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Abstract: Although the studies on model prediction of daily ETo based on public weather forecasts
have been widely used, these studies lack the comparative evaluation of different types of models
and do not evaluate the seasonal variation in model prediction of daily ETo performance; this
may result in the selected model not being the best model. In this study, to select the best daily
ETo forecast model for the irrigation season at three stations (Yinchuan, Tongxin, and Guyuan)
in different climatic regions in Ningxia, China, the daily ETos of the three sites calculated using
FAO Penman–Monteith equations were used as the reference values. Three empirical equations
(temperature Penman–Monteith (PMT) equation, Penman–Monteith forecast (PMF) equation, and
Hargreaves–Samani (HS) equation) were calibrated and validated, and four machine learning models
(multilayer perceptron (MLP), extreme gradient boosting (XGBoost), light gradient boosting machine
(LightGBM), and gradient boosting with categorical features support (CatBoost)) were trained
and validated against daily observed meteorological data (1995–2015 and 2016–2019). Based on
public weather forecasts and daily observed meteorological data (2020–2021), the three empirical
equations (PMT, PMF, and HS) and four machine learning models (MLP, XGBoost, LightGBM,
and CatBoost) were compared in terms of their daily ETo prediction performance. The results
showed that the daily ETo performance of the seven models in the irrigation season with a lead
time of 1–7 days predicted by the three research sites decreased in the order of spring, autumn,
and summer. PMT was the best model for the irrigation seasons (spring, summer, and autumn)
at station YC; PMT and CatBoost with C3 (Tmax, Tmin, and Wspd) as the inputs were the best
models for the spring, autumn irrigation seasons, and summer irrigation seasons at station TX,
respectively. PMF, CatBoost with C4 (Tmax, Tmin) as input, and PMT are the best models for
the spring irrigation season, summer irrigation season, and autumn irrigation season at the GY
station, respectively. In addition, wind speed (converted from the wind level of the public weather
forecast) and sunshine hours (converted from the weather type of the public weather forecast)
from the public weather forecast were the main sources of error in predicting the daily ETo by the
models at stations YC and TX(GY), respectively. Empirical equations and machine learning models
were used for the prediction of daily ETo in different climatic zones and evaluated according
to the irrigation season to obtain the best ETo prediction model for the irrigation season at the
study stations. This provides a new idea and theoretical basis for realizing water-saving irrigation
during crop fertility in other arid and water-scarce climatic zones in China.
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1. Introduction

Evapotranspiration is a key link in the surface water cycle and an important basis for
crop water demand determination. Evapotranspiration is generally obtained by multiply-
ing the reference evapotranspiration (ETo) by the crop coefficient. The determination of
ETo is not only a key factor in predicting and estimating crop water demand but also an
important requirement for irrigation forecasting and irrigation decision making. Timely
and accurate ETo prediction has a notable reference value for real-time irrigation decision
making [1] and is very important for improving the real-time irrigation prediction accuracy,
irrigation management level, crop yield, and water conservation [2].

Depending on the adopted method and input data, ETo prediction methods can be
divided into direct and indirect methods [1]. Among the direct methods, time series mod-
els, such as autoregressive (AR), moving average (MA), autoregressive moving average
(ARMA), and autoregressive integrated moving average (ARIMA) models, have been used
to forecast the daily ETo using historical daily ETo data calculated from historical daily
measured meteorological data [3]; alternatively, machine learning algorithms, such as the
multilayer perceptron (MLP), multivariate relevance vector machine (MVRVM) [4], mul-
tilayer perceptron–neural network model (MLP-NNM), Kohonen self-organizing feature
maps–neural network model (KSOFM-NNM), gene expression programming (GEP) [5],
least-squares support vector machine (LSSVM), adaptive neuro-fuzzy inference system
(ANFIS), generalized regression neural network (GRNN) [3], deep learning models (long
short-term memory (LSTM), one-dimensional convolutional neural network (1D CNN),
and a combination of the two previous models (CNN-LSTM)), and traditional machine
learning models (artificial neural network (ANN) and random forest (RF)) [6], have been
employed to predict the daily ETo and the daily ETo at a lead time of 1–7 days using histor-
ical data. In these studies, alternatives to time series models have been applied for future
ETo prediction based on historical meteorological data and ETo calculated with historical
meteorological data. In general, machine learning models using ETo data computed from
historical meteorological data outperform those directly using historical meteorological
data [3]. In addition, combined machine learning models, such as the fruit fly optimized
GRNN model [7] and autoencoder–decoder bidirectional LSTM (AED-BiLSTM) [8], can
predict ETo more accurately than a single machine learning model (GRNN, XGBoost). How-
ever, in all these studies, so-called ETo forecast data generated from long-term historical
meteorological data were used, and since the short-term daily ETo is mainly governed by
weather conditions, direct methods may not be applicable [9–11].

In the indirect method, ETo can be calculated using weather variables predicted
via numerical weather prediction (NWP) or public weather forecasts, such as those ob-
tained using the Food and Agriculture Organization (FAO)-56 Penman–Monteith (PM)
equation [1,12–16], the Hargreaves–Samani (HS) and Priestley (PT) equations [12], or mul-
tivariate time series models [17], and the numerical weather forecasts output by forecast
systems or models (COSMO, Australian Community Climate and Earth System Simulator–
Global (ACCESS-G), Global Ensemble Forecast System (GEFS) model, European Centre for
Medium-Range Weather Forecasts (EC), National Centers for Environmental Prediction
Global Forecast System (NCEP), and United Kingdom Meteorological Office (MO) fore-
casts) can be used to predict the daily ETo, weekly ETo, and daily ETo with a lead time
of 1–16 days. Although NWP can generate forecasts of the full range of meteorological
variables needed by the FAO-56 PM equation and can be used for ETo prediction, NWP
data are not available to the public in some developing countries. For example, the nu-
merical forecast products of the China Meteorological Data Network are only available to
registered users for education and research purposes, while numerical forecast products
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require expert downscaling and bias correction [16] or postprocessing methods [14] to
improve their reliability.

In China, the public can easily access free public weather forecasts up to 40 days
in advance in real time from China Weather (http://www.weather.com.cn (accessed on
31 December 2022)). These free public weather forecasts include four variables: maxi-
mum temperature, minimum temperature, wind scale, and weather type. Over the past
decade, public weather forecasts have been widely used for ETo prediction. For example,
information retrieved from public weather forecasts has been converted into the variables
needed to calculate ETo using the FAO-56 PM equation and subsequently applied in daily
ETo prediction [18–21]. Given that temperature is the most accurate and only quantitative
variable in public weather forecasts, many studies have used only temperature forecast
data retrieved from public weather forecasts to predict ETo. Based on temperature data
retrieved from public weather forecasts, the daily ETo has been predicted using locally
calibrated versions of the HS equation [9,22,23], the daily ETo with a lead time of 1–7 days
has been predicted using the monthly calibrated Blaney–Criddle (BC) model [24], and
four ANN models (linear regression (LR), probabilistic neural network (PNN), MLP, and
generalized feedforward (GFF) models) [10], and the GEP algorithm [2] have been used to
predict the daily ETo with a lead time of 1–7 days at Gaoyou Station in Jiangsu Province
of China. The above studies based on the adoption of public weather forecast models for
daily ETo prediction have achieved reasonable results, but there exists no evaluation model
to determine the seasonal variation in the daily ETo prediction performance, and there
is a lack of comparative evaluation of machine learning models in daily ETo prediction
based on different input combinations of weather variables retrieved from public weather
forecasts. These studies are aimed at a single model in a single region (or multiple regions)
of China or a comparative study of similar models in a single region (or multiple regions)
of China [11]. The lack of comparative research on different types of models can lead to the
inability to identify the best daily ETo forecast model in a given region.

Recently, three tree models based on boosting algorithms, namely, extreme gradient
boosting (XGBoost), light gradient boosting machine (LightGBM), and gradient boosting
with categorical features support (CatBoost), have been widely used to estimate the daily
ETo [25–33] and monthly ETo [34]. These studies have shown that the daily ETo estimated
by these three tree models is suitably accurate, with a better performance than that of other
models. However, there are no studies on ETo prediction with these three tree models.
Compared with estimating historical daily ETo by models and historical daily measured
weather forecast data, it is more valuable to predict future daily ETo by models and public
weather forecasts because accurate prediction of ETo is the key to crop water demand
prediction and the premise of real-time irrigation prediction, which has important reference
value and significance for real-time irrigation decision making.

In this paper, three empirical equations and four machine learning models for pre-
dicting daily ETo using public weather forecasts are evaluated to select the best daily
ETo prediction model for the crop irrigation season in the study area. The objectives of
this study were as follows: (1) In model assessment based on public weather forecasts,
the optimal input combinations of the MLP, XGBoost, LightGBM, and CatBoost machine
learning models were determined to obtain the best daily ETo prediction performance.
(2) Three empirical equations (PMT, PMF, and HS) and four machine learning models (MLP,
XGBoost, LightGBM, and CatBoost) were compared by determining the seasonal variation
in the daily ETo prediction performance, and the best daily ETo prediction model was
recommended for all four seasons at various research sites in three climate zones. The
main error sources of daily ETo predicted by the PMF equation and four machine learning
models were analyzed.

http://www.weather.com.cn
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2. Materials and Methodology
2.1. Study Area and Data Collection
2.1.1. Study Area

Ningxia is located deep inland and exhibits typical continental climate characteristics.
In China’s climate division, according to the Kottek classification [35], the southern part
of Guyuan city (southern mountainous area) belongs to the temperate semihumid zone,
the northern part of Yuanzhou District to the Yanchi and Tongxin area (central arid zone)
belongs to the temperate semiarid zone, and the northern Yellow River irrigation area
belongs to the temperate arid zone. In this study, the Yinchuan station, Tongxin station
and Guyuan station in Ningxia, China, were selected. The locations of these three stations
are shown in Figure 1. Table 1 lists the longitude, latitude and annual mean values of the
meteorological data retrieved from these three stations.
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Table 1. Location characteristics and annual mean values of the meteorological data at each of the
three weather stations in this study.

WMO
Number Station

Latitude Longitude Elevation Tmax Tmin Tmean u2 RHmean Sdun ETo Climate Zone(N) (E) (m) (◦C) (◦C) (◦C) (m s−1) (%) (h) (mm d−1)

53614 Yinchuan (YC) 38◦29′ 106◦13′ 1111.4 17.3 4.8 10.5 1.54 51.11 7.55 3.05 Arid

53810 Tongxin (TX) 36◦58′ 105◦54′ 1339.3 17.5 4.2 10.1 2.28 52.47 8.02 3.37 Semiarid

53817 Guyuan (GY) 36◦00′ 106◦16′ 1753.0 13.9 2.6 7.7 1.87 58.51 6.95 2.68 Subhumid

2.1.2. Data Collection

Daily observed meteorological data at the three meteorological stations from 1 January
1995 to 31 December 2021, were obtained from the China Meteorological Data Network
(http://data.cma.cn/ (accessed on 31 December 2022)), including the daily maximum
temperature (Tmax), daily minimum temperature (Tmin), average temperature, average
relative humidity (RH), sunshine hours (SDun), and average wind speed (Wspd). Daily
public weather forecast data 1–7 days in advance from 1 January 2020 to 31 December 2021,
at the same sites were collected from the China Weather Network (http://www.weather.

http://data.cma.cn/
http://www.weather.com.cn
http://www.weather.com.cn
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com.cn (accessed on 31 December 2022)), including the daily maximum temperature
(Tmax), daily minimum temperature (Tmin), wind scale, and weather type. Daily observed
meteorological data from 1 January 1995 to 31 December 2015, were used to calibrate the
three empirical equations and train the four machine learning models, and daily observed
meteorological data from 1 January 2016 to 31 December 2019 were employed to validate
the three empirical equations and four machine learning models. Daily public weather
forecast data with a lead time of 1–7 days and daily observed meteorological data from
1 January 2020 to 31 December 2021 were used to test and evaluate the performance of
these seven models.

