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Abstract: Soil water storage is an essential variable in hydrological processes at the hillslope scale. 

This study proposed models for predicting soil water based on the precipitation history. According 

to the mathematical analysis of soil water storage on the hillslope scale, hydrological fluxes can be 

effectively expressed in terms of the weighted time series of precipitation and evapotranspiration. 

Moreover, the impact of evapotranspiration on soil water storage was incorporated into the model 

structure as an autoregressive process. A new soil water prediction model was developed through 

the integration of the soil moisture stochastic process into the structure of a precipitation-based 

model for the hillslope scale. Intensive soil moisture and rainfall data collected over two years were 

then used to test the performance of the developed models for two different hillslopes. The pro-

posed model exhibited a better ability to find representative points for soil water storage than either 

existing precipitation-based models or the temporal stability method. 

Keywords: precipitation; soil moisture; soil water storage; evapotranspiration; stochastic model; 

representative point 

 

1. Introduction 

Hydrological processes in mountainous hillslopes are very complicated due to the 

spatially variable slope, aspect, soil thickness, and texture as well as the temporally vari-

able rainfall, vegetation, and presence or absence of snow. In order to characterize the 

variability in water storage at a hillslope scale, the soil moisture measurement can be used 

to explain various hydrological components in the context of the mass balance principle. 

Soil moisture plays a critical role in eco-hydrological processes that determine the rela-

tionship between precipitation and runoff [1]. Soil moisture monitoring is critical for un-

derstanding the hydrologic cycle, investigating hydrological processes, monitoring 

droughts, and developing landslide early warning systems [2]. Numerous attempts have 

been made to determine the temporal and spatial variations in soil moisture through both 

in situ sampling and remote sensing methods, whose respective strengths and weak-

nesses depend on the goal of the analysis [3]. Although in situ monitoring provides highly 

accurate soil moisture data, it often demands substantial sampling costs for spatial up-

scaling. Remote sensing using drones and satellites can cover large sampling areas but 

struggles to overcome detectability issues in deep soil layers and sensitivity to environ-

mental factors such as climate, land use, and terrain conditions [4]. In order to upscale soil 

moisture obtained from in situ measurements, previous studies have focused on the se-

lection of the available optimal points to characterize the spatiotemporal soil moisture 

distribution and represent the mean soil moisture variation in the hillslope area [5,6]. The 

representative point in a soil moisture network system is typically determined by the tem-

poral stability method, which can be defined as the persistence of the spatial pattern of 

soil moisture in an area over time [7]. The correlation between environmental factors and 
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soil moisture measurements has been explored using clustering and orthogonal-function-

based approaches [8]. 

The temporal stability method has been widely used to characterize the temporal–

spatial distribution of measurements in a soil moisture network and obtain the representa-

tive point from hillslope to watershed scale [6,7]. The spatial distribution of temporal sta-

bility can be influenced by various parameters (e.g., soil properties, depths, land cover, 

soil condition, and network scale) [9]. Clustering analysis to find optimal clusters with 

similar characteristics has been conducted for the selection of the representative point by 

considering the relationship with terrain indices and soil properties [5]. The statistics of a 

soil moisture network, such as the number of sampling points and the observation period, 

plays a primary role in the selection of the representative point and also substantially af-

fects the determination of the number of representative points. Previous studies mostly 

focused on identifying the representative point based on multiple time series datasets in 

the soil moisture network. However, the soil water storage (SWS) can be important to 

represent the potential of runoff as well as the wetness status of the watershed or hillslope 

[8,9]. 

The antecedent precipitation index (API) was introduced to consider the impact of 

precipitation history in water balance on SWS [10]. The API model has been used to esti-

mate the runoff coefficient and measure the antecedent soil moisture in rainfall–runoff 

modeling [11]. However, the API considers neither evapotranspiration nor critical 

hillslope hydrological processes. In other word, the potential of soil moisture measure-

ment is not necessarily limited to the optimization of API parameters. The representation 

of eco-hydrological processes can be implemented into the time series model for soil water 

prediction. 

The recession characteristics of soil moisture in root zones have been explained by 

soil water loss due to evapotranspiration [12]. Estimation of the memory structure was 

conducted by calculating the time-lagged autocorrelation function and was represented 

as a first-order Markov process and autoregressive term [13]. In reality, time series analy-

sis of soil moisture has been applied to determine the water balance under the soil layer 

from the hillslope scale to the global scale [14]. The memory structure of soil moisture has 

been used to improve the performance of climate models in the context of seasonal fore-

casts and to understand the connectivity between soil moisture at the hillslope scale [15]. 

Considering that the soil water memory can originate from evapotranspiration and 

other hydrological processes under the soil layer, integration of the soil moisture memory 

into the model structure seems a reasonable approach in terms of precipitation models. 

