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Abstract: Heterotrophic ammonia-oxidizing bacteria (HAOB), crucial for soil nitrification, have
unclear benefits for crop water use. This study explored the impact of a novel HAOB strain, S2_8_1,
on maize drought resilience via pot culturing. The experiment included various treatments: control
with sufficient water (CK), sufficient water + HAOB strain (WI), limited rewatering (DL), sufficient
rewatering (DH), sufficient rewatering + HAOB strain (DHI), and limited rewatering + HAOB strain
(DLI). The results revealed below-compensatory growth with DL compared to CK. Interestingly, the
HAOB strain displayed survival resilience with a 96% increase in its copy numbers in the rhizosphere
soils compared to CK during rewatering. The DLI treatment exhibited equal to compensatory growth,
showing a remarkable 169% surge in the water use efficiency versus CK. This improvement was
attributed to heightened rhizosphere soil nitrification by HAOB, enhancing the cytokinin production
in roots and its transference to leaves, leading to a 25% higher leaf cytokinin concentration with DLI
compared to CK during rewatering. Additionally, HAOB DHI prompted overcompensatory growth
after sufficient rewatering, boosting nitrification and facilitating cytokinin root-to-leaf transport.
However, its water use efficiency was 39% lower than DLI. The study highlights HAOB’s importance
in optimizing crop water use, particularly in scenarios of limited rewatering in cropland soils.

Keywords: heterotrophic ammonia-oxidizing bacteria; compensatory growth; post-drought growth;
cytokinin; limited rewatering; maize

1. Introduction

Water scarcity poses a pressing threat to maize (Zea mays L.) production in north-
ern China, a region known for its vulnerability to droughts [1]. Enhancing maize water
utilization efficiency is crucial in addressing this issue. Bacteria and other soil microorgan-
isms play a significant role in enhancing water use efficiency [2,3]. Therefore, prioritizing
research on manipulating soil bacteria to enhance maize water utilization is essential.

Various water-saving techniques, including regulated deficit and supplemental irri-
gations, as well as deficit irrigation, are extensively employed in agriculture [4–6]. These
technologies are based on plant compensatory growth, where growth inhibited by drought
stress is compensated for through accelerated growth upon rewatering. Compensatory
growth can be categorized as undercompensation (biomass recovery below the lost levels),
compensation (recovery equal to loss), and overcompensation (recovery surpassing lost
biomass) [7]. Efficient water use during the rewatering period is the key to the water-saving
mechanism of compensatory growth [8,9]. Both sufficient and limited water supplies can
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induce maize compensatory growth [10,11]. However, limited water supplies demonstrate
better water-saving potential compared to abundant water supplies. Therefore, implement-
ing limited rewatering strategies after drought conditions holds promise for water saving
in maize production.

After drought, rewatering can trigger compensatory growth in crops, which was char-
acterized by accelerated growth upon the reintroduction of water to the roots. Enhancing
maize’s compensatory growth has been observed with the application of nitrogen or organic
fertilizer along with sufficient rewatering [12,13]. This phenomenon can be ascribed to the
heightened availability of nitrate nitrogen (NO3

−). Synthetic nitrogen or organic fertilizers
typically raise the soil’s NO3

− levels through nitrification processes [14,15]. Research has
observed that soil NO3

− promotes cytokinin (CK) synthesis in maize roots, leading to CK
transport to the leaves and stimulating maize growth during post-drought rewatering [16].

Another study found that rewatering with ample water induced the proliferation
of the symbiotic bacterium Ensifer sesbaniae in maize rhizospheres [17]. This bacterium
facilitates root-induced cytokinin delivery to leaves, promoting compensatory growth. The
Ensifer sesbaniae belongs to heterotrophic ammonia-oxidizing bacteria, and is crucial for
soil nitrification and NO3

− release. The key point here is that soil nitrification primarily
consists of two steps: first, ammonia-oxidizing bacteria and ammonia-oxidizing archaea
convert ammonium nitrogen into nitrite nitrogen; then, nitrite-oxidizing bacteria oxidize
nitrite nitrogen into NO3

−. In soil, nitrite nitrogen is easily oxidized into NO3
−. However,

the oxidation of ammonium nitrogen into nitrite nitrogen is the rate-limiting step in soil ni-
trification. Ammonia-oxidizing bacteria are typically found in soil rich in organic nutrients,
while ammonia-oxidizing archaea often appear in nutrient-poor soils. Soil moisture and
nutrients are taken up by plant roots, which can secrete nutrients to provide a source of
carbon and nitrogen for rhizospheric soil microorganisms. Therefore, ammonia-oxidizing
bacteria typically inhabit the rhizospheric soil of plants and tend to be heterotrophic. In
a recent study, a strain of heterotrophic ammonia-oxidizing bacteria (HAOB) was found
to have a strong correlation with the transport of cell division hormones from the roots
to the leaves [18]. However, limited research explores how soil microorganisms induce
compensatory growth in maize through roots under limited rewatering after drought.
Further studies are needed to investigate this aspect and deepen our understanding of the
mechanisms involved.

