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Abstract: The relationship between climate change and extreme precipitation is extremely complex.
From a probabilistic perspective, a proper understanding of the response of extreme precipitation to
climate change is of significant importance. This study was based on daily precipitation provided
by CMIP6 climate models and employed copula functions to construct joint distributions of precip-
itation amount and precipitation intensity indices at different quantile levels. A spatial–temporal
assessment of the susceptibility areas for extreme precipitation in the Yellow River Basin was con-
ducted while considering bivariate return periods and design values. The results indicate that there
were significant spatial differences in the bivariate return periods. Taking the R90P-SDII (90) index
for a 20a return period as an example, the difference between the maximum and minimum joint
return periods within the Yellow River Basin was 1.4 times, while the co-occurring return period
was 7.0 times, and the Kendall return period was 4 times. Moreover, this difference increased with
the increase in the return period. The magnitude order of the four return periods is as follows:
TAnd > TKendall > TSingle-variable > TOr. Joint return periods (Or) and co-occurring return periods (And)
could be considered as the extreme cases under single-variable return periods, serving as an es-
timation interval for actual return periods. Under the influence of climate change, the bivariate
design values for future periods exhibited a variability increase of 6.76–28.8% compared to historical
periods, and this increase grew with higher radiative forcing scenarios, ranking as SSP126 < SSP245 <
SSP585. The bivariate design values showed a noticeable difference in variability compared to the
single-variable design values, ranging from −0.79% to 18.67%. This difference increased with higher
quantile values, with R95P-SDII (95) > R90P-SDII (90) > PRCPTOT-SDII.

Keywords: CMIP6; copula function; extreme precipitation; Yellow River

1. Introduction

Persistent extreme weather events, such as droughts, floods, and heat waves, are
significantly altering natural ecosystems and directly leading to the degradation of ecosys-
tem services. According to a report published by the National Oceanic and Atmospheric
Administration (NOAA, 2021), the global average temperature in 2021 increased by 0.85 ◦C
compared to the 1980s. This increase in temperature led to increased moisture storage in
the atmosphere, resulting in more short-term precipitation. In addition, the global annual
surface temperature is projected to increase by 1.4–5.8 ◦C by the end of this century, which
will increase the frequency and intensity of extreme weather events in many regions of
the world [1]. In recent years, extreme weather events have raised public awareness of
environmental issues due to their suddenness and extreme rainfall intensity, which can
trigger secondary disasters, such as floods and landslides [2,3].

Engineering design requires frequency design of hydrological and meteorological vari-
ables. Frequency analysis of extreme weather events and obtaining reliable design values
under specific return periods are essential references for urban drainage, dam construction,
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and climate-change-related projects [4]. Extreme weather events are often characterized by
different parameters. Currently, numerous studies are dedicated to analyzing individual
variables and have identified significant changes in the frequency, intensity, duration, and
spatial distribution of extreme weather events at regional and global scales. While some
studies have examined the characteristics of extreme precipitation events, it is important to
note that the variables of extreme precipitation events are not independent of each other
and exhibit some degree of joint behavior. The joint distribution can contribute to a more
comprehensive understanding of the variability of precipitation events [5]. Among various
multivariate analysis methods, copula functions offer computational convenience and
flexible options for selecting marginal distribution functions, allowing for a clearer under-
standing of multivariate joint distributions. Copula methods have emerged as important
tools in hydrological research for disaster assessment, combination analysis of hydrolog-
ical events, and the definition of extreme weather events [6]. The specific definition of
extreme events can often influence their attribution to climate warming [7]. For extreme
precipitation, the most commonly used indicators are the extreme precipitation indices
recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI),
which comprehensively assess precipitation characteristics in terms of quantity, intensity,
and frequency [8].

The CMIP6 project represents a significant advancement in the field of climate model-
ing, featuring updated model versions, improved representation of physical processes, and
enhanced spatial resolution compared to previous CMIP phases [7–10]. These improve-
ments contribute to a more accurate representation of regional climate patterns, which is
particularly crucial for our study focusing on extreme precipitation in the Yellow River
Basin [11–14]. The selected CMIP6 models have been shown to exhibit better skill in simu-
lating the historical climate conditions in the Yellow River Basin, capturing key features
such as the seasonal distribution of precipitation and temperature trends [15,16]. This en-
hanced model performance provides a solid foundation for assessing the impact of climate
change on extreme precipitation events in the region [17]. The comprehensive estimates’
availability for extreme precipitation indices in the selected CMIP6 models facilitated our
comparative analysis between historical and future scenarios [18–20]. This data-rich envi-
ronment allowed for a robust examination of how extreme precipitation may evolve in the
Yellow River Basin under different shared socioeconomic pathways [21–24].

The aim of this study was to establish a method for analyzing the probability charac-
teristics of future extreme precipitation in the Yellow River Basin. Based on the preferred
evaluation and multimodel ensemble of CMIP6, we extracted 12 extreme precipitation
indices to represent the temporal evolution and spatial distribution characteristics of ex-
treme precipitation events in the Yellow River Basin under historical and future scenarios.
Using measured data from multiple stations within the basin and performing univari-
ate and bivariate frequency analysis at different percentiles of extreme precipitation, we
moved from point to area to analyze the regional probability distribution characteristics of
extreme precipitation.