This can be useful for addressing the responsive mechanism for the soil water process as 

well as for improving the prediction of soil moisture. Therefore, this study proposes an 

innovative prediction method for soil water considering the eco-hydrological relation-

ships and hydrological processes under the soil layer in terms of a stochastic model at the 

hillslope scale. An alternative method for the selection of the soil water representative 

point was also developed by introducing the similarity in the soil moisture stochastic pro-

cess. In order to validate the developed method, time series of soil moisture, precipitation, 

and evapotranspiration were collected for two years in two different humid mountainous 

hillslopes. Three model development research objectives and their applications were ad-

dressed in this study. 

First, a stochastic process to consider the memory characteristics in the mass balance 

of SWS under soil layer was derived and implemented as the basis of a precipitation his-

tory model to address the response characteristics of soil moisture time series data.  

Second, an innovative method to determine the representative point was proposed 

in the soil moisture monitoring network, considering the similarity in stochastic processes 

with the average of SWS at the hillslope scale in comparison with the representative point 

approach based on the temporal stability method.  

Thirdly, the soil water prediction performances of the developed models were com-

pared with some existing precipitation-based models. These three objectives demonstrate 



Water 2023, 15, 3921 3 of 15 
 

 

the potential of the proposed method in the selection of the representative point based on 

the stochastic hydrological processes as well as better prediction of SWS at the hillslope 

scale. 

2. Materials and Methods 

2.1. Study Area 

One of the study areas was a steep hillslope (hillslope B) inside the Bongsunsa catch-

ment (37°45′25.37″ N and 127°9′11.62″ E) in Pochun-si, and the other was a headwater 

hillslope (hillslope S) in the Sulmachun catchment (37°56′19.99″ N and 126°57′16.94″ E) in 

Paju-si, Gyeonggi-do, Republic of Korea (Figure 1). 

  

(a) (b) 

 

(c) 

Figure 1. Locations of the Bongsunsa catchment, Sulmachun catchment (a), and study areas 

(hillslope B (b) and hillslope S (c)) with the surface digital elevation model and measurement sys-

tems for soil moisture and precipitation. 
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Hillslope B was underlain by weathered gneiss and schist with an eastern aspect 

(dipping to the east), whereas gneiss composites underlain by granite bedrock were the 

primary characteristic for hillslope S (dipping to the west). The average annual tempera-

tures over the last five years were 11.5 °C and 10 °C, and the mean annual rainfall was 

approximately 1400 mm and 1067 mm at hillslopes B and S, respectively. More than 65% 

of the annual rainfall occurs between June and August due to the Asian monsoon. The 

areas of hillslope B and S were approximately 2100 m2 and 4000 m2, and the average slopes 

were 19° and 28°, respectively. The soil texture was commonly a mixture of sandy loam 

and loamy sand with sand (43–65%), silt (29–46%), and clay (6–11%) on hillslope B and 

sandy loam and loamy sand with sand (57–76%), silt (22–38%), and clay (5–10%) on 

hillslope S, respectively, based on soil taxonomy (USDA). Both hillslopes exhibited abun-

dant macropores in the topsoil on visual inspection. The mean soil porosities were 49.6% 

and 48% for hillslopes B and S, respectively. The soil thickness of hillslope B was 40–100 

cm and that of hillslope S was 25–90 cm [15,16]. The soil layer on hillslope B was well 

distributed between the upslope and downslope, whereas the spatial distribution of soil 

thickness was relatively uneven on hillslope S. A canopy mixture of Carpinus sp. and 

shrubby Quercus sp. was the primary land cover on hillslope B, with no notable spatial 

distribution of vegetation communities. Hillslope S was covered by a mixture of Polemo-

niales, shrubby Quercus sp., and a coniferous canopy of Pinus densiflora. A flux tower is 

located 300 m downstream of hillslope B, which has been operating since 2005, collecting 

fluxes of H2O and CO2 through the eddy covariance technique [17]. Evapotranspiration 

data were also obtained using the eddy covariance method at a flux tower 50 m from 

hillslope S. 

2.2. Acquiring Hydrologic Data on the Hillslope 

The spatial distributions of wetness tendency (e.g., the upslope contributing area and 

topographic wetness index (TWI)) and the soil depth distribution were considered when 

selecting monitoring locations for the soil moisture sensor network. As presented in Fig-

ure 1b,c, the TWI was calculated and used to delineate the location of soil moisture sensors 

considering the saturation tendency along the hillslope [15,16]. The topography is a dom-

inant control factor on the redistribution of soil water throughout hillslope B. As shown 

in Figure 1, soil moisture measurement points were allocated along transects based on 

digital terrain analysis. A long-term soil moisture monitoring system was installed on the 

hillslope, considering the operational scale of the wired time domain reflectometry (TDR) 

system (<100 m) [18]. For hillslope B, time series soil moisture data were collected at 18 

monitoring locations along four transects (A, B, C, and D), with 12 locations at three 

depths (10, 30, and 60 cm), 5 locations at two depths (10 and 30 cm), and 1 location (A0) 

with extremely low data quality, depending on the soil layer depths (Figure 1b). Time 

series soil moisture data were collected at 44 points on hillslope S. Depending on the soil 

depth, two or three waveguides were inserted into the upslope direction along two tran-

sects (A and B) and region C, as shown in Figure 1c. The soil moisture data were collected 

every 2 h, with a 40 min TDR operation time and an hour or longer for the machine to cool 

down. Occasionally, the soil moisture data suffered from unpredictable interruptions 