The present study investigated the compensatory mechanism of maize seedlings,
which are highly sensitive to drought stress and rewatering. Understanding these mech-
anisms is crucial for maize water-saving production, considering maize’s significance
as China’s most productive grain crop. We hypothesized that heterotrophic ammonia-
oxidizing bacteria (HAOB) would promote maize’s compensatory growth during rewater-
ing, especially with a limited water supply. To test this, we used quantitative fluorescence
polymerase chain reaction (PCR) to measure the abundance of HAOB in the rhizosphere
soil. We also measured the leaf cytokinin levels, photosynthesis, and soil nitrification
rates and biomasses to study compensatory growth mechanisms following drought and
limited rewatering.

2. Materials and Methods
2.1. Experimental Design
2.1.1. Experimental Grouping and Treatments

The HAOB strain employed in this study is stored in the Chinese Center for Preser-
vation of Typical Cultures (Wuhan University, Wuhan, China) with the deposit number
“CCTCC NO: M2021374” and the GenBank accession number “ON667919”. The strain,
named S2_8_1, belongs to Rhizobiaceae, Ensifer, and was extracted and subjected to screen-
ing from the soil at Henan University of Science and Technology, where the study was
conducted. The purified culture of S2_8_1 was as follows: 0.5 g CH3COONa, 0.03 g
MgSO4·7H2O, 0.25 g NaH2PO4, 0.01 g MnSO4·4H2O, 5.0 g CaCO3, 0.5 g (NH4)2SO4, 0.75 g



Water 2023, 15, 3933 3 of 13

KH2PO4, 1 L distilled water. When the culture was inoculated with S2_8_1, its number in
the culture was about 2,160,900 cfu/L.

A potted maize experiment was conducted at Henan University of Science and Tech-
nology’s experimental farm in Luoyang City, Henan Province, China (34◦32′ N, 112◦16′ E).
The region experiences an annual average rainfall of 601 mm, a mean temperature of
14.2 ◦C, and approximately 2204.9 h of sunlight. “Zhengdan 958”, known for its wide adop-
tion in China and drought tolerance, was chosen as the maize variety. Starting on 5 June
2022, 15 maize seeds were sown in each of 300 plastic pots. These pots had a diameter of
21.5 cm and a height of 20.0 cm, containing approximately 5.8 kg of soil with approximately
24.7 g/kg organic carbon and 2.15 g/kg total nitrogen. Maize seedlings emerged within
about 6 days. The experimental process is shown in Figure 1.
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Figure 1. Schematic diagram for the experimental design. The abbreviations CK, DH, DL, WI, DHI,
and DLI correspond to treatments of control with sufficient water supply, sufficient rewatering after
drought, limited rewatering after drought, sufficient water supply with HAOB strain inoculation,
sufficient rewatering after drought with HAOB strain inoculation, and limited rewatering after
drought with HAOB strain inoculation. The numbers “ 1©”, “ 2©”, “ 3©”, and “ 4©” represent the
first, second, third, and fourth subgroups within each treatment, respectively. Pn represents the net
photosynthetic rate, Sc represents stomatal conductance, and Tr represents the transpiration rate. The
terms “Inoculate” and “Medium” refer to the addition of culture medium solution with and without
HAOB stain, respectively.

On the 6th day after emergence, thinning was conducted, leaving five vigorous
seedlings per pot. Subsequently, 72 pots with consistent growth were selected for the
study, organized into six groups, each consisting of 12 pots. These six groups represented
specific treatments: (1) control with sufficient water supply (CK), (2) sufficient water supply
with HAOB strain inoculation (WI), (3) limited rewatering after drought (DL), (4) suffi-
cient rewatering after drought (DH), (5) sufficient rewatering after drought with HAOB
strain inoculation (DHI), (6) limited rewatering after drought with HAOB strain inocula-
tion (DLI). Within each treatment group, the 12 containers were further divided into four
subsets, each comprising three containers. These subsets served as replicates to improve
measurement reliability.
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2.1.2. Timeline of the Experiment

From the 12th to the 22nd day after emergence, there was a 10-day period of sufficient
water supply for all treatments. At the beginning of this period, the S2_8_1 strain was
introduced into the WI, DLI, and DHI treatments by adding 200 mL of its culture medium
solution to the soil. The DH, DL, and CK treatments received 200 mL of culture medium
solution without the strain. The first subgroup in each treatment had its maize biomass
measured to assess plant water use efficiency.