2.2. Methodology
2.2.1. FAO Penman–Monteith (PM) Equation

The daily ETo calculated using the FAO-56 Penman–Monteith equation [36] recom-
mended by the United Nations Food and Agricultural Organization (FAO) and daily
observed meteorological data were used to evaluate the performance of the three empirical
equations and four machine learning models to predict ETo. The FAO-56 PM equation [36]
can be expressed as follows:

ETo =
0.408∆(Rn − G) + γ 900

T+273 u2(es − ea)

∆ + γ(1 + 0.34u2)
(1)

where ETo is the daily reference evapotranspiration [mm day−1]; Rn is the net radiation at
the crop surface [MJ m−2 day−1]; G is the soil heat flux density [MJ m−2 day−1] (G may be
ignored during the day); T is the mean daily air temperature at the 2 m height [◦C]; u2 is the
wind speed at the 2 m height [m s−1]; es is the saturation vapor pressure [kPa]; ea is the actual
vapor pressure [kPa]; es − ea is the saturation vapor pressure deficit [kPa]; ∆ is the slope of the
vapor pressure curve [kPa ◦C−1]; and γ is the psychrometric constant [kPa ◦C−1].

2.2.2. Temperature Penman–Monteith (PMT) Equation

When humidity and radiation data are unavailable, Allen et al. [36] proposed a method
for ETo calculation using only the maximum temperature, minimum temperature, and
wind speed at the 2 m height, namely, the PMT method. The main calculation process
can be expressed as Equations (2)–(8) [36]. ETo was predicted by estimating the actual
saturated vapor pressure (ea) using the dew point temperature (Tdew) and solar radiation
(Rs) considering the maximum and minimum air temperatures; the wind rating in public
weather forecast information was converted into the wind speed according to Table 2.
However, Equation (2) was established for Tdew = Tmin, and a correction for Tdew is needed
in practical applications [36]. Similarly, the adjustment coefficient kRs in Equation (4) is
an empirical value that differs between interior and coastal regions, and kRs must also be
corrected [11,37–40]:

ea = eo(Tmin) = 0.611exp
[

17.27Tmin
Tmin + 237.3

]
(2)

Ra =
24(60)

π Gscdr[ωssin(ϕ)sin(δ) + cos(ϕ)cos(δ)sin(ωs)] (3)

Rs = kRs

√
(Tmax − Tmin)×Ra (4)

Rso = (as + bs)Ra (5)

Rns = (1− α)Rs (6)

http://www.weather.com.cn
http://www.weather.com.cn
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Rnl = σ

[
Tmax,K

4 + Tmin,K
4

2

]
(0.34− 0.14

√
ea)

(
1.35

Rs

RSO − 0.35

)
(7)

Rn = Rns − Rnl (8)

where eo (Tmin) is the saturation vapor pressure at the daily minimum temperature [kPa];
Ra is the extraterrestrial radiation [MJ m−2 day−1]; GSC is a solar constant = 0.0820 [MJ
m−2 min−1]; dr is the inverse relative distance between the Earth and Sun; ωs is the sunset
hour angle [rad]; ϕ is the latitude [rad]; δ is the solar declination [rad]; Rs is the solar or
shortwave radiation [MJ m−2 day−1]; Tmax and Tmin are the daily maximum and minimum
air temperatures, respectively [◦C]; kRs is the adjustment coefficient (0.16..0.19) [◦C−0.5],
and at interior locations, kRs = 0.16, while at coastal locations, kRs = 0.19; z is the station
elevation above sea level [m]; Rso is the clear-sky solar radiation [MJ m−2 day−1]; Rns is
the net solar or shortwave radiation [MJ m−2 day−1]; α is the albedo or canopy reflection
coefficient (α = 0.23); Rnl is the net outgoing longwave radiation [MJ m−2 day−1]; σ is the
Stefan–Boltzmann constant [4.903 × 10−9 MJ K−4 m−2 day−1]; Tmax,K is the maximum
absolute temperature during the 24-h period [K = ◦C + 273.16]; and Tmin,K is the minimum
absolute temperature during the 24-h period [K = ◦C + 273.16].

Table 2. Beaufort wind scale (GB/T 35227—2017, 2017) [41].

Wind Scale Designation u10 (ms−1)
Range Average (WSpd)

0 Calm 0.0–0.2 0.0

1 Light 0.3–1.5 1.0

2 Slight 1.6–3.3 2.0

3 Gentle 3.4–5.4 4.0

4 Moderate 5.5–7.9 7.0

5 Fresh 8.0–10.7 9.0

6 Strong wind 10.8–13.8 12.0

7 High wind 13.9–17.1 16.0

8 Gale 17.2–20.7 19.0

9 Strong gale 20.8–24.4 23.0

10 Whole gale 24.5–28.4 26.0

11 Storm 28.5–32.6 31.0

12 Hurricane 32.7–36.9 35.0

2.2.3. Penman–Monteith Forecast (PMF) Equation

The wind scale and weather type in public weather forecast information cannot be
directly used for ETo prediction. Cai et al. [18] proposed an analytical method, namely, the
PMF method [11,20,21]. ETo can be predicted by converting the wind scale into the wind
speed according to Table 2, while the weather type can be transformed into the sunshine
duration coefficient according to Table 3 [18,20,42]. Moreover, the solar radiation (Rs) can
be calculated using Equations (9)–(11), and the actual saturated vapor pressure (ea) can be
estimated with Equation (2). However, the use of the PMF method requires correction for
Tdew [37–40,42]:

N =
24
π

ωs (9)

n = αN (10)
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Rs =
(

as + bs
n
N

)
Ra (11)

where N is the maximum possible duration of sunshine or daylight hours [hour]; n is
the predicted sunshine duration [hour]; α is the sunshine duration coefficient; as is the
regression constant, reflecting the fraction of extraterrestrial radiation reaching the Earth
on overcast days (n = 0); and as + bs is the fraction of extraterrestrial radiation reaching the
Earth on clear-sky days (n = N). Where no actual solar radiation data are available and no
calibration is conducted to obtain improved as and bs parameters, as = 0.25 and bs = 0.50
are recommended [11,18,20,36].

Table 3. Conversion relationship between the weather type and sunshine duration coefficient.

Weather Type Sunny Clear to Overcast Cloudy Overcast Rainy Snow Dust Haze

Coeffient (α) 0.9 0.7 0.5 0.3 0.1 0.1 0.2 0.2

2.2.4. Hargreaves–Samani (HS) Equation

The 1985 HS equation has been widely used in ETo estimation/prediction [9,11,22,23,
37–40,43–49]. The HS equation can be expressed as Equation (12), which has been applied
in practice with corrections for parameters C and E [9,11,50,51]:

ETo = CRa(Tmax − Tmin)
E
[

Tmax + Tmin
2

+ 17.8
]

(12)

where ETo is the daily ETo calculated by the HS equation [mm day−1]; Tmax and Tmin are the
daily maximum and minimum air temperatures, respectively [◦C]; Ra is the extraterrestrial
radiation [MJ m−2 day−1]; and C and E are model parameters with suggested initial values
of 0.0023 and 0.5, respectively [50].

2.2.5. Multilayer Perceptron (MLP) with Multiple Hidden Layers

The concept of deep learning was proposed by Hinton et al. [52]; an MLP with multiple
hidden layers is a typical deep learning structure. MLPs with one or two hidden layers
have been widely used for ETo estimation/prediction [10,53–58]. However, in these studies,
the number of neurons in a single hidden layer and the number of hidden layers and
neurons in each hidden layer have been determined by trial and error, which can be time
consuming and may not always yield the best hyperparametric results.

In this study, the number of hidden layers and the number of neurons in each hidden
layer are used as hyperparameters, the activation function of the hidden layer is defined as
the rectified linear unit (ReLU) function, the optimization method used by the network is
defined as stochastic gradient descent (SGD), and a hyperparameter search can be achieved
by using RandomizedSearchCV in sklearn to determine the multilayer perceptron that
contains multiple hidden layers.

2.2.6. Extreme Gradient Boosting (XGBoost)

The XGBoost algorithm [59] is an improved implementation of the gradient boosting
decision tree (GBDT) algorithm framework. XGBoost uses a levelwise decision tree growth
strategy that splits all the leaves at the same level simultaneously (equivalent to a full
binary tree), thus performing multithreaded optimization, which is less prone to overfitting.
This indiscriminate treatment of leaves at the same level allows XGBoost to apply a presort-
ing algorithm to find the optimal split nodes (branching points) in the tree construction
process, but this approach is associated with a significant overhead in both space and time.
XGBoost cannot directly manage categorical features but employs preprocessing by various
encoding methods, such as token encoding, mean encoding, or unique hot encoding. The
XGBoost open source can be obtained from http://xgboost.readthedocs.io (accessed on
31 December 2022).

http://xgboost.readthedocs.io
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2.2.7. Light Gradient Boosting Machine (LightGBM)

The LightGBM algorithm [60] is also based on the GBDT algorithm. LightGBM uses a
leafwise decision tree growth strategy with depth restrictions to find the model with the
highest splitting gain (and generally the largest amount of data) from all the current leaves
in each splitting step in an iterative manner. However, a very deep decision tree could
be generated susceptible to overfitting (the max_depth parameter of the model should
be set to limit the maximum depth of the decision tree to ensure high efficiency while
preventing overfitting).

LightGBM uses an optimized histogram algorithm to obtain the optimal split nodes
(branching points) in the tree construction process. This is achieved by adopting the
gradient-based one-side sampling (GOSS) sampling strategy in the tree construction pro-
cess, which retains all high-gradient samples and randomly selects low-gradient samples
to reduce the sample dimensionality. The exclusive feature bundling (EFB) algorithm is
used to merge mutually exclusive features into one bundle, which reduces the feature
dimensionality. This technique reduces the time complexity of histogram construction,
decreases the complexity of the spanning tree, and achieves computation time savings.

In regard to categorical features, LightGBM can directly associate each categorical
feature with a bucket (bin) for automatic processing without the need for preprocessing
into one-hot codes. The LightGBM algorithm can be obtained from http://lightgbm.
readthedocs.io (accessed on 31 December 2022).

2.2.8. Gradient Boosting with Categorical Feature Support (CatBoost)

CatBoost is an open-source machine learning library provided by Russian search
giant Yandex in 2017 [61]. CatBoost is a GBDT framework based on oblivious trees as
base learners with fewer parameters, providing support for categorical variables, and it
can achieve high accuracy. CatBoost embeds an innovative algorithm that automatically
processes categorical features into numerical features [61,62]. CatBoost can directly process
categorical features by initially declaring these features. The CatBoost open-source code
can be accessed at https://catboost.ai/en/docs/ (accessed on 31 December 2022).

2.2.9. Input Combinations and Hyperparameter Tuning Methods for the Four Machine
Learning Models

Considering the correlation between meteorological variables and ETo [53,55,63,64],
public weather forecasts include only four variables: daily maximum temperature (Tmax),
daily minimum temperature (Tmin), wind scale (converted into Wspd according to Table 2),
and weather type (converted into SDun according to Table 3 and Equation (10)). Four input
combinations, i.e., C1 (Tmax, Tmin, Sdun, and Wspd), C2 (Tmax, Tmin, and Sdun), C3 (Tmax,
Tmin, and Wspd), and C4 (Tmax and Tmin), were selected for the MLP, XGBoost, LightGBM
and CatBoost models.