(e.g., the TDR cable being damaged by rodents or the machine being damaged by light-

ning). Considering the operational temperature of the TDR (>0 °C), no soil moisture mon-

itoring was performed between December and March. The soil moisture data collected 

between 2009 and 2011 for hillslope B and between 2015 and 2016 for hillslope S were 

used for the analysis, which indicated a very high rate (≈100%) of successful data acquisi-

tion. Rainfall, evapotranspiration, and temperature were measured at the flux tower [19]. 

2.3. Mathematical Development for Soil Water Storage 

The temporal variation in SWS is important for evaluating the impact of rainfall on 

the spatial distribution of water storage in a soil layer. The SWS can be approximated by 

multiplying the soil moisture by the corresponding soil depth. If the soil moisture is 
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measured at three depths (e.g., 10, 30, and 60 cm), the SWS values for the depth profiles 

can be expressed as ��,����(mm) = ��,���� ∗ 200 mm,  ��,����(mm) = ��,���� + ��,���� ∗

250 mm, and ��,����(mm) = ��,���� + ��,���� ∗ 350 mm, which represent the water stor-

age for the surface zone, root zone, and total soil layer, respectively.  

The mass balance relationship for two sequential SWS areas (�� and ���� for time 

steps t and t − 1), as well as other hydrological components such as evapotranspiration 

(���) and precipitation (��) for a regolith at a hillslope location, can be expressed as a 

function of the lateral flow from the upslope (��), the lateral flow to the downslope (��) 

area, and the percolation to a deeper layer (��): 

�� = �� − ��� + �� ∙ ���� (1)

where �� = �� − �� − �� is the fraction of water storage from the previous time step. A 

similar development of a soil moisture time series has been performed in [14].  

By introducing �� = �  to simplify the derivation, the sequential developments in 

Equation (1) provide the SWS at t as a function of the precipitation and evapotranspiration 

history as follows: 

�� = ∑ ������
�
��� − ∑ �������

�
��� + ����   (2)

Considering the initial water storage impact and soil layer thickness for different 

depth profiles, Equation (2) can then be approximated as follows: 

�� ≅ ∑ ������
�
��� − ∑ �������

�
��� + ��  (3)

where �� is the impact of the initial SWS for the designated regolith. 

2.4. Prediction of Soil Moisture Using Rainfall History 

The soil moisture has previously been predicted by merging the weighted history of 

precipitation, i.e., the API, into several regression models as follows [20]: 

�� = � + � ∙ ∑ ������
�
���   (4)

�� = � + � ∙ (1 − ���∙(∑ ������
�
��� ))   (5)

�� = � ∙
(∑ ������

�
��� )�.���

�∑ ������
�
��� ���

�.� + �    (6)

where �� is the soil moisture time series; a, b, and c are fitted coefficients; � is the number 

of days; ���� is precipitation at the time step t – i; and �� indicates the weighting factors 

for soil moisture recession. 

By applying the exponential function to the soil moisture time series data, the impact 

of the weighted precipitation history can be expressed as follows:  

∑ ������ = � ∑ �������� + ��
�
���

�
���    (7)

where the damping factor K ranges from 0.80 to 0.98 [19]. 

The sequential application of Equation (7) provides an expression for weighted pre-

cipitation accumulation into multiples of K to precipitation summation, i.e., the precipita-

tion history impact (PHI), with an assumption of negligible impact of initial precipitation 

(�� ≈ 0), as follows:  

∑ ������ = ∑ ������
�
���

�
���   (8)

2.5. Stochastic Model for the Difference between PHI and SWS 

Equations (3) and (8) indicate that the difference in mathematical expressions be-

tween the weighted precipitation history and SWS can be expressed as the weighted his-

tory of evapotranspiration. Several studies have previously explained the time series fea-

tures of soil moisture using those of evapotranspiration [12,13]. 
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In order to effectively address the difference (��) between Equations (3) and (6), an 

autoregressive model can be introduced as follows: 

�� = ∑ �����
��� �� + ��, �� ≈ ��(�) = −∅����� − ∅����� − ⋯ − ∅�����   (9)

where p is the order of the highest lag for the autoregressive model.  

