as the distance decreases from 20 to 0 m,
the RTD maximum value undergoes a gradual decrease from 0.338 to 0.149 s. Additionally,
we noted a slight delay in the arrival time of the first peak, indicated by the time shift
from t(a) = 1600 s to t(c) = 1300 s. Furthermore, the arrival time of the solute is similarly
delayed from 2000 s to 2900 s while increasing the distance. This behavior can be attributed
to the travel dynamics within the karstic conduit system. When the outlet is positioned
closer to the inlet, solutes experience a relatively shorter travel distance and time. This
configuration leads to less dispersion and more direct transport, subsequently contributing
to a lower RTD value (as observed in case “c”) due to the shorter residence times; conversely,
when the outlet is located farther from the inlet, solutes are afforded a longer travel path
and increased interaction with conduit walls, other solutes, and fluid flow patterns. This
dispersion and mixing result in an increase in the RTD value (as in case “a”), as solutes
spend more time within the system. Additionally, we explored the influence of symmetry
by inversely changing the up-and-down arrangement while maintaining the same distance
difference. We observed that such symmetry changes did not significantly affect the
extracted parameters.
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Figure 1. RTDs corresponding to various geometries involving the variation of distances between
inlets and outlets, as well as symmetry alterations. Within this figure, (a) corresponds to L = 20 m,
(b) represents L = 10 m up, and (c) signifies L = L (symmetric) (The concentration field shown in the
figures corresponds to the peak).

Table 4. Statistical parameters from RTDs for the first case (variation of inlet–outlet distance).

Distance Max Value of RTD (s−1) Peak Time (s) Arrival Time (s)

L = 20 m
(a) 0.338 1600 2900

L = 10 m up
(b) 0.265 1400 2300

L = 0 m up
(c) 0.149 1300 2000

3.1.2. Case 2: Influence of the Size of Pools

For this case, we examined how variations in pool size affect RTDs through a series of
five numerical simulations (Figure 2 and Table 5). The various simulations demonstrated
that there was no significant distinction observed. When the size of the pools increases, the
max RTD value tends to increase slightly (Figure 2b,c). Larger pools provide more space
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for solutes to mix and interact with the surrounding water. This increased mixing leads
to greater dispersion of solutes, causing them to spend more time within the system. As
a result, the maximum value of the RTD function increases, indicating a more extended
distribution of residence times. As well as the peak time, the value tends to increase slightly
from 400 s (Figure 2a) to 500 s (Figure 2c–e). Furthermore, the time of arrival of the solute
does not significantly change (t = 800–820 s). In this respect, the influence of the pool
position on the exit signal appears negligible.
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Table 5. Statistical parameters from RTDs for the second case (variation of the size of pools).

Lp Max Value of RTD
(s−1) Peak Time (s) Arrival Time (s)

Lp = 2 m
(a) 0.110 400 800

Lp = 4 m
(b) 0.113 450 820

Lp = 6 m
(c) 0.125 500 820

Lp = 8 m
(d) 0.117 500 820

Lp = 10 m
(e) 0.113 500 820

3.1.3. Case 3: Influence of the Position of Pools

Comparing the RTDs shown in Figure 3, numerical results indicate that the pool
position has little effect on the RTDs. The morphology of the curves appears similar for the
exit signals (Table 6). When the distance of the pools from the outlet increases, the RTD
value tends to increase from RTD = 0.135 s (a) to 0.255 s (d). The arrival time increases from
t = 1200 s to 1400 s. Then, a greater distance allows for decreased dispersion and mixing of
solutes through the conduits.
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Table 6. Statistical parameters from RTDs for the third case (variation in the position of the pools).

Lp Max Value of RTD
(s−1) Peak Time (s) Arrival Time (s)

L-L-L-L
(a) 0.135 650 1200

L-L-2L-3L
(b) 0.143 600 1300

2L-L-2L-3L
(c) 0.187 500 1300

3L-L-2L-3L
(c) 0.255 250 1400

3.1.4. Case 4: Influence of the Diameter of Conduits

This case allows identifying the influence of the diameter of the conduits in the RTD
functions (Figure 4, Table 7). First, we can observe similarities in the morphology of the
RTDs. The RTD peak values tend to increase from 0.338 s−1 for D = 2 m to 0.471 s−1 for
D = 6 m. Then, the RTD maximum value slightly decreases. This increased flow velocity
can result in faster solute transport through the system. As solutes spend less time within
the conduits before exiting, the RTD maximum value tends to decrease.
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Table 7. Statistical parameters from RTDs for the fourth case (variation in the diameters).