In machine learning-based algorithm applications, data with different specifications
must be converted into data with the same specification or data with different distributions
must be converted into data with a particular distribution. In this study, all training,
validation and test data (parsed and standardized weather forecast information) were
standardized according to Equation (13) before serving as input to the model:

x∗ =
x− µ

σ
(13)

where x∗ is the normalized dimensionless variable, x is the observed value, µ is the mean
of the sample data, and σ is the standard deviation of the sample data.

The common hyperparameter tuning methods for machine learning models include
traditional manual search, GridSearchCV, RandomizedSearchCV, and BayeSearchCV, where
traditional manual search entails a trial-and-error process that is very time consuming
and does not ensure the best combination of parameters. GridSearchCV and Randomized-
SearchCV are more commonly used.

http://lightgbm.readthedocs.io
http://lightgbm.readthedocs.io
https://catboost.ai/en/docs/
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In this study, two popular hyperparameter tuning tools for machine learning models
were selected: Optuna and Hyperopt. Optuna is an automatic hyperparameter optimization
framework for automated hyperparameter search, which can be used with any machine
learning or deep learning framework, and Hyperopt is a class library for distributed
asynchronous algorithm configuration/hyperparameter optimization in Python, which is
a parameter tuning tool involving Bayesian optimization to perform intelligent searches
to obtain the best parameters of machine learning models. In this study, XGBoost and
LightGBM employed the Hyperopt method, CatBoost used the Optuna method, and MLP
adopted RandomizedSearchCV. Among them, 5-fold cross validation was used in the
hyperparameter tuning process of XGBoost and LightGBM, while 3-fold cross validation
was used in the MLP hyperparameter tuning process. Each input combination for each
machine learning model was debugged at least 3 times and then compared to obtain
the best hyperparameter combination. The development environment used is a Jupyter
Notebook 6.0.3, and the adopted libraries and version information are as follows: Python
3.7.6, TensorFlow 2.8.0, Scikit-learn 0.22.1, Hyperopt 0.2.7, XGBoost 1.5.2, LightGBM 3.3.2,
CatBoost 1.0.4, Optuna 2.10.0, Numpy 1.21.5, Pandas 1.0.1, and keras.api._v2.keras 2.8.0.
A flow chart of the three empirical equations for ETo calibration and prediction and the
four machine learning models for ETo prediction and hyperparameter tuning is shown in
Figure 2.

2.3. Calibration Methods for Empirical Equations

Regarding the PMT and PMF equations, three wind speeds were first used, namely,
the predicted Wspd, a value of 2 m s−1, and the long-term daily average wind speed, where
the predicted Wspd was converted from the wind scale in the public weather forecasts
with a lead time of 1–7 days according to Table 2, while the constant value of 2 m s−1

is the average wind speed at more than 2000 weather stations worldwide [36], and the
long-term daily average wind speed was calculated from the daily observed wind speed at
the corresponding site from 1 January 1995 to 31 December 2022 (the daily average wind
speed at YC is 2.11 m s−1, that at TX is 3.03 m s−1, and that at GY is 2.44 m s−1). Tdew was
calibrated as Tdew = Tmin − aT (aT = 0, 1, 2, 3) [11,37–40], the adjustment coefficient kRs at
YC was (0.126, 0.16, 0.17, 0.20, 0.22, 0.23, 0.24, 0.27, 0.29), the adjustment coefficient kRs at
TX was (0.13, 0.16, 0.17, 0.18, 0.19, 0.20, 0.21), and the adjustment coefficient kRs at GY was
(0.13, 0.14, 0.15, 0.16, 0.18, 0.19). Then, different combinations of the above wind speed types,
Tdew and kRs, were substituted into the PMT equation (different combinations of the above
wind speed types and Tdew were substituted into the PMF equation), and ETo was calculated.
Finally, the ETo values predicted by the PMT (PMF) equation were compared to the ETo
values obtained with the FAO-56 PM equation using the daily observed meteorological data.
The wind speed, Tdew and kRs combination (or the wind speed and Tdew combination for the
PMF equation) that yielded the minimum RMSE was adopted to obtain the final wind speed,
corrected Tdew and kRs values (wind speed and corrected Tdew values for the PMF equation)
at each of the three meteorological sites using the trial-and-error method [11,38–40].

Regarding the HS equation, the daily observed meteorological data from 1 January
1995 to 31 December 2015, were used to calculate ETo with the FAO-56 PM equation,
and the observed Tmax and Tmin at the same site during this period were substituted into
Equation (12). The nonlinear least-squares method was used to correct parameters C and E,
and the process was programmed in MATLAB (version R2014a).
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There are two areas that need to be modified, and those that need to be modified are shown in blue: 
1. Figure 2 should be Testing dataset. 
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Figure 2. Flow chart of the seven models for ETo prediction in this study.

2.4. Evaluation Criteria

Four statistical indicators, namely, mean absolute error (MAE), root-mean-square
error (RMSE), mean ratio (RM), and correlation coefficient (R), were used to evaluate the
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prediction performance of weather variables in public weather forecasts and the perfor-
mance of the seven models in daily ETo prediction. MAE reflects the actual error situation
between the predicted and observed values. RMSE reflects the degree of error dispersion
between the predicted and observed values; the smaller the RMSE value is, the higher the
accuracy of the predicted values relative to the observed values. RM can be expressed
as the ratio of the average predicted value to the average observed value. The RM value
can be greater/less than 1, reflecting the overestimation/underestimation of the observed
values by the predicted values [11,42,65]. R reflects the correlation between the predicted
and observed values. The closer the R value is to 1, the better the correlation between
the predicted and observed values. These four statistical indicators can be calculated as
follows [9,11,42,65,66]:

MAE =
∑n

i=1|Pi −Oi|
n

(14)

RMSE =

√
∑n

i=1(Pi −Oi)
2

n
(15)

RM =
P
O

(16)

R =
∑n

i=1
(

Pi − P
)(

Oi −O
)√

∑n
i=1
(

Pi − P
)2

∑n
i=1
(
Oi −O

)2
(17)

where Pi is the predicted value; Oi is the observed value; i is the sample serial number, with
i = 1, 2, . . ., n; n is the number of samples; P is the average predicted value; and O is the
average observed value.

3. Results and Discussion
3.1. Prediction Performance of the Weather Variables in the Public Weather Forecast Information
3.1.1. Single-Parameter Performance

The performance indicators of the daily scale forecast weather variables at the three
study sites obtained from public weather forecasts with a lead time of 1–7 days for
2020–2021 are shown in Figure 3. The mean MAE and RMSE of Tmin ranged from
2.73–3.10 ◦C and 3.51–3.90 ◦C, respectively. At the three sites, the mean MAE and RMSE
of Tmax ranged from 3.62–4.12 ◦C and 4.67–5.24 ◦C, respectively, while the mean R values
of Tmin and Tmax were higher than 0.92 and 0.85, respectively. The accuracy of the Tmin
forecasts at all three sites was higher than that of the Tmax forecasts, and the Tmin and
Tmax prediction performance decreased with increasing forecast period, which is consistent
with most previous studies in China [9–11,20,21,23,24,42,58,63]. In addition, the mean RM
values of Tmin and Tmax ranged from 1.00–1.08 and 0.98–1.01, respectively, indicating that
Tmin was slightly overestimated at the three sites, Tmax was slightly overestimated at GY,
and Tmax was slightly underestimated at YC and TX.

The mean MAE and RMSE of SDun at the three sites ranged from 3.28–3.82 h and
4.02–4.65 h, respectively, and the mean R and RM ranged from 0.13–0.20 and 0.88–0.92,
respectively. The SDun forecast performance decreased in the order of YC, TX, and GY.
SDun was underestimated by 12.51% (YC), 12.03% (TX), and 7.65% (GY). Compared to
the temperature prediction performance, the SDun prediction performance was very poor,
which may be due to the large error in the calculation process of converting the weather
type in public weather forecast information into SDun [11,18,20,21,58].
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Figure 3. Statistics of the forecast performance indicators of the daily scale Tmax, Tmin, SDun, and
Wspd forecasts obtained from public weather forecasts with a lead time of 1–7 days at the three
research sites from 2020–2021 ((a) MAE, (b) RMSE, (c) RM, and (d) R).

The mean MAE and RMSE of Wspd at the three sites ranged from 1.24–1.61 m s−1

and 1.98–2.19 m s−1, respectively, and the mean R and RM ranged from 0.02–0.08 and
0.92–1.77, respectively. The Wspd prediction performance was poor at all stations. Wspd
was overestimated by 76.78% (YC) and 2.79% (TX) and underestimated by 8.44% (GY). Among
the four variables in public weather forecasts, Wspd exhibited the worst prediction perfor-
mance, which may be caused by inadequate forecasts of the wind scale in public weather
forecasts and errors in the conversion of the wind scale into the wind speed [18,20,21,42].

3.1.2. Seasonality of the Prediction Performance

The average seasonal statistics of the performance indicators of the weather variables
predicted by public weather forecasts with a lead time of 1–7 days at the three research
stations from 2020 to 2021 are shown in Figure 4. The average performance indicators
of Tmax at YC (GY) all decreased in the order of autumn, summer, winter, and spring.
The average performance indicators of Tmax at TX decreased in the order of summer,
autumn, winter, and spring. At the three sites, Tmax was overestimated within the range of
3.43–6.32% in spring (0.13–2.91% in summer) and underestimated within the range of
3.02–5.58% in autumn (26.21–57.24% in winter).

The average performance indicators of Tmin at YC decreased in the order of autumn,
summer, winter, and spring (autumn, summer, spring, and winter for GY). The average
performance indicators of Tmin in TX decreased in the order of summer, autumn, winter,
and spring. At the three sites, Tmin was overestimated within the range of 32.43–85.75% in
spring (4.33–5.84% in summer) and underestimated within the range of 4.15–9.13% in autumn
(0.49–1.28% in winter) (except Tmin at GY, which was overestimated by 3.96% in winter).
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Figure 4. Average statistics of the performance indicators of the predicted weather variables (Tmax, 
Tmin, three types of wind speed, and sunshine duration) at the three stations by the public weather 

Figure 4. Average statistics of the performance indicators of the predicted weather variables (Tmax,
Tmin, three types of wind speed, and sunshine duration) at the three stations by the public weather
forecasts with a lead time of 1–7 days during each season from 2020–2021 (Tmax/spring, Tmin/spring,
Wspd/spring, and SDun/spring denote the performance of the public weather forecast in spring
predicting Tmax, Tmin, wind speed, and sunshine hours at the stations (YC, TX, and GY), respectively.
Wspd/2/spring and Wspd/2.11 (3.3 and 2.44)/spring denote the performance of wind speeds at
sites (YC, TX, and GY) when the predicted wind speed in spring is taken to be constant at 2 m s−1

and the long-term average wind speed, respectively. The other symbols have the same meaning).
((a) Tmin and Tmax at station YC, (d) SDun at station YC, (g) Wspd at station YC; (b) Tmin and Tmax at
station TX, (e) SDun at station TX, (h) Wspd at station TX; (c) Tmin and Tmax at station GY, (f) SDun
at station GY, (i) Wspd at station GY).