In this study, we used seven days (a week) for p through heuristic modeling. The 

statistical test for significance was applied to all coefficients in the autoregressive model 

(Equation (9)). The modeling result was checked using a chi-squared test for the residual 

of Equation (9) to secure the white noise feature in the residuals. 

If a similar procedure to Equation (8) is applied to the time series data of evapotran-

spiration, the summation of the weighted evapotranspiration time series can be expressed 

as follows: 

∑ ��′����� = ∑ (�′)������
�
���

�
���    (10)

where ��′ and �� are the weighting factor and damping factor for evapotranspiration, 

respectively. 

The analogy between the autoregressive model (Equation (9)) and actual evapotran-

spiration can be further explored using measurements of evapotranspiration from the flux 

tower. By introducing the assumption that K in Equation (9) is identical to �′ in Equation 

(10) based on Equation (3), the distinct time series of evapotranspiration components be-

tween the hillslope soil layer and flux tower can be modeled. In other words, the stochastic 

structures from Equation (9) and those from Equation (10) can be compared to identify 

the possible causality between the difference (��) and the evapotranspiration. 

3. Results 

3.1. Relationship between SWS and PHI 

The �� in Equation (9) can be predicted in terms of ∑ �����
��� �� in Equation (8) to 

evaluate the impact of precipitation memory on the spatial average SWS at depths of 20, 

45, and 85 cm. The parameters (K) in the PHI model were calibrated using an objective 

function to maximize the coefficient of determination between the observation and pre-

diction values of SWS. Table 1 presents the calibrated Ks for SWS at soil depths of 20, 45, 

and 85 cm, which were 0.83, 0.85, and 0.87 for hillslope B and 0.93, 0.94, and 0.95 for 

hillslope S. The higher Ks for hillslope S indicates a slower flux for hillslope S. These val-

ues correspond to known parameter ranges (between 0.8 and 0.98) reported in other stud-

ies [19]. The contribution to evaporation is different between surficial and deeper layers. 

Greater depths correspond to higher K values in both sampling sites, which indicates that 

the memory impacts of precipitation on SWS are more significant at greater depths, which 

are continuously affected by not only precipitation inputs but also soil water flow from 

upper depths and upslope areas. The predictability of the PHI model in terms of R2 and 

root mean square error (RMSE) in the validation dataset is lower than that in the calibra-

tion dataset for both hillslopes (see Table 1), indicating high sensitivity and uncertainty in 

K for the difference in rainfall features between the two datasets. 

Table 1. Calibrated K coefficients and predictabilities in the PHI model for soil water storage (SWS) 

at all depths (20 cm, 45 cm, and 80 cm) for the two hillslopes. 

Hillslope B S 

soil depth for storage 20 cm 45 cm 80 cm 20 cm 45 cm 80 cm 

coefficient K 0.83 0.85 0.87 0.93 0.94 0.95 

calibration data 
 R� 0.66 0.56 0.54 0.42 0.42 0.44 

RMSE 41.07 45.37 51.2 35.67 35.85 73.99 

validation data 
 R� 0.57 0.54 0.57 0.34 0.34 0.35 

RMSE 90.36 99.85 113.08 23.80 40.18 92.19 

Note: R2: coefficient of determination; RMSE: root mean square error. 
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3.2. Stochastic Models for the Difference between PH and SWS 

The difference between the PHI model and SWS values at various soil depths can be 

properly addressed through the implementation of an evapotranspiration component, as 

illustrated in Equations (3) and (8). An autoregressive model was introduced to address 

the difference (��) in Equation (9). The standard procedure for time series modeling (e.g., 

checking the data, investigating the memory structure, building the model structure, pa-

rameter estimation, and diagnostic checking) [21] was applied using a maximum lag order 

of seven days. Table 2 presents the autoregressive parameters (∅�, . . ∅�) of stochastic pre-

cipitation (SP) models for all locations at three soil depths (20, 45, and 80 cm). All evalu-

ated parameters presented in Table 2 were statistically significant (p < 0.05). As presented 

in Table 2, all autoregressive parameters were distributed at lags of one to five days. While 

parameters for odd orders had positive and high estimates, those for even orders are neg-

ative and exhibited smaller magnitudes than their prior order parameter, except for point 

B3 at a depth of 80 cm at hillslope S (Table 2). There was a distinct feature of autoregressive 

parameter dependence on spatial characteristics such as slope location and depth at 

hillslope B. While the structure of autoregressive models was simpler in upslope areas 

and at shallower depths, such as at locations A1, B1, C1, and D1 at depths of 20 and 45 

cm, those for downslope areas (e.g., locations A4, B5, C4, and D4) exhibited multiple-term 

models with high orders at hillslope B. However, the model structures for many measure-

ment points at hillslope S were identified as the AR(1) model and did not show a signifi-

cant relationship with measurement depth and location (not presented). Although the ma-

jority of model residuals passed the assumption of residual independence for time series 

modeling, as presented in Table 2, the residuals of autoregressive models for deeper and 

downslope locations occasionally failed the �� test checking for white noise at hillslope 

B, indicating that the corresponding hydrological processes can be highly complicated, 

which can be associated with the heterogeneity in subsurface lateral flow. The develop-

ment of macropores and lesser cracking of the bedrock can result in an uneven generation 

of lateral flow in the downslope part.  