After the period of sufficient water supply, drought stress and subsequent rewatering
occurred from the 23rd to the 32nd day and from the 33rd to the 42nd day, respectively.
During the drought stress period, subgroups 2, 3, and 4 of the DH, DL, DHI, and DLI
treatments experienced drought stress, while the CK and WI treatments continued to
receive sufficient water. In the rewatering period, the CK, WI, DH, and DHI treatments had
adequate water supply, while the DL and DLI treatments had limited water supply. At the
end of the drought period, assessments were made for maize biomass, zeatin riboside (ZR)
content, net photosynthetic rate (Pn), stomatal conductance (Sc), and transpiration rate (Tr),
both on the 5th and 10th days after rewatering. Rhizosphere soil samples were collected
from subgroups 2, 3, and 4 of each treatment for further analysis.

2.1.3. Soil Moisture Control Methods

Research has established that soil moisture levels of 75 ± 5%, 60 ± 5%, and 45 ± 5%
of field capacity indicate wetness, moderate drought, and severe drought, respectively [19].
Based on these findings, our study implemented three conditions: sufficient water supply,
limited water supply, and drought stress, by maintaining soil moisture levels at 75 ± 5%,
60 ± 5%, and 45 ± 5% of field capacity. A preliminary experiment in this study showed
that a 10-day period of drought stress significantly inhibited maize growth without causing
substantial damage. To maintain the desired soil moisture levels, water was added when
the soil moisture in the containers fell below 45%, 60%, or 75% of field capacity. Formula (1)
was used to calculate soil water content [20].

SWC =
Bt − Bd − Be − Bp

Bd × FWC
× 100% (1)

where SWC represents soil water content, while Bt, Bd, Be, and FWC, respectively, represent
instantaneous total pot weight, net weight of dried soil, weight of empty pots, and approxi-
mated live plant weight. FWC signifies field capacity. Bp was measured using additional
pots early.

2.2. Measurements and Data Processing
2.2.1. Biomass and Photosynthesis Indicators

Washing was employed to extract the roots from the soil. Fresh root, stem, and leaf
samples underwent 72 h drying at 65 ◦C, yielding dry weights. Total biomass combined
these dry weight components, while aboveground biomass only considered leaves and
stems. Water use efficiency was calculated by dividing total biomass gain by the water
utilized during drought stress and rewatering periods. Total biomass gain represented
the increase throughout the entire period spanning from the initiation of drought stress
to the end of rewatering. Water use referred to added water during drought stress and
rewatering. The Pn, Tr, and Sc were assessed via the photosynthesis analyzer of the LI-6400
equipment from 10:30 a.m. to 12:30 p.m.

2.2.2. Soil Nitrification Rate and Zeatin Riboside Content

NH4
+ and NO3

− levels in rhizosphere soils were evaluated, respectively, using in-
dophenol blue and phenol disulphonic acid colorimetric methods [21]. The net nitrification
rate in the rhizosphere soil was determined by incubating soil samples undergoing a 7-day
period at 25 ◦C, while preserving their original soil moisture levels. The daily net rhi-
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zosphere soil nitrification rate was computed by dividing NO3
− increase resulting from

incubation by 7 days.
After cutting the maize stem at its base, a precisely weighed section of absorbent cotton

(1.0 g), encased in plastic film to limit moisture loss, was immediately placed over the cut
to collect xylem sap across 12 h. The cotton weight gain was split by its density of 1 g/cm3

to gauge the volume of the xylem sap. Subsequently, the cotton was compressed to extract
sap for quantifying concentration of ZR in the xylem sap (CZR). The rate of ZR transport
across the root-to-leaf pathway (RZR) during darkness was calculated as the CZR per hour.
An enzyme-linked immunosorbent assay was used to measure the ZR concentrations in
leaves and xylem sap [22]. Notably, ZR test kits utilized were sourced from the reputable
Shanghai Enzyme-linked Biotechnology Co., Ltd. based in Shanghai, China.