D Max Value of RTD
(s−1) Peak Time (s) Arrival Time (s)

D = 2 m
(a) 0.338 1300 2000

D = 4 m
(b) 0.424 1100 1800

D = 6 m
(c) 0.471 1100 1800

D = 8 m
(d) 0.447 1100 1600

D = 10 m
(e) 0.423 1100 1600

3.1.5. Case 5: Influence of the Angle of Connection

The influence of the connection angle between two conduits is shown in Figure 5 and
Table 8. The RTD functions exhibit a double peak for alpha =10–20–30 and 40 (Figure 5a–c,e).
The RTD value of the first and second peaks fluctuates between the different simulations.
The solute particles can rush through the conduits, resulting in an initial breakthrough peak
and a secondary rise originating from the slower flow. As such, the complexity related to
the connection angle between conduits appears as a determinant in the occurrence of the
inversion of the peak maximum values. We can also observe that the arrival time of the
first peak decreases from 900 s to 600 s. Effectively, as the connection angle increases, the
first peak appears sooner while the second peak is delayed. This highlights the importance
of considering the geometric arrangement of conduits when studying solute transport
within karstic systems. In this respect, the angle of connection of the conduit appears as a
determinant parameter of the RTD function variability.

Table 8. Statistical parameters from RTDs for the fifth case (variation in the angle of connection).

Alpha Max Value of RTD
(s−1) Peak Time (s) Arrival Time (s)

Alpha 10
(a)

First peak 0.358 900 1900

Second peak 0.066 1150 1900

Alpha 20
(b)

First peak 0.269 800 2000

Second peak 0.081 1200 2000

Alpha 30
(c)

First peak 0.187 800 2200

Second peak 0.053 1500 2200

Alpha 40
(d)

First peak 0.319 1100 2100

Second peak 0.0359 1500 2100

Alpha 50
(e)

First peak 0.25 700 1400

Second peak - - 1400

Alpha 60
(f)

First peak 0.567 600 900

Second peak - - 900

Alpha 70
(g)

First peak 0.476 600 900

Second peak - - 900

Alpha 80
(h)

First peak 0.427 600 900

Second peak - - 900

Alpha 90
(I)

First peak 0.425 600 900

Second peak - - 900
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to alpha = 10, (b) alpha = 20, (c) alpha = 30, (d) alpha = 40, (e) alpha = 50; (f) alpha = 60, (g) alpha = 70,
(h) alpha = 80, and (i) alpha = 90 (the concentration field shown in each figures corresponds to the peak).

3.1.6. Case 6: Influence of the Number of Branches

The investigation into the influence of the number of branches of conduits on RTD
signals provides a revealing comparison of how the structural complexity of the conduit
network affects solute transport (Figure 6 and Table 9). Concerning the first peak, the RTD
values exhibit an increase for structures with two branches, followed by a decrease for
structures with three branches. A similar trend is observed for the second peak. Addition-
ally, both peak times are delayed. Moreover, the arrival time also increased, transitioning
from t = 5200 s to t = 10,000 s as the number of branches increased from one to three.
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Figure 6. RTDs corresponding to various geometries involving number of branches. Alpha = 30
(a) corresponds to n = 1, (b) n = 2, and (c) n = 3 (the concentration field shown in the figures
corresponds to the peak).

Table 9. Statistical parameters from RTDs for the final case (variation in the number of branches for
alpha = 30).

Alpha 30 Max Value of RTD
(s−1) Peak Time (s) Arrival Time (s)

a
First peak 0.187 800 5200

Second peak 0.52 1600 5200

b
First peak 0.616 1500 8000

Second peak 0.709 2300 8000

c
First peak 0.474 2600 10,000

Second peak 0.232 3800 10,000

We also simulate the solute dispersion in synthetic karst conduits based on different
numbers of branches for an angle of connection of 90 degrees (Figure 7, Table 10). We show
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that the RTD maximum values decrease for a higher number of branches. A similar global
trend is observed for the second peak. Additionally, both peak times are delayed. Moreover,
the arrival time is delayed from 7100 s to 10,000 s. The interactions between branches can
explain these modifications. The increase in the number of branches implies that solute
particles can follow diverse pathways through the system, experiencing different flow
velocities, directions, and different turbulence levels. The variations in flow pathways can
lead to fluctuations in residence times and RTD values. With more pathways available,
solute particles may encounter longer travel distances.
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Table 10. Statistical parameters from RTDs for the final case (variation in the number of branches for
alpha = 90).

Alpha 90 Max Value of RTD
(s−1) Peak Time (s) Arrival Time (s)

a
First peak 0.485 600 7100

Second peak 0.009 4400 7100

b
First peak 0.245 700 8000

Second peak 0.025 4700 8000

c
First peak 0.157 900 10,000

Second peak 0.022 5900 10,000

4. Discussion

Numerical simulations allow investigations into the dynamics of solute transport
within synthetic karstic systems under various geometries. Our findings highlight the
specific influence of parameters such as distance, pool size, conduit diameter, connection
angles, and the number of branches on the RTD function. Our observations revealed that
as the distance between the inlet and outlet of the karstic system decreases, the RTD peak
values tend to decrease as well. This behavior can be attributed to the reduced dispersion
effect, resulting in more advective-driven transport. We also found that symmetry changes
had no effect on the RTD function.