Table 2. Estimated parameters and SP models for SWS at depths of 20 cm, 45 cm, and 80 cm for all 

monitoring points and residual tests for hillslope B. Black dots (●) represent the residual as white 

noise through a χ2 test; the rings (○) denote stochastic structures in the residuals. 

20 cm Avg A1 A2 A3 A4 C1 C2 C3 C4 

AR(1) 0.82 0.88 0.94 0.66 0.48 1.08 0.94 0.57 0.69 

AR(2)      −0.14    

AR(3) 0.16   0.15 0.26   0.42  

AR(4) −0.24       −0.34 −0.27 

AR(5) 0.18       0.23 0.29 

��  ● ● ● ○ ○ ● ● ● ○ 

45 cm Avg A1 A2 A3 A4 C1 C2 C3 C4 

AR(1) 0.83 0.9 0.95 0.71 0.47 0.96 1.10 0.65 0.70 

AR(2)       −0.15   

AR(3) 0.14   0.13 0.23   0.36  

AR(4) −0.18       −0.35 −0.30 

AR(5) 0.15    0.11   0.25 0.27 

��  ● ● ● ○ ○ ● ● ● ○ 

80 cm Avg A1 A2 A3 A4 C1 C2 C3 C4 

AR(1) 0.82  0.95  0.57 0.97 1.12 0.70 0.72 

AR(2)       −0.17   

AR(3) 0.18    0.20   0.35  

AR(4) −0.19       −0.39 −0.27 

AR(5) 0.15    0.12   0.28 0.25 
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��  ●  ●  ○ ● ● ● ○ 

20 cm B1 B2 B3 B4 B5 D1 D2 D3 D4 

AR(1) 0.93 0.93 0.88 0.67 0.74 0.91 0.94 0.76 0.62 

AR(2)       −0.22   

AR(3)    0.18   0.12  0.21 

AR(4)     −0.26   −0.19 −0.29 

AR(5)     0.25   0.31 0.25 

��  ● ● ● ● ○ ● ● ○ ● 

45 cm B1 B2 B3 B4 B5 D1 D2 D3 D4 

AR(1) 0.96 0.96 0.85 0.65 0.76 0.94 0.97 0.82 0.67 

AR(2)       −0.21   

AR(3)    0.21   0.14  0.24 

AR(4)     −0.29   −0.21 −0.23 

AR(5)     0.24   0.32 0.25 

��  ● ● ● ● ○ ● ● ○ ○ 

80 cm B1 B2 B3 B4 B5 D1 D2 D3 D4 

AR(1) 1.01  0.90 0.62 0.79 0.95 0.93   

AR(2)          

AR(3)    0.15      

AR(4) −0.18    −0.25     

AR(5) 0.13   0.13 0.21     

��  ●  ● ● ○ ● ●   

The impact of evapotranspiration on SWS is presented in Equation (3) with the accu-

mulated impact of rainfall, which is similar to the representation of the PHI model, for 

example, in Equation (8). The impact of evapotranspiration can be considered in the model 

with the ET formulation, which is shown in Equation (10). As presented in Equations (3) 

and (10), the SWS can be independently affected by precipitation and evapotranspiration. 

The time series of the difference, ��, in Equation (9) and the weighted evapotranspiration 

from the flux tower using calibrated Ks (Table 1) in Equation (10) can be obtained at three 

different depths for the two hillslopes, respectively.  

The time series of Equation (10) was modeled for a comparison with the stochastic 

structure of the difference between SWS and precipitation. The statistics of the two differ-

ent time series indicate that the mean values were similar between Equations (9) and (10) 

for the two different hillslopes (Table 3). Although the medians were less than the means 

for �� in Equation (9), the medians were greater than the means of Equation (10) in all 

datasets; the standard deviations of �� in Equation (9) were also greater than those in 

Equation (10), as shown in Table 3. This means that the statistical distribution of �� in 

Equation (9) is more dispersed than that of �� in Equation (10), which is confirmed by the 

minimum and maximum values in Table 3. This can be explained by the fact that the re-

siduals between the rainfall series and the weighted soil moisture address additional hy-

drological processes over evapotranspiration.  
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Table 3. Statistical parameters of et in Equations (9) and (10). 

Hillslope Datasets Mean Median 
Standard 

Deviation 
Max. Min. 