2.2.3. Quantitative Real-Time PCR

The MO-BIO PowerSoil DNA Isolation Kit was employed to extract the total DNA from
the soil genome, and a template was used for PCR amplification of the total DNA. The PCR
amplification targeting the S2_8_1 gene utilized specific primers: F (5′-ATGTACTGCGCTC-
AAATCCGA-3′), R (5′-ATGATGAAGGCAAAACCACGAT-3′), and probe P (5′-FAM-AC-
AACGCAGAAGTCGCACGGAAG-BHQ1-3′). In a 25 µL reaction, 12.5 µL of 2× Premix
Ex Taq (qPCR probe) solution, 0.5 µL of both forward and reverse primers (10 µM each),
0.5 µL of probe (at a concentration of 10 µM), 5 µL aliquot of the DNA template, 6 µL of
double-distilled water were combined. Reaction conditions included initial denaturation
under a temperature of 95 ◦C for a duration of 30 s, followed by denaturation by heating to
95 ◦C for 10 s, annealing at 60 ◦C for a duration of 45 s, and 45 cycles of amplification. Each
soil sample underwent triplicate testing. Amplification was performed on the extracted
total soil genome DNA, and the quantified Ct value obtained through fluorescence-based
PCR was used within the equation of the standard curve for calculating the copy count of
S2_8_1 (copies/g), reflecting bacterial quantity.

A standard curve was generated by amplifying primers designed specifically for
S2_8_1. The resultant products underwent purification, followed by plasmid construction
and transformation into bacterial cells of Escherichia coli. The E. coli harboring the plasmid
with the target gene were cultured at 37 ◦C in shaking flasks. Plasmids were isolated
utilizing the Axygen Plasmid Miniprep Kit (Axygen). Plasmid concentration was quantified
using Qubit 3.0 (Life Biotech) from Shanghai, China, facilitating the computation of plasmid
copy counts. Selected gradient dilutions of standard plasmids resulted in key points, e.g.,
5.86× 105, 5.86× 104, etc. These points formed the basis for a linear standard curve relating
Ct values and S2_8_1 concentration in maize rhizosphere soil. This technique establishes a
robust foundation for quantitative fluorescence analysis, aiding in understanding S2_8_1
abundance.

Table 1 lists the abbreviations used in this study. Graphs display the mean values.
Employing SPSS 23, a general linear model performed one-way ANOVA, followed by the
Dunnett test (α = 0.05).

Table 1. Symbol definition.

Symbol Definition Symbol Definition

HAOB Heterotrophic ammonia-oxidizing bacteria Sc Stomatal conductance
CK Control with sufficient Water Tr Transpiration rate
WI Sufficient water + HAOB strain ZR Zeatin riboside
DL Limited rewatering RZR Delivery rate of ZR from roots to leaves
DH Sufficient rewatering CZR ZR concentration in xylem sap
DHI Sufficient rewatering + HAOB strain Bt Temporary weight of the whole pot
DLI Limited rewatering + HAOB strain Bd Net weight of dried soil of pot

NO3
− Soil nitrate Be Weight of the empty pot

NH4
+ Soil ammonium FWC Field water capacity

Pn Photosynthetic rate
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3. Results
3.1. Changes in Biomass

After rewatering on day 0, the CK and WI treatments displayed a notably higher
aboveground biomass compared to the other treatments, which was also reflected in
the total biomass (Figure 2), highlighting the drought stress’s impact on maize growth.
By days 5 and 10 post-rewatering, the WI, DLI, and DHI treatments showed significant
improvements in the aboveground and total biomasses compared to the CK, DL, and DH
treatments, showcasing the HAOB strain’s positive effects on maize growth.
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Figure 2. Biomass comparison among different treatments. The abbreviations CK, WI, DH, DL,
DHI, and DLI correspond to treatments of control with sufficient water supply, sufficient water
supply with HAOB strain inoculation, sufficient rewatering after drought, limited rewatering after
drought, sufficient rewatering after drought with HAOB strain inoculation, and limited rewatering
after drought with HAOB strain inoculation, respectively. The values represent the mean ± standard
error (n = 3). Letters placed above the bars indicate significant differences between treatments at a
significance level of p ≤ 0.05.

On day 10 post-rewatering, the CK and DH treatments exhibited a similar total biomass,
suggesting adequate rehydration promoted compensatory growth. Limited rewatering with
HAOB strain inoculation resulted in compensatory growth, seen in DLI and CK, with a similar
total biomass on the 10th day post-rewatering. Conversely, ample rewatering with HAOB
strain inoculation triggered super-compensatory growth, increasing the DHI treatment’s total
biomass by 26% over CK on day 10 post-rewatering. In contrast, restrained rewatering without
HAOB strain inoculation led to below-compensatory growth, reducing the DHI treatment’s
total biomass by 18% compared to CK on day 10 post-rehydration.