The investigation of the impact of pool size and position on BTCs within karstic con-
duits has yielded insights into solute transport dynamics. In our study, we systematically
explored these factors through a series of numerical simulations, revealing how variations
in pool size and position affect the RTD values and other critical parameters. Our findings
offer a nuanced perspective on the relationship between pool size and RTD function. In-
terestingly, we observed that as the size of the pools increased, the maximum RTD value
showed a slight but noteworthy increase. This increase in RTD maximum is attributed
to the larger pool sizes, which provide more space for solutes to mix and interact with
the surrounding water. Consequently, this heightened mixing leads to greater dispersion
of solutes, resulting in extended residence times within the system. Moreover, the peak
time also exhibited a minor increase. Our numerical results are in accordance with the
laboratory-scale experiments of Zhao et al. [39–41].

In addition to the impact of pool size, we explored the effect of pool position on BTCs.
Our numerical results indicated that the position of the pools had little influence on the
RTDs. The morphology of the RTD curves remained significantly similar for the exit signals,
regardless of the pool’s placement. This can be attributed to the influence of distance on
solute dispersion and mixing within the conduits. As the pools are positioned farther from
the outlet, greater distance affords more opportunity for dispersion and mixing to occur,
resulting in an increase in the RTD value. This effect contributed to an earlier arrival of the
peak. On the other hand, larger pools, despite influencing RTD values, did not significantly
alter the arrival time of solutes, which remained relatively constant. Furthermore, we
examined how conduit diameter affects solute transport. The RTD values initially increased
with larger conduit diameters before decreasing. This unexpected behavior was attributed
to increased flow velocity, resulting in faster solute transport and reduced residence times.
The connection angle between conduits also played a significant role in solute transport.
Varying angles led to multi-peaked BTCs, with the first peak arriving earlier and the second
peak delayed as the angle increased.

The next step will be to use the COMSOL simulations on more complex geometries,
including, for example, fractal geometries in order to propose more insightful analyses of
the BTC statistical parameters function of karst system geometry.

While these simulations have provided valuable insights into the behavior of the sys-
tem under different conditions, it is important to mention the limitations of this study. This
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contribution mainly focuses on solute transport in the conduit under turbulent conditions
without conduit-matrix exchange. Here, the matrix was considered impermeable, whereas
the permeability of rocks can interact with the tracer transfer. Furthermore, our study is
limited to 2D geometry. To explore these complex systems, 3D geometries with fracture
would be more representative, but lead to extensive calculation times and parameterization.

However, we demonstrate that the field of numerical simulations offers a wide range of
applications to analyze complex phenomena such as tracer test experiments in karst systems.
To develop this study further, several improvements can be made. Firstly, conducting field-
scale simulations on specific parts of real karst systems would provide more realistic results
and insights into solute transport processes. Real-world conditions, such as heterogeneity,
pools, or multiple flow paths along conduits, and the interactions between conduits and the
surrounding rock matrix, may affect solute transport differently from that observed in the
laboratory or in the numerical simulations. There is an increasing demand for integrating
numerical methods to complement experimental studies in the solute transport field in
karstic aquifers. This integration allows for exploring a more comprehensive range of
conditions and manipulating parameters that may not be readily achievable through
laboratory experiments alone. Combining field experimental studies with numerical
approaches should provide a comprehensive and integrated approach to advancing our
understanding of solute transport in karstic systems.

5. Conclusions

In this study, we examine the solute transport process in conduit-pool structures
designed to reproduce an idealized karstic system. The main contributions of this study
can be summarized as follows. We introduced the COMSOL Multiphysics dynamics model
to interpret the BTCs. We have studied how the variation of several geometric factors can
influence BTC shapes. First, we observed that as the distance from the inlet to the outlet
increases, there are distinct effects on the BTCs. Our investigation into the impact of varying
distances between inlet and outlet points within the karstic conduit system revealed a clear
relationship between distance and RTD maximum values. Specifically, as the distance
diminishes from 20 to 0 m, the RTD values progressively decrease from 0.338 to 0.149 s−1.
Second, numerical results show that the pool size and position have no significant effect on
the BTCs, consistent with previous studies. Third, conduit diameter variation depicts an
effect on RTD values and on the arrival time of solute. The RTD maximum values tend to
increase first and then decrease. Finally, we have examined the influence of the connection
angle and the number of branches. Results show that the connection angle between two
conduits has an essential impact on the transport process, with a significant impact on RTD
maximum values, arrival time, and the occurrence of multi-peaked BTCs. Furthermore,
the variation in the number of branches compares how the conduit network’s structural
complexity affects solute transport within the karstic system.
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