B 

20 cm 

SWS 

�� Equation (9) 27.74 16.19 38.25 245.14 −0.01 

Equation (10) 28.82 33.05 18.20 58.25 0.55 

45 cm 

SWS 

�� Equation (9) 31.82 24.45 35.16 229.01 −1.16 

Equation (10) 32.65 37.22 20.47 65.17 0.55 

80 cm 

SWS 

�� Equation (9) 36.31 30.93 33.15 214.02 −1.87 

Equation (10) 37.66 43.82 23.41 74.08 0.55 

S 

20 cm 

SWS 

�� Equation (9) 41.83 31.47 33.45 186.63 −2.35 

Equation (10) 44.97 52.08 21.27 78.32 0.69 

45 cm 

SWS 

�� Equation (9) 51.61 44.72 30.90 174.85 −5.58 

Equation (10) 52.27 60.16 24.19 89.59 0.69 

80 cm 

SWS 

�� Equation (9) 65.66 70.32 30.34 156.79 −10.59 

Equation (10) 62.43 71.02 28.75 104.86 0.69 

3.3. Representative Points Based on the Stochastic Process of SWS and Temporal Stability 

Temporal stability has been widely used to determine the representative points for 

estimating the soil moisture average based on the time-invariant relationship between 

spatial locations. A temporal stability analysis was conducted on the spatiotemporal rela-

tionship between the soil moisture time series to estimate the average soil moisture, 

whereas the SP model considers the time series characteristics between rainfall character-

istics and soil moisture. In order to find the representative point for soil moisture, the 

index of temporal stability (ITS) was computed at three different depths in the two study 

areas. The representative point for all depths was also determined using the mean soil 

moistures for specific locations. As shown in Figure 2, the lowest ITS values for all depths 

were identified as point B3 and point B6 for hillslopes B and S, respectively. 

The difference between SWS and multiples of K in the precipitation time series in 

Equation (9) can be modeled using autoregressive models. Table 2 presents the distribu-

tion of models for all points at three depths for both hillslopes. The spatially different 

delineated autoregressive models address the local soil moisture response features, such 

as connectivity to upslope areas and nonlinear soil water flow paths, which can be char-

acterized through combinations of matrix and macropore flows. The time series data of 

spatially averaged soil moisture for three different depths can be used to model the dif-

ferences. The model structure for hillslope B was formulated using AR(1), AR(3), AR(4), 

and AR(5), whereas that for hillslope S consisted of the AR(1) term. The difference in soil 

layer development and soil water flow path between the two hillslopes may explain the 

different model structures. 

A soil moisture monitoring point can be identified according to the similarity of the 

model structure and its parameter estimates. The delineated model for point C3 exhibited 

an identical distribution in model terms and similar parameter estimates to those for spa-

tially averaged soil moisture at all three depths for hillslope B. Similarities between the 

models for average soil moisture and those for point C6 were also identified at hillslope 

S. Both points satisfy the white noise assumption in model residuals. If the stochastic 

structures between different time series are identical, a reliable relationship from one to 

another can be established. In other words, the stochastic process at point C3 and point 

C6 for hillslope B and hillslope S, respectively, can represent the mean soil water memory 

impact for the average SWS of all measurement points at depths of 20, 45, and 80 cm.  
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(a) 

 

(b) 

Figure 2. Index of temporal stability (ITS) for points at three depths (10 cm, 30 cm, 60 cm) and aver-

age ITS of each measurement point for (a) hillslope B and (b) hillslope S. 

The degree of representativeness can be evaluated through the correlation between 

average SWS and SWS for a selected point. Figure 3a,c show linear relationships between 

average SWSs and those of points C3 and C6 at hillslopes B and S, respectively. Similar 

relationships for points B3 and B6, identified through conventional stability analysis, are 

presented in Figure 3b,d for hillslopes B and S, respectively. The SP model resulted in 

higher R2 values than the conventional temporal stability analysis for the linear relation-

ships between average SWS and the selected point at selected points. 
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(a) (b) 

  

(c) (d) 

Figure 3. Relationship between the average SWS and SWS for the representative point based on the 

stochastic structure of (a) point C3 at hillslope B and (c) point C6 at hillslope S and the representative 

point based on the temporal stability of (b) point B3 at hillslope B and (d) point B6 at hillslope S. * 

and ** in equations indicate significant level p < 0.05 and p < 0.01, respectively. 

Table 4 presents the model performances (R2 and RMSE) for calibration and valida-

tion between the spatially averaged SWS and the SWS for the representative point at three 

depths for the two hillslopes. The representative points based on the stochastic processes 

of SWS exhibited higher R2 and lower RMSE than those based on temporal stability in 

both the training dataset (calibration) and the testing set (validation) (Table 4).  