The water use efficiency showed similarities between the CK and WI treatments, while
the DLI, DHI, DL, and DH treatments displayed significant increases of 169%, 96%, 94%,
and 66% compared to CK, respectively (Figure 3). Limited rewatering with HAOB strain
inoculation had the most pronounced effect on enhancing water use efficiency, followed
by sufficient rewatering with HAOB strain inoculation and limited rewatering without
HAOB strain inoculation. Sufficient rewatering with HAOB strain inoculation had the least
pronounced effect on water use efficiency.
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3.2. Photosynthesis Analysis

Before rewatering, significantly higher Pn, Tr, and Sc readings were observed in the
CK and WI treatments compared to others, indicating drought stress inhibited maize
photosynthesis (Figure 4). Before rewatering and on days 5 and 10 post-rewatering, Pn,
Tr, and Sc showed significantly higher values in the DHI treatment compared to DH, in
the DLI treatment compared to DL, and in the WI treatment compared to CK, indicating
that the HAOB strain boosted maize photosynthesis regardless of drought or rewatering.
Adequate rewatering further enhanced photosynthesis, while limited rewatering hindered
its recovery, as seen in the significant increases with DH compared to CK, and CK compared
to DL on days 5 and 10 post-watering.
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Figure 4. Photosynthesis rate (Pn), stomatal conductance (Sc), and transpiration rate (Tr) in different
treatments. The abbreviations CK, WI, DH, DL, DHI, and DLI correspond to treatments of control with
sufficient water supply, sufficient water supply with HAOB strain inoculation, sufficient rewatering
after drought, limited rewatering after drought, sufficient rewatering after drought with HAOB strain
inoculation, and limited rewatering after drought with HAOB strain inoculation, respectively. Pn

represents the net photosynthetic rate, Sc represents stomatal conductance, and Tr represents the
transpiration rate. The values represent the mean ± standard error (n = 3). Letters placed above the
bars indicate significant differences between treatments at a significance level of p ≤ 0.05.

On day 5 post-rewatering, DLI exhibited significant Pn increases compared to CK,
indicating a more pronounced positive impact on photosynthesis with limited rehydration
and HAOB strain inoculation. Moreover, significant Pn increases were observed in DHI
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compared to DLI, highlighting how sufficient rewatering under HAOB strain inoculation
offered greater photosynthesis benefits than limited rewatering.

3.3. Changes in Soil Nitrification Rate and Soil Concentrations of NO3
− and NH4

+

Compared to the DL and DH treatments, the rhizosphere soil nitrification rates signifi-
cantly increased with CK and WI on day 0 post-rehydration (Figure 5), indicating water
scarcity suppresses this. However, on the 5th and 10th days post-rewatering, the DH
treatment showed significant increases in rhizosphere soil nitrification rates compared to
CK, suggesting sufficient rewatering promotes it. Regardless of HAOB strain inoculation,
sufficient rewatering led to higher rhizosphere soil nitrification rates than limited rewater-
ing, as observed in the significantly higher rates with DHI compared to the DLI treatment,
as well as with DH compared to DL treatment on days 5 and 10 post-rehydration.

Water 2023, 15, x FOR PEER REVIEW 8 of 14 
 

 

3.3. Changes in Soil Nitrification Rate and Soil Concentrations of NO3− and NH4+ 

Compared to the DL and DH treatments, the rhizosphere soil nitrification rates sig-

nificantly increased with CK and WI on day 0 post-rehydration (Figure 5), indicating wa-

ter scarcity suppresses this. However, on the 5th and 10th days post-rewatering, the DH 

treatment showed significant increases in rhizosphere soil nitrification rates compared to 

CK, suggesting sufficient rewatering promotes it. Regardless of HAOB strain inoculation, 

sufficient rewatering led to higher rhizosphere soil nitrification rates than limited rewa-

tering, as observed in the significantly higher rates with DHI compared to the DLI treat-

ment, as well as with DH compared to DL treatment on days 5 and 10 post-rehydration. 

 

Figure 5. Soil nitrification rate, soil ammonium, and nitrate nitrogen contents in different treatments. 

The abbreviations CK, WI, DH, DL, DHI, and DLI correspond to treatments of control with sufficient 

water supply, sufficient water supply with HAOB strain inoculation, sufficient rewatering after 

drought, limited rewatering after drought, sufficient rewatering after drought with HAOB strain 

inoculation, and limited rewatering after drought with HAOB strain inoculation, respectively. The 

values represent the mean ± standard error (n = 3). Letters placed above the bars indicate significant 

differences between treatments at a significance level of p ≤ 0.05. 

On days 5 and 10 post-rewatering, limited rewatering with HAOB strain inoculation 

(DLI treatment) exhibited significant increases in the rhizosphere soil nitrification rates 

compared to CK, indicating a stronger positive effect on soil nitrification than sufficient 

water supply. However, NO3− and NH4+ concentrations within the rhizosphere soil among 

treatments during the rewatering period displayed irregular results, suggesting that nei-

ther the HAOB strain nor rewatering increased their concentrations. 