The average performance indicators of SDun at the three sites decreased in the order of
winter, spring, autumn, and summer. At the three sites, SDun was underestimated within
the ranges of 11.89–18.08%, 3.52–15.18%, 8.96–8.99%, and 4.73–16.71% in spring, summer,
autumn, and winter, respectively (except that SDun was overestimated by 3.76% in autumn
at GY).

The predicted Wspd with a lead time of 1–7 days at the three research sites was defined
as the predicted Wspd, a constant value (2 m s−1) or the long-term daily average wind
speed (2.11 m s−1 at YC, 3.03 m s−1 at TX, and 2.44 m s−1 at GY). The average performance
indicators of Wspd at YC during the four seasons decreased in the order of constant value,
long-term daily average wind speed, and predicted Wspd. The average performance
indicators when Wspd was defined as a constant value decreased in the order of summer,
spring, winter, and autumn (summer, spring, autumn, and winter when the predicted
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Wspd was taken). Except in summer, the average performance indicators of Wspd at TX
(GY) decreased in the order of long-term daily average wind speed, constant value, and
predicted Wspd. Moreover, the average performance indicators at TX when Wspd was
defined as a constant value decreased in the order of winter, autumn, spring, and summer
(autumn, summer, winter, and spring when the predicted Wspd was taken). The average
performance indicators at GY when Wspd was defined as a constant value and predicted
Wspd decreased in the order of autumn, summer, winter, and spring. When Wspd was
defined as a constant value (predicted Wspd), the predicted value at YC was overestimated
by 17.92%, 24.84%, 59.04%, and 42.51% (62.03%, 59.62%, 98.80%, and 97.34%) in spring,
summer, autumn, and winter, respectively, the predicted value at TX was underestimated
by 39.96%, 47.71%, 36.30%, and 26.39% (overestimated by 5.13%, underestimated by 6.36%,
overestimated by 4.14%, and overestimated by 14.78%) in spring, summer, autumn, and
winter, respectively, and the predicted value at GY was underestimated by 40.96%, 37.80%,
31.30%, and 36.93% (11.06%, 10.99%, 3.98%, and 3.80%) in spring, summer, autumn, and
winter, respectively.

In summary, according to the average seasonal statistics of the performance indicators
of the weather variables predicted by the public weather forecasts with a lead time of
1–7 days at the three research sites from 2020 to 2021, the best Tmax and Tmin prediction
performance occurred in autumn and summer, followed by winter and spring. The SDun
prediction performance was consistent at the three sites, with the best performance in winter
and spring, followed by autumn and summer, whereas the Wspd prediction performance
greatly varied from site to site.

3.2. Calibration and Validation of the Three Empirical Equations

The calibration results of the three empirical equations of PMT, PMF, and HS at the
three sites are provided in Table 4. The C and E values of the HS equation at the three sites
occurred within the range given by Hu et al. [51].

Table 4. Best estimates of the corrected parameter for the three empirical equations at the three
study sites.

Station
PMT PMF HS

kRs Tdew WSpd Tdew WSpd C E

Yinchuan 0.16 Tdew = Tmin − 1 2 ms−1 Tdew = Tmin 2 ms−1 0.00096673 0.48475

Tongxin 0.21 Tdew = Tmin − 3 2 ms−1 Tdew = Tmin − 1 2 ms−1 0.00089671 0.53594

Guyuan 0.18 Tdew = Tmin − 2 2 ms−1 Tdew = Tmin 2 ms−1 0.00082219 0.55182

The statistics of the ETo prediction performance indicators of the three empirical
equations (PMT, PMF, and HS) for the precalibration validation period and test period (a
lead time of 1–7 days) and the postcalibration validation period and test period (a lead
time of 1–7 days) are listed in Table 5. During the test period, the mean MAE, RMSE, and
RM of the PMT equation at YC decreased from 0.63 mm d−1, 0.89 mm d−1, and 1.03 before
calibration to 0.61 mm d−1 and 0.86 mm d−1 and 1.02 after calibration, respectively, and
the mean R increased from 0.88 before calibration to 0.89 after calibration. Moreover, the
average MAE, RMSE, and RM of the PMF equation at YC decreased from 0.91 mm d−1,
1.22 mm d−1, and 1.24 before calibration to 0.86 mm d−1, 1.17 mm d−1, and 1.21 after
calibration, respectively. The average R changed only slightly before and after calibration,
reaching a value of 0.88. The average MAE, RMSE, and RM of the HS equation at YC
decreased from 4.91 mm d−1, 6.05 mm d−1, and 2.70 before calibration to 0.68 mm d−1,
0.97 mm d−1, and 1.09 after calibration, respectively. The average R remained almost
unchanged before and after calibration, reaching a value of 0.89. After calibration, the
performance of the three empirical equations in ETo prediction was improved. Among
them, the average MAE, RMSE, and RM of the HS equation for ETo prediction decreased by
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86.15%, 83.97%, and 59.63%, respectively. The three empirical equations attained a similar
performance at TX and GY during the test period. The three empirical equations after
calibration could be used to predict ETo with a lead time of 1–7 days.

Table 5. Statistics based on the performance metrics of ETo predicted with three empirical equations
during the precalibration validation and test periods and the postcalibration validation and test periods.

Stage/Methods

Yinchuan Tongxin Guyuan

MAE RMSE RM R MAE RMSE RM R MAE RMSE RM R
(mm d−1) (mm d−1) (mm d−1) (mm d−1) (mm d−1) (mm d−1)

Uncalibrated

Training PMT 0.40 0.60 0.92 0.96 0.44 0.66 0.93 0.96 0.37 0.54 0.94 0.96

PMF 0.70 0.86 1.20 0.97 0.69 0.84 1.18 0.98 0.68 0.83 1.23 0.98

HS 4.39 5.35 2.44 0.95 4.35 5.21 2.30 0.95 3.79 4.59 2.41 0.94

PMT 0.39 0.56 0.91 0.96 0.51 0.73 0.90 0.96 0.35 0.50 0.93 0.96

PMF 0.70 0.88 1.22 0.98 0.63 0.77 1.14 0.97 0.63 0.77 1.00 1.00

HS 4.63 5.63 2.56 0.95 4.26 5.11 2.22 0.94 3.86 4.64 2.45 0.95

testing/the average of 1–7 days lead time

PMT 0.63 0.89 1.03 0.88 0.99 1.36 0.90 0.80 0.92 1.22 0.92 0.72

PMF 0.91 1.22 1.24 0.88 1.00 1.38 1.06 0.80 1.02 1.39 1.16 0.72

HS 4.91 6.05 2.70 0.89 4.30 5.40 2.24 0.82 3.72 4.77 2.35 0.73

Calibrated

Validation PMT 0.36 0.53 0.93 0.97 0.53 0.76 1.11 0.96 0.32 0.47 1.04 0.96

PMF 0.80 1.00 1.25 0.97 0.58 0.72 1.11 0.96 0.64 0.79 1.22 0.98

HS 0.46 0.62 1.04 0.95 0.54 0.76 0.95 0.94 0.38 0.51 0.99 0.95

testing/the average of 1–7 days lead time

PMT 0.61 0.86 1.02 0.89 0.90 1.26 1.02 0.83 0.89 1.20 1.00 0.73

PMF 0.86 1.17 1.21 0.88 0.95 1.31 1.03 0.81 0.99 1.36 1.14 0.72

HS 0.68 0.97 1.09 0.89 0.95 1.31 0.96 0.81 0.94 1.26 0.95 0.72

3.3. Performance Comparison of ETo Prediction by the Four Machine Learning Algorithms under
the Various Input Combinations

The performance statistics of the four machine learning models for daily ETo prediction
at YC, TX, and GY with a lead time of 1–7 days under the different input combinations are
provided in Figures 5–7, respectively, and the daily ETo prediction performance significantly
varied depending on the machine learning model, input combination of the machine
learning model, and study site.

At YC, MLP and XGBoost performed best under the various input combinations
during the training and validation periods. However, during the test period, the perfor-
mance of the MLP, XGBoost, LightGBM, and CatBoost machine learning models in ETo
prediction under the different input combinations decreased in the order of C2, C4, C1,
and C3. LightGBM was the best model for ETo prediction under the C3 input combination
(MAE = 0.83 mm d−1, RMSE = 1.09 mm d−1, and R = 0.85), while CatBoost attained the
best prediction performance under all input combinations (MAE range: 0.69–0.77 mm d−1;
RMSE range: 0.93–0.99 mm d−1; R range: 0.84–0.87). CatBoost achieved the highest perfor-
mance with the C2 input combination (MAE = 0.69 mm d−1, RMSE = 0.93 mm d−1, and
R = 0.86) during the testing phase at YC.
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WSpd) as inputs to predict the day ETo, and the other symbols are the same).
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Figure 7. Average statistics of the predictions with a lead time of 1–7 days by the MLP, XGBoost,
LightGBM, and CatBoost models at the GY station under the different input combinations during
training, validation, and testing (symbols have the same meaning as in Figure 5).

At TX, during the training and validation periods, MLP and XGBoost exhibited the
best prediction performance under the C1 and C2 input combinations, while LightGBM and
XGBoost achieved the best prediction performance under the C3 and C4 input combinations.
However, during the test period, first, under the different input combinations, the ETo
prediction performance of MLP and LightGBM decreased in the order of C2, C1, C4, and C3,
the ETo prediction performance of XGBoost decreased in the order of C4, C2, C3, and C1,
and the ETo prediction performance of CatBoost decreased in the order of C3, C4, C2, and
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C1. Second, LightGBM attained the best prediction performance under the C1 and C2 input
combinations (MAE range: 0.985–1.009 mm d−1; RMSE range: 1.357–1.379 mm d−1; R range:
0.78–0.79), while CatBoost achieved the best prediction performance under the C3 and C4
input combinations (MAE range: 0.95–0.96 mm d−1; RMSE range: 1.279–1.31 mm d−1; R
range: 0.80–0.81). CatBoost was the best performing machine learning model for the C3
input combination (MAE = 0.95 mm d−1, RMSE = 1.28 mm d−1, R = 0.81) at TX during the
test period.

At GY, during the training and validation periods, XGBoost and LightGBM exhibited
the best prediction performance under the C1, C2, and C3 input combinations, while MLP
and XGBoost exhibited the best prediction performance under the C4 input combination.
However, during the test period, first, the ETo prediction performance of the MLP under
the different input combinations decreased in the order of C2, C1, C4, and C3, the ETo
prediction performance of XGBoost under the different input combinations decreased
in the order of C2, C4, C1, and C3, and the ETo prediction performance of LightGBM
and CatBoost under the different input combinations decreased in the order of C4, C1,
C2, and C3. Second, CatBoost was the best performing model for the C1, C2, and C4
input combinations (MAE range: 0.907–0.92 mm d−1; RMSE range: 1.213–1.228 mm d−1;
R range: 0.699–0.707), and LightGBM was the best performing model for the C3 input
combination (MAE = 0.95 mm d−1; RMSE = 1.28 mm d−1; R = 0.68). CatBoost was the best
performing machine learning model for the C4 input combination (MAE = 0.907 mm d−1;
RMSE = 1.213 mm d−1; R = 0.707) at GY during the test period.

The best input combinations of the four machine learning models, i.e., MLP, XGBoost,
LightGBM, and CatBoost, and their model tuning information are provided in Table 6.
The best input combination of CatBoost at TX was C3 (8.33%). In contrast, the best input
combination of the four machine learning models at the three sites was C2 (66.67%) or
C4 (25.00%), indicating that the addition of SDun to the input combination positively
affected the improvement in the ETo prediction performance of the four machine learning
models [1,11,20,31,58,63,67,68]. Since the predicted Wspd exhibits the worst prediction
performance among the variables in the public weather forecasts, the addition of the
predicted Wspd to the input combination could lead to a decrease in the daily ETo prediction
performance of the machine learning models (except for the CatBoost model at TX), which
is consistent with previous research results [42]. In addition, the MLP with two–three
hidden layers performs better in predicting daily ETo than the MLP with only one hidden
layer [10,56,58].