The higher accuracy of the representative point for SWS determined by the SP model 

can be attributed to the fact that the similarity in the stochastic process of the time series 

and the evapotranspiration process were both considered when identifying the best loca-

tion for SWS evaluation. This means that the proposed SP model can be used as an iden-

tification method for representative locations of SWS at the hillslope scale. 

Table 4. Representative points determined by the similarity between the stochastic model of SWS 

and temporal stability and their regression relationship to average SWS with R2 and RMSE. 

Hillslope Dataset Point 
Calibration  Validation  

 �� ����  �� ���� 

B 

20 cm 

SWS 

C3 0.83 2.99 0.86 4.84 

B3 0.74 3.65 0.83 9.06 

45 cm 

SWS 

C3 0.82 6.03 0.89 8.77 

B3 0.77 6.86 0.87 12.10 
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80 cm 

SWS 

C3 0.83 8.95 0.93 10.50 

B3 0.81 9.42 0.89 18.40 

S 

20 cm 

SWS 

C6 0.95 1.64 0.90 2.59 

B6 0.94 1.74 0.90 4.05 

45 cm 

SWS 

C6 0.96 3.54 0.96 5.06 

B6 0.93 4.43 0.92 6.33 

80 cm 

SWS 

C6 0.96 6.28 0.98 8.00 

B6 0.94 7.28 0.92 8.95 

4. Discussion 

4.1. Predictability of SWS 

The evaluation of SWS using precipitation characteristics can be useful simply be-

cause precipitation data are feasibly available and less cost demanding. While PHI and 

the existing models require precipitation history, the soil moisture at a representative 

point needs to be measured for the SP model (Table 5). The performances of the PHI model 

and existing API-based regression models (Equations (4)–(6)) were compared for different 

depths at the two hillslopes. Further elaborative approaches with autoregressive terms 

can be implemented to improve the predictability of SWS using either the average SWS 

or the relationship from the representative point based on the stochastic structure of C3 

and C6 for hillslope B and hillslope S, respectively. Table 5 presents the predictabilities of 

SWS for all models in terms of R2 and RMSE. The PHI model exhibited approximately 

similar predictability (0.34 < R2 < 0.63) in both calibration and validation datasets. The 

linear model (Equation (4)) had an identical R2 to the PHI model; however, the RMSEs of 

the linear model were substantially lower, indicating the fitting capability of the linear 

model for the bias of the PHI model. The exponential or empirical models shown in Equa-

tions (5) and (6) exhibited similar performances to the linear model (Table 5). The SP 

model for the average SWS showed distinctly higher R2 values (between 0.87 and 0.96) 

and substantially smaller RMSEs (1.55–10.61) than other existing models, as presented in 

Table 5. The prediction using the identified representative points at C3 (hillslope B) and 

C6 (hillslope S) based on SP models also exhibited comparable performance both in R2 

values (0.78–0.92) and RMSE values (2.08–12.23). 

Table 5. Predictabilities (R2 and RMSE) of SWS using existing regression models (Lin.: linear; Exp.: 

exponential; [20] empirical) and the stochastic precipitation (SP) model. SP(C3) is the SP model from 

point C3. 

Hillslope Dataset 

Model 
PHI 

(K) 
Lin. Exp. 

Empirical 

[20] 
SP 

SP  

(C3) 

Input 

Variables 
����,⋯,� ����,⋯,� ����,⋯,� ����,⋯,� 

����,⋯,� 

����� 

����,⋯,� 
��,⋯,� 

B 

20 cm SWS 

calibration 

2009 

 R� 0.66 0.66 0.68 0.67 0.93 0.83 

RMSE 44.55 4.16 4.10 4.12 1.85 3.03 

validation 

2011 

 R� 0.57 0.57 0.71 0.73 0.93 0.78 

RMSE 83.48 8.37 6.03 5.81 3.05 5.50 

45 cm SWS 

calibration 

2009 

 R� 0.63 0.63 0.63 0.63 0.94 0.80 

RMSE 89.44 8.68 8.60 8.58 3.35 6.36 

validation 

2011 

 R� 0.57 0.57 0.68 0.71 0.94 0.83 

RMSE 101.46 16.20 12.48 11.89 5.42 9.75 

80 cm SWS 

calibration 

2009 

 R� 0.61 0.61 0.62 0.62 0.95 0.80 

RMSE 170.67 13.45 13.36 13.26 4.78 9.67 

validation 

2011 

 R� 0.57 0.57 0.67 0.71 0.94 0.88 

RMSE 168.22 23.91 18.67 17.55 7.83 12.22 
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Hillslope Dataset 

Model 
PH 

(K) 
Lin. Exp. 