3.4. Changes of Zeatin Riboside 

At the beginning of rewatering, the CK treatment showed a notable increase in the 

leaf ZR content and CZR compared to the DH and DL treatments. Similarly, the WI treat-

ment exhibited a higher ZR content and CZR compared to the DHI and DLI treatments 

(Figure 6). These observations suggest that drought stress negatively affects the cytokinin 

content in both leaves and xylem sap, as ZR is considered one of the principal forms of 

cytokinins. 

The ZR content in leaves, as well as RZR and CZR, all significantly increased with DHI 

compared to DH, with DLI compared to DL, and with WI compared to CK on day 5 or 10 

after rewatering. This indicates that the HAOB strain contributes to elevated cytokinin 

levels in leaves and xylem sap, as well as enhanced cytokinin transportation from roots to 

leaves. Similarly, rewatering was also found to be beneficial, as shown by significant in-

creases in DH and DL compared to CK, and in DHI and DLI compared to WI on day 5 or 

10 after rewatering. 

Figure 5. Soil nitrification rate, soil ammonium, and nitrate nitrogen contents in different treatments.
The abbreviations CK, WI, DH, DL, DHI, and DLI correspond to treatments of control with sufficient
water supply, sufficient water supply with HAOB strain inoculation, sufficient rewatering after
drought, limited rewatering after drought, sufficient rewatering after drought with HAOB strain
inoculation, and limited rewatering after drought with HAOB strain inoculation, respectively. The
values represent the mean ± standard error (n = 3). Letters placed above the bars indicate significant
differences between treatments at a significance level of p ≤ 0.05.

On days 5 and 10 post-rewatering, limited rewatering with HAOB strain inoculation
(DLI treatment) exhibited significant increases in the rhizosphere soil nitrification rates
compared to CK, indicating a stronger positive effect on soil nitrification than sufficient
water supply. However, NO3

− and NH4
+ concentrations within the rhizosphere soil among

treatments during the rewatering period displayed irregular results, suggesting that neither
the HAOB strain nor rewatering increased their concentrations.

3.4. Changes of Zeatin Riboside

At the beginning of rewatering, the CK treatment showed a notable increase in the leaf
ZR content and CZR compared to the DH and DL treatments. Similarly, the WI treatment
exhibited a higher ZR content and CZR compared to the DHI and DLI treatments (Figure 6).
These observations suggest that drought stress negatively affects the cytokinin content in
both leaves and xylem sap, as ZR is considered one of the principal forms of cytokinins.

The ZR content in leaves, as well as RZR and CZR, all significantly increased with DHI
compared to DH, with DLI compared to DL, and with WI compared to CK on day 5 or
10 after rewatering. This indicates that the HAOB strain contributes to elevated cytokinin
levels in leaves and xylem sap, as well as enhanced cytokinin transportation from roots
to leaves. Similarly, rewatering was also found to be beneficial, as shown by significant
increases in DH and DL compared to CK, and in DHI and DLI compared to WI on day 5 or
10 after rewatering.
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Figure 6. Leaf ZR content, CZR, and RZR in different treatments. The abbreviations CK, WI, DH, DL,
DHI, and DLI correspond to treatments of control with sufficient water supply, sufficient water supply
with HAOB strain inoculation, sufficient rewatering after drought, limited rewatering after drought,
sufficient rewatering after drought with HAOB strain inoculation, and limited rewatering after
drought with HAOB strain inoculation, respectively. ZR stands for zeatin riboside, CZR represents
the concentration of ZR in xylem sap, and RZR indicates the delivery rate of ZR from roots to leaves
under darkness. The values represent the mean ± standard error (n = 3). Letters placed above the
bars indicate significant differences between treatments at a significance level of p ≤ 0.05.

Compared to limited rehydration, sufficient rewatering led to an increased leaf cy-
tokinin and xylem sap cytokinin content, as well as enhanced cytokinin transport along the
root-to-leaf pathway, regardless of HAOB strain inoculation. Notably, the ZR content in
leaves, along with the RZR and CZR, increased with DHI vs. DLI, and DH vs. DL on day 5
or 10 post-rehydration. On days 5 and 10 post-rewatering, the DLI treatment significantly
boosted the ZR content in leaves and the RZR compared to CK, indicating a strong positive
impact on the leaf cytokinin levels and their transport from roots to leaves.