Table 6. Optimal input combinations and model tuning information of the four machine learning
methods at the three meteorological stations.

Station
MLP XGBoost LightGBM CatBoost

Inputs Structure Parameter Value Inputs Inputs Inputs

Yinchuan C2 3-100-100-100-1 Lr = 0.0088 C2 C2 C2

Tongxin C2 3-85-85-1 Lr = 0.0088 C4 C2 C3

Guyuan C2 3-62-62-1 Lr = 0.0055 C2 C4 C4

3.4. ETo Prediction Performance Evaluation of the Seven Models Based on Public
Weather Forecasts
3.4.1. Daily ETo Prediction Performance of the Seven Models

The daily ETo prediction performance indicators of the three empirical equations and
four machine learning models with a lead time of 1–7 days at the three sites are shown
in Figures 8 and 9, respectively. First, the daily ETo prediction performance of the seven
models at YC, TX, and GY decreased with increasing lead time, which is due to the decrease
in the performance of the public weather forecast variables with increasing lead time,
which is consistent with previous research results [1,2,9–11,17,20,23,42,58,63]. Second, the
RM values of the 7 models at YC ranged from 0.97 to 1.22, among which the XGBoost
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model slightly underestimated (2.04–2.96%) the daily ETo, the PMF equation overestimated
(20.74–22.03%) the daily ETo, and the other models slightly overestimated (0.24–10.68%) the
daily ETo. The RM values of the seven models at TX ranged from 0.91 to 1.03, among which
the HS, MLP, and LightGBM models slightly underestimated (3.39–9.38%) the daily ETo,
while the other models slightly overestimated (0.46–3.43%) the daily ETo. The RM values
of the seven models at GY ranged from 0.92 to 1.15. The PMF equation overestimated
(13.83–15.46%) the daily ETo, and the PMT equation slightly overestimated (0.19–0.47%) the
daily ETo, while the other models slightly underestimated (1.67–7.93%) the daily ETo. The
PMF model overestimated the daily ETo at YC, which may be due to Wspd overestimation
at this site. Under arid conditions, the drier the atmosphere is, the more small changes in
wind speed could lead to large changes in the evapotranspiration rate and thus the greater
the impact on evapotranspiration [36]. The daily ETo overestimation by the PMF model
noted at GY may be due to Tmax overestimation at this site. Moreover, the overestimation
percentage of Tmax at GY was higher than that of Tmin, and the saturation vapor pressure
was overestimated due to Tmax overestimation, resulting in an increase in the saturation
vapor pressure deficit and overestimation of the daily ETo at GY.
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Figure 9. Statistics of performance indicators RM and R for ETo prediction with a lead time of
1–7 days using the three empirical equations and four machine learning methods at the three sites.

Table 7 shows the mean statistics of the performance metrics for the predicted daily
ETo with a lead time of 1–7 days by the seven models at the three sites. Combining all
indicators, first, the prediction performance of the seven models at YC was better than that
at TX and GY, which is mainly due to the overall better forecast performance of the public
weather forecast variables at YC than at TX and GY. Second, the top three models at YC
were PMT, HS, and CatBoost, whereas PMF (the worst performing model) overestimated
the daily ETo (21.35%). The top three models at TX were PMT, CatBoost, and HS, whereas
MLP (the worst performing model) underestimated the daily ETo (6.05%), and the top
three models at GY were PMT, CatBoost, and LightGBM, whereas PMF (the worst model)
overestimated the daily ETo (14.46%).
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Table 7. Mean statistics of the performance indicators for ETo prediction with a lead time of 1–7 days
by the seven methods at the three sites.

Method
Yinchuan Tongxin Guyuan

MAE RMSE RM R MAE RMSE RM R MAE RMSE RM R
(mm d−1) (mm d−1) (mm d−1) (mm d−1) (mm d−1) (mm d−1)

PMT 0.61 0.862 1.02 0.89 0.90 1.257 1.02 0.83 0.89 1.20 1.00 0.73
PMF 0.86 1.17 1.21 0.88 0.949 1.307 1.03 0.807 0.99 1.36 1.15 0.72
HS 0.675 0.971 1.09 0.89 0.949 1.309 0.96 0.814 0.94 1.26 0.95 0.72

MLP 0.70 0.938 1.02 0.86 0.991 1.362 0.94 0.786 0.94 1.25 0.93 0.69
XGBoost 0.70 0.936 0.98 0.86 0.989 1.363 1.00 0.789 0.923 1.234 0.94 0.70
LightGBM 0.72 0.938 1.01 0.86 0.985 1.358 0.91 0.793 0.911 1.217 0.98 0.70
CatBoost 0.691 0.933 1.01 0.86 0.954 1.279 1.01 0.811 0.908 1.214 0.98 0.71

Note: The statistical indicators of the best performing model at each site are shown in bold and the statistical
indicators of the favorable models are highlighted in gray.

3.4.2. Seasonality of the Daily ETo Prediction Performance of the Seven Models

The sensitivity of weather variables varies with the different seasons and the mi-
croclimate at the studied site location [15], while the irrigation area at the studied site
location is associated with different field irrigation periods depending on the crop type,
location, etc. [1]. Therefore, it is necessary to evaluate the seasonality of the ETo predic-
tion performance. The average ETo prediction performance indicators with a lead time
of 1–7 days of the seven methods at the three station sites during the four seasons from
2020–2021 are shown in Figures 10–12, respectively.
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Figure 10. Mean statistics of the performance indicators for ETo prediction with a lead time of 1–7 
days by the seven methods at YC station during the four seasons from 2020–2021. 
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Figure 11. Mean statistics of the performance indicators for ETo prediction with a lead time of
1–7 days by the seven methods at the TX station during the four seasons from 2020–2021.
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Figure 12. Mean statistics of the performance indicators for ETo prediction with a lead time of
1–7 days by the seven methods at GY station during the four seasons from 2020–2021.
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First, during all four seasons, the daily ETo prediction performance of all seven models
was higher at YC than at TX and GY (excluding the LightGBM model in winter), which
was consistent with the results of evaluating the performance of daily ETo predicted by the
seven models at three research sites (YC, TX, and GY) from a daily scale.

Second, except for the LightGBM model at TX, the seasonal MAE and RMSE values
for ETo prediction of all seven models at YC and six models at TX increased in the order of
winter, spring, autumn, and summer, and the seasonal MAE and RMSE values in winter
and spring were smaller than the annual values. At GY, except for the PMF model, the
seasonal MAE and RMSE values for ETo prediction of the other six models increased in the
order of winter, autumn, spring, summer, and the seasonal MAE and RMSE values in winter
were smaller than the annual values. This is consistent with previous studies [1,16,20]. The
seasonal R values for ETo prediction of all models at the three sites were smaller than the
annual values, and the seasonal R values were the smallest in summer. The seasonal R
values at YC were the largest in autumn (except for the PMF model), the seasonal R values
at TX were the largest in spring (the three empirical equations and the CatBoost model)
and winter (MLP, XGBoost, and LightGBM), and the seasonal R values at GY were the
largest in spring (MLP, XGBoost, and LightGBM), autumn (LightGBM and CatBoost), and
winter (the three empirical equations). The seasonal RM values for daily ETo prediction
by the four machine learning models at the three sites were less than one in spring and
summer and greater than one in autumn and winter, indicating that the daily ETo in spring
and summer was underestimated, while the daily ETo was overestimated in autumn and
winter (except at GY, where the MLP model underestimated the daily ETo by 3.20%). The
seasonal RM values for daily ETo prediction by the three empirical models at YC and GY
in summer and autumn and at TX in autumn were all greater than 1, indicating that the
daily ETo was overestimated during the corresponding season.

Finally, combining all indicators, at YC, the indicators of the predicted seasonal ETo
values with a lead time of 1–7 days by PMT were the best during all seasons, followed
by HS (spring, autumn, and winter) and CatBoost (summer). At TX, the indicators of the
predicted seasonal ETo values with a lead time of 1–7 days by PMT were the best in spring,
autumn, and winter. The indicators of the predicted seasonal ETo values with a lead time of
1–7 days by CatBoost were the best in summer, followed by PMF (spring), PMT (summer),
and LightGBM (autumn and winter). At GY, the indicators of the predicted seasonal ETo
values with a lead time of 1–7 days by PMF were the best in spring and winter, those of the
predicted seasonal ETo values with a lead time of 1–7 days by CatBoost were the best in
summer, and those of the predicted seasonal ETo values with a lead time of 1–7 days by
PMT were the best in autumn, followed by PMT (spring and winter), LightGBM (summer),
and HS (autumn). The scatter plots of the daily ETo predicted by the PMT equations for the
test period versus the daily ETo computed by the PM equations for YC station; the scatter
plots of the daily ETo predicted by the PMT equations and the CatBoost model for the test
period versus the daily ETo computed by the PM equations for TX station; and the scatter
plots of the daily ETo predicted by the PMF equations, the CatBoost model, and the PMT
equations for the test period versus the daily ETo computed by the PM equations for GY
station are given in Figures 13–15, respectively.

3.5. Impact of Weather Variable Prediction Based on Public Weather Forecasts on Daily
ETo Prediction

To assess the impact of the weather variables in public weather forecasts on the
performance of daily ETo prediction, the four observed weather variables (Tmax, Tmin,
SDun, and Wspd) were replaced in sequence with corresponding forecast values for a lead
time of 1–7 days, such that a large change in the forecasted daily ETo indicates that the
forecasted weather variable would produce a large error in daily ETo prediction [1,13,16,20].
Tmax, Tmin, Sdun, and Wspd in public weather forecasts with a lead time of 1–7 days were
used to replace the corresponding daily observed values of Tmax, Tmin, SDun, and Wspd,
respectively, to form new combinations, namely, SC1 (Tmax, Tmin, SDun, and Wspd), SC2
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(Tmax, Tmin, SDun, and Wspd), SC3 (Tmax, Tmin, SDun, and Wspd), and SC4 (Tmax, Tmin,
SDun, and Wspd). The combination of all observations was denoted as SC (Tmax, Tmin,
SDun, and Wspd). The mean values of the ETo performance indicators of the five models
at the three sites under the SC-SC4 input combinations are provided in Figures 16–18.
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Figure 13. Scatter plots of daily ETo predicted by PMT equations at YC station during the test period 
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time). 
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Figure 14. Scatter plots of daily ETo predicted by the PMT equations (a–c) and CatBoost model (d–
f) at the TX station during the test period versus daily ETo calculated by the PM equations. ((a,d) 1-
day lead time, (b,e) 4-day lead time, (c,f) 7-day lead time). 
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Figure 13. Scatter plots of daily ETo predicted by PMT equations at YC station during the test period
versus daily ETo calculated by PM equations. ((a) 1-day lead time, (b) 4-day lead time, (c) 7-day lead
time).
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Figure 14. Scatter plots of daily ETo predicted by the PMT equations (a–c) and CatBoost model (d–
f) at the TX station during the test period versus daily ETo calculated by the PM equations. ((a,d) 1-
day lead time, (b,e) 4-day lead time, (c,f) 7-day lead time). 
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Figure 14. Scatter plots of daily ETo predicted by the PMT equations (a–c) and CatBoost model
(d–f) at the TX station during the test period versus daily ETo calculated by the PM equations.
((a,d) 1-day lead time, (b,e) 4-day lead time, (c,f) 7-day lead time).