Empirical 

[20] 
SP 

SP 

(C6) 

Input 

Variables 
����,⋯,� ����,⋯,� ����,⋯,� ����,⋯,� 

����,⋯,� 

����� 

����,⋯,� 
��,⋯,� 

S 

20 cm SWS 

calibration 

2015 

 R� 0.41 0.41 0.47 0.50 0.95 0.90 

RMSE 35.66 5.57 5.28 5.14 1.55 2.08 

validation 

2016 

 R� 0.33 0.33 0.37 0.40 0.87 0.81 

RMSE 23.79 6.74 6.69 6.59 2.53 3.29 

45 cm SWS 

calibration 

2015 

 R� 0.42 0.42 0.47 0.50 0.96 0.91 

RMSE 35.85 12.73 12.13 11.81 2.72 4.46 

validation 

2016 

 R� 0.33 0.33 0.37 0.39 0.88 0.86 

RMSE 40.17 16.02 15.90 15.65 5.52 7.17 

80 cm SWS 

calibration 

2015 

 R� 0.43 0.43 0.46 0.48 0.96 0.92 

RMSE 73.38 23.17 22.59 22.07 4.50 7.79 

validation 

2016 

 R� 0.34 0.34 0.36 0.38 0.87 0.87 

RMSE 92.12 30.08 29.88 29.41 10.61 12.23 

Note: R2: coefficient of determination; RMSE: root mean square error. 

4.2. Hydrological Interpretation of Modeling Results  

The deeper the depth, the greater the K in Table 1, which indicates that the impact of 

antecedent precipitation tends to be greater at deeper depths. The lower K values at shal-

lower depths represent stronger vertical flow (infiltration and exfiltration), but the higher 

K values at deeper depths may reflect the upslope lateral flow and a relatively lower im-

pact of vertical flow (Table 1). The soil moisture introduced from subsurface lateral flow 

along the bedrock boundary can introduce less variation in SWS than that at shallow 

depths, where relatively fast and frequent fluxes are dominant [14]. The spatial distribu-

tion of AR(p) models shown in Table 2 can also be explained not only by eco-hydrological 

processes for the interface between the soil layer and bedrock surface but also by the re-

distribution of soil moisture in the lateral direction. 

The impact of evapotranspiration on SWS can be expressed using Equation (3) with 

the accumulated impact of precipitation, which is similar to the representation of PHI in 

Equation (9) and the derivation in Equation (10). As presented in Equations (3) and (10), 

SWS can be independently affected by PHI and ET. The time series of ET consisted of 

evapotranspiration measured from the flux tower with the implementation of K from Ta-

ble 1, and the impact of ET was modeled using stochastic processes to compare the time 

series structure between ET and PHI. The similar model structure of autoregressive mod-

els between et in Equations (9) and (10) reveals that evapotranspiration played an im-

portant role in the prediction of SWS. The minor difference in estimated parameters be-

tween soil moisture measurement and flux tower measurement can be explained by the 

data acquisition conditions and hydrological processes in the soil layer. The definition of 

ETt in Equations (1)–(3) may further consider the exfiltration process in the soil layer, 

which naturally has a longer memory impact than that of the flux tower. 

The spatial distribution of the SP models for all points on hillslope B in Table 2 indi-

cates that models with higher orders of AR(p) were frequently found in downslope areas. 

A previous study on hillslope B using intensive soil moisture data revealed the signifi-

cance of topographic factors for determining the spatial distribution of soil moisture [15]. 

However, the spatial distribution of the delineated model for hillslope S was simpler 

(mainly AR(1)) than that for hillslope B. Hillslope hydrological processes strongly depend 

on the development and distribution of soil layer. The regolith of upslope areas on 

hillslope S was shallower that on hillslope B, and the spatial distribution of soil thickness 

on hillslope S was not as uniform as that on hillslope B. The development of lateral flow 

and the saturation connectivity between upslope and downslope areas on hillslope B were 

more stable than that on hillslope S. 



Water 2023, 15, 3921 14 of 15 
 

 

5. Conclusions 

The consideration of eco-hydrological processes in the existing precipitation model 

structure substantially improved both the selection of the representative point with higher 

accuracy in estimating average soil moisture and soil water storage at different soil layers 

and the SWS prediction performance at the hillslope scale. Both the mathematical deriva-

tions and model application for the difference between PHI and the measured SWS indi-

cated that the autoregressive process effectively represented the evapotranspiration im-

pact in soil water modeling. This is because the structure of the proposed model was de-

termined from the time series of soil water measurements, and the delineated models ad-

dressed the combined hydrological processes at each monitoring point. The spatial distri-

bution of the finalized models highlighted the distribution of associated hydrological pro-

cesses along the hillside. An alternative definition of the soil moisture representative point 

was introduced as the point at which the stochastic process effectively represents the av-

erage soil moisture time series at different depths in a designated area. The representative 

points from the SP model had better accuracy in estimating both soil moisture and soil 

water storage compared with the representative point from temporal stability. 
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