3.5. Copy Number Analysis

The quantity of S2_8_1 copies in the rhizosphere soil significantly increased with WI com-
pared to CK, with DLI compared to DL, and with DHI compared to DH on days 0, 5, and 10 after
rewatering (Figure 7). These findings indicate that the HAOB strain’s inoculation contributed
to the augmentation of its population in the rhizosphere soils. Moreover, both sufficient and
limited rewatering had comparable effects on the S2_8_1 copy numbers. Specifically, on day 0
after rewatering, there was a 51% and 44% higher quantity of S2_8_1 copies with WI relative to
DHI and DLI, respectively. However, on days 5 and 10 following rewatering, similar quantities
of S2_8_1 copies were observed among the WI, DLI, and DHI treatments.
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Figure 7. S2_8_1 number of rhizosphere soil in different treatments. The abbreviations CK, WI, DH,
DL, DHI, and DLI correspond to treatments of control with sufficient water supply, sufficient water
supply with HAOB strain inoculation, sufficient rewatering after drought, limited rewatering after
drought, sufficient rewatering after drought with HAOB strain inoculation, and limited rewatering
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error (n = 3). Letters placed above the bars indicate significant differences between treatments at a
significance level of p ≤ 0.05.
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4. Discussion
4.1. Limited Rewatering Inhibiting Compensatory Growth

In this study, during adequate rewatering, the rhizosphere soil’s nitrification rate in
the DH treatment was 1.3 times higher than in the CK (control) treatment. This led to an
increased release of NO3

− into the soil, subsequently enhancing root cytokinin synthesis.
The root tip’s apical meristem, crucial for cytokinin synthesis and nutrient absorption, wit-
nessed heightened cytokinin production in response to NO3

− stimulation [23,24]. Studies
have demonstrated that plant root cytokinins can travel to aboveground parts via xylem
sap [17,25], further supporting enhanced cytokinin transport to leaves under both dark and
sunlight conditions with DH versus CK. Specifically, the DH group exhibited a 14% higher
RZR (root-to-leaf cytokinin transport speed in the absence of light) compared to the CK
group. Under sunlight, the DH group displayed a 24% higher CZR (cytokinin concentration
in xylem sap) than the CK group, despite similar Tr (transpiration rate) values. The outcome
of multiplying the Tr by CZR reflects cytokinin transport along the root-to-leaf pathway
under sunlight, as transpiration propels sap flow toward the roots. Consequently, during
adequate rewatering, the DH group exhibited an 18% higher leaf cytokinin content than
the CK group, resulting in an approximate 12% enhancement in the leaf Pn (photosynthetic
rate) compared to the CK group. Furthermore, the DH group corrected the initial 30% total
biomass gap versus the CK group, achieving equal to compensatory growth.

Post-drought sufficient rewatering boosted maize rhizosphere soil nitrification, as
previously shown [21], shedding light on the increased rate with DH during rewatering.
Comparable NO3

− levels in the DH and CK rhizosphere soil during rewatering resulted
from significant NO3

− utilization in both treatments during rapid growth. Cytokinins
have an established role in enhancing photosynthesis, cell division, elongation, and organic
matter accumulation [26–28], explaining the decrease in the leaf cell division hormone
levels with DL during rehydration.

In the cases of limited rewatering (DL treatment), the water scarcity impeded nitrifica-
tion, causing a 23% and 39% decline in the rhizosphere soil nitrification rates compared
to the CK and DH treatments during limited rewatering. This hindered root cytokinin
synthesis and root-to-leaf cytokinin transport, as evidenced by over 20% lower RZR, CZR,
and Tr values with DL compared to CK and DH. The water scarcity with DL may also
directly suppress root cytokinin synthesis, as suggested by drought impact research [29].
Consequently, the DL group exhibited an 18% and 31% decrease in the leaf cytokinin levels
compared to the CK and DH group during rewatering, resulting in around a 25% lower Pn
and 27% lower total biomass than the CK group, and a 33% lower Pn and 21% lower total
biomass than the DH group. This led to the below-compensatory growth with DL.

In most croplands, the soil water content undergoes alternating wetting and drying
cycles, with water scarcity causing decreases that are typically replenished by rainfall or
irrigation. Ensuring an ample water supply for croplands is rare, often occurring briefly
after significant rainfall or irrigation events. More commonly, croplands face limited water
supply due to moderate or even minor rainfalls or irrigation. According to this study,
limited water supply can easily lead to below-compensatory growth in crops, which is
detrimental to their yields. Therefore, understanding how to achieve healthy crop growth
under water shortage conditions is of utmost importance.