First, for the five models at all stations, the daily ETo slightly differed before and
after replacing the observed Tmin with Tmin of the public weather forecasts. Notably,
Tmin exhibited the smallest prediction error, and its contribution to the error in daily ETo
prediction was minimal.
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Figure 14. Scatter plots of daily ETo predicted by the PMT equations (a–c) and CatBoost model (d–
f) at the TX station during the test period versus daily ETo calculated by the PM equations. ((a,d) 1-
day lead time, (b,e) 4-day lead time, (c,f) 7-day lead time). 
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Figure 15. Scatter plots of daily ETo predicted by PMF equations (a–c), CatBoost model (d–f) and
PMT equations (g–i) at GY station during the test period versus daily ETo calculated by PM equations.
((a,d,g) 1-day lead time, (b,e,h) 4-day lead time, (c,f,i) 7-day lead time).
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Figure 16. Mean statistics of the ETo prediction performance indicators for a lead time of 1–7 days 
of the five models at YC stations under the five input combinations when replacing the observed 
weather variables with predicted weather variables based on public weather forecasts one at a time 
((a) PMF equation, (b) MLP model, (c) XGBoost model, (d) LightGBM model, and (e) CatBoost 
model). 

Figure 16. Mean statistics of the ETo prediction performance indicators for a lead time of 1–7 days of
the five models at YC stations under the five input combinations when replacing the observed weather
variables with predicted weather variables based on public weather forecasts one at a time ((a) PMF
equation, (b) MLP model, (c) XGBoost model, (d) LightGBM model, and (e) CatBoost model).
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Figure 17. Mean statistics of the ETo prediction performance indicators for a lead time of 1–7 days 
of the five models at the TX stations under the five input combinations when replacing the observed 
weather variables with predicted weather variables based on public weather forecasts one at a time 
((a) PMF equation, (b) MLP model, (c) XGBoost model, (d) LightGBM model, and (e) CatBoost 
model). 
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Figure 18. Mean statistics of the ETo prediction performance indicators for a lead time of 1–7 days 
of the five models at GY stations under the five input combinations when replacing the observed 
weather variables with predicted weather variables based on public weather forecasts one at a time 
(a) PMF equation, (b) MLP model, (c) XGBoost model, (d) LightGBM model, and (e) CatBoost 
model). 
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five models at the TX stations under the five input combinations when replacing the observed weather
variables with predicted weather variables based on public weather forecasts one at a time ((a) PMF
equation, (b) MLP model, (c) XGBoost model, (d) LightGBM model, and (e) CatBoost model).
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of the five models at GY stations under the five input combinations when replacing the observed
weather variables with predicted weather variables based on public weather forecasts one at a time
(a) PMF equation, (b) MLP model, (c) XGBoost model, (d) LightGBM model, and (e) CatBoost model).
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Second, for all models at YC, Wspd yielded the largest contribution to the error in
the predicted daily ETo (first), and for the four machine learning models, SDun and Tmax
yielded large (second) and relatively small (third) contributions, respectively, to the error
in the predicted daily ETo, which is consistent with previous findings [20]. Regarding
the PMF model, Tmax and SDun also yielded large (second) and relatively small (third)
contributions, respectively, to the error in the predicted daily ETo. At TX, among the four
machine learning models, n contributed the most to the error in the predicted daily ETo
(first), and Wspd and Tmax greatly contributed to the error in the predicted daily ETo (second
or third). Moreover, Tmax contributed the most to the error in the predicted daily ETo by the
PMF model (first), while Wspd and SDun greatly contributed to the error in the predicted
daily ETo (second and third, respectively). For all models at GY, SDun contributed the most
to the error in the predicted daily ETo (first), while Tmax and Wspd also greatly contributed
(second and third, respectively) to the error in the predicted daily ETo. This is consistent
with previous studies [12,13,16,20].

These results indicate that the main source of error in daily ETo prediction at YC
in an arid region is Wspd transformed from the wind scale in public weather forecasts.
Due to regional differences, as well as the influences of the location of weather stations
and local topographic features [42], wind speed is one of the most difficult parameters to
accurately predict [20,69]. Cai et al. [18] stated that it is acceptable to estimate the wind
speed from the wind scale in public weather forecasts, but the error in such estimates
could be large in arid regions [20]. George et al. [70] showed that the discrepancy between
predicted and measured reference crop evapotranspiration values largely resulted from
erroneous predictions of the mean wind speed. Li and Beswick [71] reported that wind
speed represents a more serious source of error than solar radiation in ETo estimation.
Except in arid and windy areas, the effect of the wind speed on the estimated ETo values is
relatively limited [72].

At TX in a semiarid region and GY in a semihumid region, SDun converted from
the weather type in public weather forecasts was the main source of error in daily ETo
prediction. First, since the weather type in the public weather forecasts was converted
into SDun using the sunshine duration coefficient values listed in Table 3, obtained us-
ing 2004 measured solar radiation data for Daxing District, Beijing, which is located in a
warm temperate semihumid continental monsoon climate zone, the application of sun-
shine duration coefficients derived from one region to other regions with different climate
types could result in different degrees of error due to the climatic differences between
these regions [11,21]. Second, the values of as and bs in Equation (11) can vary depend-
ing on atmospheric conditions (humidity and dust) and solar declination (latitude and
month), so the improved as and bs parameters must be calibrated when calculating Rs with
Equation (11) [36]; in contrast, we directly used the recommended values of 0.25 and 0.5
without calibration, which could also cause errors. Perera et al. [1] found that the largest
error source between predicted and observed ETo values is the prediction accuracy of the
incident solar radiation. The results of Medina et al. [13] showed that the error in radiation
prediction imposed the greatest influence on ETo prediction, followed by the error in wind
prediction. Fan et al. [16] noted that in the temperate continental zone (TCZ), temperate
monsoon zone (TMZ), and other climate zones, the contribution of the Rs (solar radiation)
prediction error to the ETo prediction error was the greatest.

4. Conclusions

In this study, the performance of three empirical equations and four machine learning
models for daily ETo prediction at three stations in three climatic regions of Ningxia,
China, was evaluated using public weather forecasts with a lead time of 1–7 days. The
prediction performance of weather variables in public weather forecasts and the prediction
performance of the daily ETo of the seven models were analyzed and evaluated on daily
and seasonal scales, respectively. The optimal input combination of the machine learning
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models was determined, and the weather forecast variables contributing to the error in the
predicted daily ETo were clarified. The main conclusions of this study are as follows:

(1) At all stations, in the public weather forecast variables with a lead time of 1–7 days
during the four seasons of spring, summer, autumn and winter from 2020–2021, Tmax
followed the order of autumn > summer> winter > spring (or summer > autumn >
winter > spring), Tmin followed the order of autumn > summer > winter > spring (or
summer > autumn) > spring > winter), SDun followed the order of winter > spring >
autumn > summer, and the average forecast performance decreased in sequence. The
performance of wind speeds predicted by public weather forecasts was the worst, and
their prediction performance showed great variation depending on the station. It was
recommended that the model predict the daily ETo by considering the wind speed to
take a constant value (2 m s−1) or the daily average wind speed over a long period;

(2) The calibrated PMT equation (kRs = 0.16, Tdew = Tmin − 1) with public weather
forecasts of Tmax, Tmin, and 2 m s−1 of constant wind speed as inputs was recom-
mended as the best model for the irrigation season at YC station for the predicted lead
time of 1–7 day ETo for all three stations. The calibrated PMT equation (kRs = 0.21,
Tdew = Tmin − 3) with public weather forecasts of Tmax, Tmin, and constant wind
speed of 2 m s−1 as inputs and CatBoost with C3 (Tmax, Tmin, Wspd) as inputs were
the best-performing models for the spring and autumn irrigation seasons and the
summer irrigation season at station TX, respectively. The calibrated PMF equation
(Tdew = Tmin) with Tmax, Tmin, SDun, and 2 m s−1 constant wind speed from the public
weather forecast as inputs, CatBoost with C4 (Tmax, Tmin) as inputs, and the calibrated
PMT equation (kr = 0.18, Tdew = Tmin−2) with Tmax, Tmin, and 2 m s−1 constant wind
speed from the public weather forecast as inputs were the optimal models for the
spring irrigation season, summer irrigation season, and autumn irrigation season,
respectively, at the GY station;

(3) The four machine learning models MLP, XGBoost, LightGBM, and CatBoost are recom-
mended to select C2 (Tmax, Tmin, SDun) or C4 (Tmax, Tmin) as the input combinations
to predict the daily ETo of the three stations. However, for station YC located in the
arid zone, the error in the model prediction of daily ETo is mainly caused by Wspd
from the public weather forecast, followed by SDun. SDun from the public weather
forecast is the main source of error in the model prediction of daily ETo for station
TX located in the semiarid zone and station GY located in the semimoisture zone,
followed by Wspd. Therefore, the combination of Wspd from public weather forecasts
and SDun should be considered carefully when adding them to the input combination
of the model.

The optimal predictive daily ETo model for the irrigation season recommended in
this study has been successfully used in the irrigation forecast of 1–3 days in advance for
134 ha of Lycium barbarum crop in Tongxin, Ningxia, China. Compared with the local
conventional irrigation, the irrigation forecasting of 1–3 days in advance using the ETo
model of the optimal prediction day of the irrigation season realized the improvement of
quality and yield, and water-saving irrigation of field Lycium barbarum, and improved the
utilization of the limited rainfall during the fertility period of the Lycium barbarum crop.

Although the best models for predicting daily ETo during the irrigation season at the
study stations were obtained, some stations had lower model prediction accuracy during
certain irrigation seasons (e.g., the best models for the summer season at the TX and GY
stations), and the combination of these machine learning models with optimization algo-
rithms (ant colony optimization algorithms, cuckoo search algorithms, flower pollination
algorithms, etc.) could be explored to optimize the model’s hyperparameters through
optimization algorithms to further enhance the performance of the model to predict ETo
and improve the accuracy of the model to predict ETo.

Author Contributions: Formal analysis, D.F.; data curation, Y.Z.; writing—original draft preparation,
Y.L.; supervision, Z.S. All authors have read and agreed to the published version of the manuscript.



Water 2023, 15, 3954 28 of 30

Funding: This research and APC were funded by National key research & development program of
China (2021YFD1900600), the Natural Science Foundation of Ningxia (Project No. 2020AAC03039),
the Ningxia Key Research and Development Program (Special Talents) (2019BEB04040), and the First
Class Discipline Construction Project of Ningxia (No. NXYLXK2021A03).

Data Availability Statement: The source data and intermediate analyzed data of this study are
available from the corresponding author under the premise that they are used for scientific research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Perera, K.C.; Andrew, W.W.; Bandara, N.; Biju, G. Forecasting daily reference evapotranspiration for Australia using numerical

weather prediction outputs. Agric. For. Meteorol. 2014, 194, 50–63. [CrossRef]
2. Traore, S.; Luo, Y.; Fipps, G. Gene-expression programming for short-term forecasting of daily reference evapotranspiration using

public weather forecast information. Water Resour. Manag. 2017, 31, 4891–4908. [CrossRef]
3. Aghelpour, P.; Norooz-Valashedi, R. Predicting daily reference evapotranspiration rates in a humid region, comparison of seven

various data-based predictor models. Stoch. Environ. Res. Risk Assess. 2022, 36, 4133–4155. [CrossRef]
4. Torres, A.F.; Walker, W.R.; McKee, M. Forecasting daily potential evapotranspiration using machine learning and limited climatic

data. Agric. Water Manag. 2011, 98, 553–562. [CrossRef]
5. Kim, S.; Shiri, J.; Singh, V.P.; Kisi, O.; Landeras, G. Predicting daily pan evaporation by soft computing models with limited

climatic data. Hydrol. Sci. J. 2015, 60, 1120–1136. [CrossRef]
6. Ferreira, L.B.; da Cunha, F.F. Multi-step ahead forecasting of daily reference evapotranspiration using deep learning. Comput.

Electron. Agric. 2020, 178, 105728. [CrossRef]
7. Ruiming, F.; Shijie, S. Daily reference evapotranspiration prediction of Tieguanyin tea plants based on mathematical morphology

clustering and improved generalized regression neural network. Agric. Water Manag. 2020, 236, 106177. [CrossRef]
8. Karbasi, M.; Jamei, M.; Ali, M.; Malik, A.; Yaseen, Z.M. Forecasting weekly reference evapotranspiration using Auto Encoder

Decoder Bidirectional LSTM model hybridized with a Boruta-CatBoost input optimizer. Comput. Electron. Agric. 2022, 198, 107121.
[CrossRef]

9. Luo, Y.; Chang, X.; Peng, S.; Khan, S.; Wang, W.; Zheng, Q.; Cai, X. Short-term forecasting of daily reference evapotranspiration
using the Hargreaves–Samani model and temperature forecasts. Agric. Water Manag. 2014, 136, 42–51. [CrossRef]

10. Luo, Y.; Traore, S.; Lyu, X.; Wang, W.; Wang, Y.; Xie, Y.; Jiao, X.; Fipps, G. Medium range daily reference evapotranspiration
forecasting by using ANN and public weather forecasts. Water Resour. Manag. 2015, 29, 3863–3876. [CrossRef]

11. Yang, Y.; Luo, Y.; Wu, C.; Zheng, H.; Zhang, L.; Cui, Y.; Sun, N.; Wang, L. Evaluation of six equations for daily reference
evapotranspiration estimating using public weather forecast message for different climate regions across China. Agric. Water
Manag. 2019, 222, 386–399. [CrossRef]

12. Pelosi, A.; Medina, H.; Villani, P.; D’urso, G.; Chirico, G. Probabilistic forecasting of reference evapotranspiration with a limited
area ensemble prediction system. Agric. Water Manag. 2016, 178, 106–118. [CrossRef]

13. Medina, H.; Tian, D.; Srivastava, P.; Pelosi, A.; Chirico, G.B. Medium-range reference evapotranspiration forecasts for the
contiguous United States based on multi-model numerical weather predictions. J. Hydrol. 2018, 562, 502–517. [CrossRef]

14. Medina, H.; Tian, D. Comparison of probabilistic postprocessing approaches for improving numerical weather prediction-based
daily and weekly reference evapotranspiration forecasts. Hydrol. Earth Syst. Sci. 2020, 24, 1011–1030. [CrossRef]

15. Vanella, D.; Intrigliolo, D.; Consoli, S.; Longo-Minnolo, G.; Lizzio, G.; Dumitrache, R.; Mateescu, E.; Deelstra, J.; Ramírez-Cuesta, J.
Comparing the use of past and forecast weather data for estimating reference evapotranspiration. Agric. For. Meteorol. 2020, 295,
108196. [CrossRef]

16. Fan, J.; Wu, L.; Zheng, J.; Zhang, F. Medium-range forecasting of daily reference evapotranspiration across China using numerical
weather prediction outputs downscaled by extreme gradient boosting. J. Hydrol. 2021, 601, 126664. [CrossRef]

17. Perera, K.C.; Western, A.W.; Robertson, D.E.; George, B.; Nawarathna, B. Ensemble forecasting of short-term system scale
irrigation demands using real-time flow data and numerical weather predictions. Water Resour. Res. 2016, 52, 4801–4822.
[CrossRef]

18. Cai, J.; Liu, Y.; Lei, T.; Pereira, L.S. Estimating reference evapotranspiration with the FAO Penman–Monteith equation using daily
weather forecast messages. Agric. For. Meteorol. 2007, 145, 22–35. [CrossRef]

19. Cai, J.B.; Liu, Y.; Xu, D.; Paredes, P.; Pereira, L.S. Simulation of the soil water balance of wheat using daily weather forecast
messages to estimate the reference evapotranspiration. Hydrol. Earth Syst. Sci. 2009, 13, 1045–1059. [CrossRef]

20. Yang, Y.; Cui, Y.; Luo, Y.; Lyu, X.; Traore, S.; Khan, S.; Wang, W. Short-term forecasting of daily reference evapotranspiration using
the Penman-Monteith model and public weather forecasts. Agric. Water Manag. 2016, 177, 329–339. [CrossRef]

21. Liu, B.; Liu, M.; Cui, Y.; Shao, D.; Mao, Z.; Zhang, L.; Khan, S.; Luo, Y. Assessing forecasting performance of daily reference
evapotranspiration using public weather forecast and numerical weather prediction. J. Hydrol. 2020, 590, 125547. [CrossRef]

22. Xu, J.Z.; Peng, S.Z.; Yang, S.H.; Luo, Y.F.; Wang, Y.J. Predicting daily reference evapotranspiration in a humid region of China by
the locally calibrated Hargreaves-Samani equation using weather forecast data. J. Agric. Sci. Technol. 2012, 14, 1331–1342.

https://doi.org/10.1016/j.agrformet.2014.03.014
https://doi.org/10.1007/s11269-017-1784-5
https://doi.org/10.1007/s00477-022-02249-4
https://doi.org/10.1016/j.agwat.2010.10.012
https://doi.org/10.1080/02626667.2014.945937
https://doi.org/10.1016/j.compag.2020.105728
https://doi.org/10.1016/j.agwat.2020.106177
https://doi.org/10.1016/j.compag.2022.107121
https://doi.org/10.1016/j.agwat.2014.01.006
https://doi.org/10.1007/s11269-015-1033-8
https://doi.org/10.1016/j.agwat.2019.06.014
https://doi.org/10.1016/j.agwat.2016.09.015
https://doi.org/10.1016/j.jhydrol.2018.05.029
https://doi.org/10.5194/hess-24-1011-2020
https://doi.org/10.1016/j.agrformet.2020.108196
https://doi.org/10.1016/j.jhydrol.2021.126664
https://doi.org/10.1002/2015WR018532
https://doi.org/10.1016/j.agrformet.2007.04.012
https://doi.org/10.5194/hess-13-1045-2009
https://doi.org/10.1016/j.agwat.2016.08.020
https://doi.org/10.1016/j.jhydrol.2020.125547


Water 2023, 15, 3954 29 of 30

23. Li, D.; Chen, J.; Luo, Y.; Liu, F.; Luo, H.; Xie, H.; Cui, Y. Short-term daily forecasting of crop evapotranspiration of rice using
public weather forecasts. Paddy Water Environ. 2018, 16, 397–410. [CrossRef]

24. Xiong, Y.; Luo, Y.; Wang, Y.; Traore, S.; Xu, J.; Jiao, X.; Fipps, G. Forecasting daily reference evapotranspiration using the
Blaney–Criddle model and temperature forecasts. Arch. Agron. Soil Sci. 2016, 62, 790–805. [CrossRef]

25. Fan, J.; Yue, W.; Wu, L.; Zhang, F.; Cai, H.; Wang, X.; Lu, X.; Xiang, Y. Evaluation of SVM, ELM and four tree-based ensemble
models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China. Agric.
For. Meteorol. 2018, 263, 225–241. [CrossRef]

26. Wu, L.; Fan, J. Comparison of neuron-based, kernel-based, tree-based and curve-based machine learning models for predicting
daily reference evapotranspiration. PLoS ONE 2019, 14, e0217520. [CrossRef]

27. Fan, J.; Ma, X.; Wu, L.; Zhang, F.; Yu, X.; Zeng, W. Light Gradient Boosting Machine: An efficient soft computing model for
estimating daily reference evapotranspiration with local and external meteorological data. Agric. Water Manag. 2019, 225, 105758.
[CrossRef]

28. Huang, G.; Wu, L.; Ma, X.; Zhang, W.; Fan, J.; Yu, X.; Zeng, W.; Zhou, H. Evaluation of CatBoost method for prediction of reference
evapotranspiration in humid regions. J. Hydrol. 2019, 574, 1029–1041. [CrossRef]

29. Yu, J.; Zheng, W.; Xu, L.; Zhangzhong, L.; Zhang, G.; Shan, F. A PSO-XGBoost Model for Estimating Daily Reference Evapotran-
spiration in the Solar Greenhouse. Intell. Autom. Soft Comput. 2020, 26, 989–1003. [CrossRef]

30. Zhang, Y.; Zhao, Z.; Zheng, J. CatBoost: A new approach for estimating daily reference crop evapotranspiration in arid and
semi-arid regions of Northern China. J. Hydrol. 2020, 588, 125087. [CrossRef]

31. Zhou, Z.; Zhao, L.; Lin, A.; Qin, W.; Lu, Y.; Li, J.; Zhong, Y.; He, L. Exploring the potential of deep factorization machine and
various gradient boosting models in modeling daily reference evapotranspiration in China. Arab. J. Geosci. 2020, 13, 1287.
[CrossRef]

32. Liu, X.; Wu, L.; Zhang, F.; Huang, G.; Yan, F.; Bai, W. Splitting and Length of Years for Improving Tree-Based Models to Predict
Reference Crop Evapotranspiration in the Humid Regions of China. Water 2021, 13, 3478. [CrossRef]

33. El Bilali, A.; Abdeslam, T.; Ayoub, N.; Lamane, H.; Ezzaouini, M.A.; Elbeltagi, A. An interpretable machine learning approach
based on DNN, SVR, Extra Tree, and XGBoost models for predicting daily pan evaporation. J. Environ. Manag. 2023, 327, 116890.
[CrossRef] [PubMed]

34. Han, Y.; Wu, J.; Zhai, B.; Pan, Y.; Huang, G.; Wu, L.; Zeng, W. Coupling a bat algorithm with xgboost to estimate reference
evapotranspiration in the arid and semiarid regions of China. Adv. Meteorol. 2019, 2019, 9575782. [CrossRef]

35. Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z.
2006, 15, 259–263. [CrossRef] [PubMed]

36. Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO
Irrigation and Drainage Paper No. 56; FAO: Rome, Italy, 1998.