4.2. Limited Rewatering with HAOB Increasing Compensatory Growth

This was supported by a substantial 1.6-fold increase in the total biomass under
limited rewatering with the HAOB strain (DLI), compared to a 1.3-fold increase without
the HAOB strain (DL). Consequently, the DLI group achieved a similar biomass level to
the CK group after rewatering, while the DL group still lagged by 21% compared to the
CK group. This led to a state of equal-compensatory growth in the DLI group but below-
compensatory growth in the DL group. Therefore, the incorporation of HAOB into the soil
under conditions of limited rewatering after drought demonstrates a valuable potential for
converting ineffective water, whether from rainfall or irrigation, into a more efficient water
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source in agricultural fields. This approach facilitates the enhanced utilization of scarce
rainfall and moderate irrigation water, effectively mitigating the adverse effects of water
scarcity on crop growth.

Specifically, within the DLI treatment, the HAOB strain exhibited survival resilience
during post-drought rewatering, evident in the roughly 35% and 96% increases in the
S2_8_1 copy numbers in the rhizosphere soils compared to the CK group during both
drought stress and rewatering, respectively. This led to over 1.3 times higher rates of
nitrification within the rhizosphere soil in the DLI group than the CK group during rewa-
tering, primarily due to the HAOB-mediated enhancement of soil nitrification. Similar to
the effects of the DH treatment on compensatory growth mentioned earlier, heightened
nitrification in the DLI treatment triggered increased cytokinin production in roots and
its subsequent transportation to leaves, resulting in elevated leaf cytokinin levels and
improved photosynthesis. This intricate mechanism facilitated maize growth under limited
rewatering conditions, culminating in a state of balanced compensatory growth within the
DLI group.

Generally, bacteria and other microorganisms exhibit greater drought resistance than
plants [30]. That is why the copy numbers of S2_8_1 were comparable in both the low-water
supply (DLI) and high-water supply (DHI) treatments following drought stress. However,
the inoculation of the HAOB strain significantly enhanced the rhizosphere soil nitrification
by 1.5-fold in the DHI group compared to the DLI group during rewatering. This contrast
might be attributed to the limited water availability with DLI, which hampers nitrification.
The increased rhizosphere soil nitrification facilitated the transport of root cytokinins to
leaves, resulting in higher cytokinin levels and photosynthetic rates (Pn) in the DHI group
compared to the DLI group. This condition favored biomass accumulation, leading to an
approximate 26% increase in the total biomass in the DHI group during rewatering, thus
explaining the overcompensatory growth with DHI compared to the equal to compensatory
growth with DLI.

4.3. Achieving Efficient Water Use and Promoting Healthy Crop Growth

Despite the DL group’s 96% increase in water use efficiency versus the CK group,
it resulted in below-compensatory growth, negatively impacting the maize. In contrast,
the DLI and DH groups showed equal to compensatory growth, while the DHI group
displayed overcompensatory growth, yielding minimal negative impacts on the maize
amidst total drought stress and rewatering. This phenomenon indicates the positive role of
soil bacteria in regulating maize compensatory growth. Simultaneously, they significantly
improved the water use efficiency: DLI by 152%, DH by 69%, and DHI by 94% versus
CK. This enhancement was attributed to root-derived cytokinin, amplifying growth with
similar or reduced water supplies during rewatering. Among all the treatments, DLI
stood out for its superior water-saving impact and notably more robust growth tendencies,
emphasizing its significance in the study. HAOB holds the potential to achieve water
conservation while promoting agricultural productivity. Further research is warranted
to explore how to apply it in practical settings and strive to solve the problem of water
shortage in agricultural production.

Despite a research report about pseudomonas bacteria in rapeseed, showing soil
bacteria promote the compensatory growth of limited rewatering post-drought [31], this
research uncovered the mechanisms through which soil bacteria regulate this compensatory
growth, achieving water conservation and promoting healthy crop growth. Furthermore,
in the natural environment, there are many soil microorganisms similar to HAOB that are
yet to be discovered and studied to validate the mechanism we have revealed. As such,
rewatering has practical implications for efficient maize water use. Based on our study,
field experiments should be conducted to apply these findings practically.
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5. Conclusions

The inoculation of the HAOB strain resulted in its colonization in the rhizosphere
soil. Under the limited rewatering condition, the strain notably bolstered soil nitrification,
fostering the production of cytokinins within roots and promoting its subsequent transport
to the foliage. This, in turn, heightened the leaf cytokinin content and photosynthesis.
Consequently, when treating with HAOB, maize plants subjected to limited rewatering
displayed remarkable compensatory growth and efficient water usage, surpassing their
counterparts with merely sufficient water supply. Conversely, sufficient rewatering with
HAOB led to overcompensatory growth, yet lower water use efficiency. Therefore, limited
rewatering with HAOB strain inoculation demonstrated superior water-saving effects with
a minimal negative impact on maize growth.
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