37. Todorovic, M.; Karic, B.; Pereira, L.S. Reference evapotranspiration estimate with limited weather data across a range of
Mediterranean climates. J. Hydrol. 2013, 481, 166–176. [CrossRef]

38. Raziei, T.; Pereira, L.S. Estimation of ETo with Hargreaves–Samani and FAO-PM temperature methods for a wide range of
climates in Iran. Agric. Water Manag. 2013, 121, 1–18. [CrossRef]

39. Raziei, T.; Pereira, L.S. Spatial variability analysis of reference evapotranspiration in Iran utilizing fine resolution gridded datasets.
Agric. Water Manag. 2013, 126, 104–118. [CrossRef]

40. Ren, X.; Qu, Z.; Martins, D.S.; Paredes, P.; Pereira, L.S. Daily reference evapotranspiration for hyperarid to moist subhumid
climates in inner Mongolia, China: I. Assessing temperature methods and spatial variability. Water. Resour Manag. 2016, 30,
3769–3791. [CrossRef]

41. GB/T 35227—2017; Specifications for Surface Meteorological Observation—Wind Direction and Wind Speed. China Standard
Press: Beijing, China, 2017. (In Chinese)

42. Yang, Y.; Cui, Y.; Bai, K.; Luo, T.; Dai, J.; Wang, W.; Luo, Y. Short-term forecasting of daily reference evapotranspiration using the
reduced-set Penman-Monteith model and public weather forecasts. Agric. Water Manag. 2019, 211, 70–80. [CrossRef]

43. Martínez-Cob, A.; Tejero-Juste, M. A wind-based qualitative calibration of the Hargreaves ET0 estimation equation in semiarid
regions. Agric. Water Manag. 2004, 64, 251–264. [CrossRef]

44. Trajkovic, S. Hargreaves versus Penman-Monteith under Humid Conditions. J. Irrig. Drain. Eng. 2007, 133, 38–42. [CrossRef]
45. Er-Raki, S.; Chehbouni, A.; Khabba, S.; Simonneaux, V.; Jarlan, L.; Ouldbba, A.; Rodriguez, J.; Allen, R. Assessment of reference

evapotranspiration methods in semi-arid regions: Can weather forecast data be used as alternate of ground meteorological
parameters? J. Arid. Environ. 2010, 74, 1587–1596. [CrossRef]

46. Almorox, J.; Quej, V.H.; Martí, P. Global performance ranking of temperature-based approaches for evapotranspiration estimation
considering Köppen climate classes. J. Hydrol. 2015, 528, 514–522. [CrossRef]

47. Almorox, J.; Grieser, J. Calibration of the Hargreaves–Samani method for the calculation of reference evapotranspiration in
different Köppen climate classes. Hydrol. Res. 2016, 47, 521–531. [CrossRef]

48. Feng, Y.; Jia, Y.; Cui, N.; Zhao, L.; Li, C.; Gong, D. Calibration of Hargreaves model for reference evapotranspiration estimation in
Sichuan basin of southwest China. Agric. Water Manag. 2017, 181, 1–9. [CrossRef]

49. Wu, L.; Peng, Y.; Fan, J.; Wang, Y. Machine learning models for the estimation of monthly mean daily reference evapotranspiration
based on cross-station and synthetic data. Hydrol. Res. 2019, 50, 1730–1750. [CrossRef]

https://doi.org/10.1007/s10333-018-0633-3
https://doi.org/10.1080/03650340.2015.1083983
https://doi.org/10.1016/j.agrformet.2018.08.019
https://doi.org/10.1371/journal.pone.0217520
https://doi.org/10.1016/j.agwat.2019.105758
https://doi.org/10.1016/j.jhydrol.2019.04.085
https://doi.org/10.32604/iasc.2020.010130
https://doi.org/10.1016/j.jhydrol.2020.125087
https://doi.org/10.1007/s12517-020-06293-8
https://doi.org/10.3390/w13233478
https://doi.org/10.1016/j.jenvman.2022.116890
https://www.ncbi.nlm.nih.gov/pubmed/36459782
https://doi.org/10.1155/2019/9575782
https://doi.org/10.1127/0941-2948/2006/0130
https://www.ncbi.nlm.nih.gov/pubmed/16741223
https://doi.org/10.1016/j.jhydrol.2012.12.034
https://doi.org/10.1016/j.agwat.2012.12.019
https://doi.org/10.1016/j.agwat.2013.05.003
https://doi.org/10.1007/s11269-016-1384-9
https://doi.org/10.1016/j.agwat.2018.09.036
https://doi.org/10.1016/S0378-3774(03)00199-9
https://doi.org/10.1061/(ASCE)0733-9437(2007)133:1(38)
https://doi.org/10.1016/j.jaridenv.2010.07.002
https://doi.org/10.1016/j.jhydrol.2015.06.057
https://doi.org/10.2166/nh.2015.091
https://doi.org/10.1016/j.agwat.2016.11.010
https://doi.org/10.2166/nh.2019.060


Water 2023, 15, 3954 30 of 30

50. Hargreaves, G.H.; Allen, R.G. History and evaluation of Hargreaves evapotranspiration equation. J. Irrig. Drain. Eng. 2003, 129,
53–63. [CrossRef]

51. Hu, Q.F.; Yang, D.W.; Wang, Y.T.; Yang, H.B. Global calibration of Hargreaves equation and its applicability in China. Adv. Water
Sci. 2011, 22, 160–167, (In Chinese with English abstract).

52. Hinton, G.E.; Osindero, S.; Teh, Y.-W. A Fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554.
[CrossRef]

53. Landeras, G.; Ortiz-Barredo, A.; López, J.J. Comparison of artificial neural network models and empirical and semi-empirical
equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain). Agric. Water Manag. 2008,
95, 553–565. [CrossRef]

54. Malik, A.; Kumar, A.; Kisi, O. Monthly pan-evaporation estimation in Indian central Himalayas using different heuristic
approaches and climate based models. Comput. Electron. Agric. 2017, 143, 302–313. [CrossRef]

55. Antonopoulos, V.Z.; Antonopoulos, A.V. Daily reference evapotranspiration estimates by artificial neural networks technique and
empirical equations using limited input climate variables. Comput. Electron. Agric. 2017, 132, 86–96. [CrossRef]

56. Ferreira, L.B.; da Cunha, F.F.; de Oliveira, R.A.; Fernandes Filho, E.I. Estimation of reference evapotranspiration in Brazil with
limited meteorological data using ANN and SVM—A new approach. J. Hydrol. 2019, 572, 556–570. [CrossRef]

57. Elbeltagi, A.; Nagy, A.; Mohammed, S.; Pande, C.B.; Kumar, M.; Bhat, S.A.; Zsembeli, J.; Huzsvai, L.; Tamás, J.; Kovács, E.; et al.
Combination of limited meteorological data for predicting reference crop evapotranspiration using artificial neural network
method. Agronomy 2022, 12, 516. [CrossRef]

58. Traore, S.; Luo, Y.; Fipps, G. Deployment of artificial neural network for short-term forecasting of evapotranspiration using public
weather forecast restricted messages. Agric. Water Manag. 2016, 163, 363–379. [CrossRef]

59. Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining ACM, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.

60. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T. LightGBM: A highly efficient gradient boosting decision tree. In
Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017.

61. Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased boosting with categorical features. Adv.
Neural Inform. Proc. Syst. 2018, 31, 1–11.

62. Dorogush, A.V.; Ershov, V.; Gulin, A. CatBoost: Gradient boosting with categorical feature support. arXiv 2018, arXiv:1810.11363.
63. Yin, J.; Deng, Z.; Ines, A.V.; Wu, J.; Rasu, E. Forecast of short-term daily reference evapotranspiration under limited meteorological

variables using a hybrid bidirectional long short-term memory model (Bi-LSTM). Agric. Water Manag. 2020, 242, 106386.
[CrossRef]

64. Liu, Q.; Wu, Z.; Cui, N.; Zhang, W.; Wang, Y.; Hu, X.; Gong, D.; Zheng, S. Genetic Algorithm-Optimized Extreme Learning
Machine Model for Estimating Daily Reference Evapotranspiration in Southwest China. Atmosphere 2022, 13, 971. [CrossRef]

65. Tomas-Burguera, M.; Vicente-Serrano, S.M.; Grimalt, M.; Begueria, S. Accuracy of reference evapotranspiration (ETo) estimates
under data scarcity scenarios in the Iberian peninsula. Agric. Water Manag. 2017, 182, 103–116. [CrossRef]

66. Mallikarjuna, P.; Jyothy, S.A.; Murthy, D.S.; Reddy, K.C. Performance of recalibrated equations for the estimation of daily reference
evapotranspiration. Water Resour. Manag. 2014, 28, 4513–4535. [CrossRef]

67. Dong, J.; Liu, X.; Huang, G.; Fan, J.; Wu, L.; Wu, J. Comparison of four bio-inspired algorithms to optimize KNEA for predicting
monthly reference evapotranspiration in different climate zones of China. Comput. Electron. Agric. 2021, 186, 106211. [CrossRef]

68. Zhao, Z.; Feng, G.; Zhang, J. The simplified hybrid model based on BP to predict the reference crop evapotranspiration in
Southwest China. PLoS ONE 2022, 17, e0269746. [CrossRef] [PubMed]

69. Ballesteros, R.; Ortega, J.F.; Moreno, M. FORETo: New software for reference evapotranspiration forecasting. J. Arid. Environ.
2016, 124, 128–141. [CrossRef]

70. George, W.; Pruitt, W.O.; Dong, A. Evapotranspiration modeling. In CIMIS Final Report 10013-A; Land, Air, and Water Research
Paper Series B; Utah State University: Logan, UT, USA, 1985; Volume 53812, pp. 3.36–3.61.

71. Li, F.Z.; Beswick, A. Sensitivity of the FAO-56 Crop Reference Evapotranspiration to Different Input Data; Technical Report; Queensland
Government, Natural Resources and Mines: Brisbane City, QLD, Australia, 2005; pp. 1–14.

72. Popova, Z.; Kercheva, M.; Pereira, L.S. Validation of the FAO methodology for computing ETo with limited data, application to
south Bulgaria. Irrig. Drain. 2006, 55, 201–215. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1061/(ASCE)0733-9437(2003)129:1(53)
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1016/j.agwat.2007.12.011
https://doi.org/10.1016/j.compag.2017.11.008
https://doi.org/10.1016/j.compag.2016.11.011
https://doi.org/10.1016/j.jhydrol.2019.03.028
https://doi.org/10.3390/agronomy12020516
https://doi.org/10.1016/j.agwat.2015.10.009
https://doi.org/10.1016/j.agwat.2020.106386
https://doi.org/10.3390/atmos13060971
https://doi.org/10.1016/j.agwat.2016.12.013
https://doi.org/10.1007/s11269-014-0733-9
https://doi.org/10.1016/j.compag.2021.106211
https://doi.org/10.1371/journal.pone.0269746
https://www.ncbi.nlm.nih.gov/pubmed/35696403
https://doi.org/10.1016/j.jaridenv.2015.08.006
https://doi.org/10.1002/ird.228

	Introduction 
	Materials and Methodology 
	Study Area and Data Collection 
	Study Area 
	Data Collection 

	Methodology 
	FAO Penman–Monteith (PM) Equation 
	Temperature Penman–Monteith (PMT) Equation 
	Penman–Monteith Forecast (PMF) Equation 
	Hargreaves–Samani (HS) Equation 
	Multilayer Perceptron (MLP) with Multiple Hidden Layers 
	Extreme Gradient Boosting (XGBoost) 
	Light Gradient Boosting Machine (LightGBM) 
	Gradient Boosting with Categorical Feature Support (CatBoost) 
	Input Combinations and Hyperparameter Tuning Methods for the Four Machine Learning Models 

	Calibration Methods for Empirical Equations 
	Evaluation Criteria 

	Results and Discussion 
	Prediction Performance of the Weather Variables in the Public Weather Forecast Information 
	Single-Parameter Performance 
	Seasonality of the Prediction Performance 

	Calibration and Validation of the Three Empirical Equations 
	Performance Comparison of ETo Prediction by the Four Machine Learning Algorithms under the Various Input Combinations 
	ETo Prediction Performance Evaluation of the Seven Models Based on Public Weather Forecasts 
	Daily ETo Prediction Performance of the Seven Models 
	Seasonality of the Daily ETo Prediction Performance of the Seven Models 

	Impact of Weather Variable Prediction Based on Public Weather Forecasts on Daily ETo Prediction 

	Conclusions 
	References