2. Materials and Methods
2.1. Study Area

The study area encompasses the Yellow River Basin, spanning from 95◦53′ E to
119◦05′ E and 32◦10′ N to 41◦50′ N. The Yellow River, which is the second-longest river in
China, flows through this region, covering a total length of 5464 km and a basin area of
752,400 km2 (Figure 1). The Yellow River Basin holds significant importance as a crucial
agricultural and energy production base in China. This region is situated within China’s
arid and semi-arid zones, influenced by the East Asian summer monsoon climate and the
Northern Hemisphere’s westerly winds. Precipitation exhibits both temporal and spatial
variations, with the majority of annual rainfall occurring between June and August. Spa-
tially, precipitation decreases from southeast to northwest, with nearly a tenfold difference
between high- and low-precipitation zones. The annual evaporation rate reaches 1100 mm,
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while the multiyear average annual precipitation is approximately 476 mm, and the annual
average temperature is 8 ◦C. Over the past 70 years, the Yellow River Basin has experienced
a notable warming trend, with an average rate of temperature increase of 0.31 ◦C per
decade, which is twice the global warming rate. This region is considered sensitive to
global climate change.
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2.2. Datasets

(1) Hydro-Meteorological data

The observational data used in this study comprised two main sources: ERA5 re-
analysis estimates and station-based measurements. ERA5 reanalysis estimates, which
provide global climate information at an approximately 0.25◦ resolution, were obtained
from the European Centre for Medium-Range Weather Forecasts and have been validated
for their reliability in reproducing global daily precipitation estimates. Additionally, his-
torical station-based climate estimates were acquired from the National Climate Center
(Version 2.0); these included the daily precipitation records from 94 surface meteorological
stations within the Yellow River Basin spanning the years 1980 to 2014 (the data were re-
leased after being corrected by the national meteorological department, and their accuracy
is highly reliable). Rainfall and runoff covering the period from 1960 to 2018 were extracted
and compiled from the Yellow River Basin Hydrological Yearbook (the data were released
after being corrected by the national water conservancy department, and their accuracy is
highly reliable). All data were systematically organized into 1-h time steps. The selection
of precipitation events followed the criterion that a period of 24 h without precipitation
defined the end of one precipitation event. Furthermore, using Python 3.6, we constructed
three bivariate joint probability distributions for the pairs of PRCPTOT-SDII, R90P-SDII (90),
and R95P-SDII (95) by utilizing the optimal probability distribution functions determined
for each of the six extreme precipitation indices (Table 1). Subsequently, a cross-sectional
comparative analysis was conducted to discern differences between extreme precipitation
and regular precipitation in the Yellow River Basin.

Table 1. Extreme precipitation index.

Abbreviation Name Definition Unit

PRCPTOT Annual precipitation ≥1 mm precipitation daily cumulative amount mm
SDII Precipitation intensity The ratio of total precipitation ≥1 mm to number of days mm/d
R95P Heavy precipitation The sum of 95% quantile values of intense precipitation mm

SDII (95) Heavy precipitation intensity The ratio of the sum of heavy precipitation to the number
of heavy precipitation days mm/d

R90P Heavy rainfall The part of precipitation exceeding the 90th percentile in
precipitation events mm

SDII (90) Heavy precipitation intensity
The sum of rainfall for heavy rain events exceeding the

90th percentile value divided by the number of days with
heavy rain

mm/d
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(2) Climate Model Data

This study utilized climate models from the CMIP6 project and selected six climate
models based on their performance and availability of estimates for extreme precipitation
indices in the Yellow River Basin [25,26] (Table 2). The estimates were sourced from
https://esgf-index1.ceda.ac.uk/projects/cmip6-ceda/ (accessed on 11 March 2023). The
CMIP6 model encompasses historical simulations spanning the period from 1970 to 2014
as well as the future projected daily precipitation from 2015 to 2100. To maintain temporal
consistency in our analysis, we defined the historical reference period as 1980 to 2014.
For the purpose of comparative analysis from 2022 to 2100, we selected three distinct
socioeconomic scenarios, namely SSP126, SSP245, and SSP585, representing low, medium,
and high shared socioeconomic pathways.

Table 2. Climate model.

Numbers Climate Model Resolution Ratio Country

1 EC-Earth3 100 km Britain
2 EC-Earth3-Veg 100 km Sweden
3 GFDL-ESM4 100 km America
4 MPI-ESM1-2-HR 100 km Germany
5 MRI-ESM2-0 100 km Japan
6 IPSL-CM6A-LR 100 km France

2.3. Methodology
2.3.1. Model Establishment and Selection

Based on the copula function, for any bivariate random variables, as long as their
marginal distribution functions FX(x) and FY(y) are determined and the marginal distribu-
tion functions are continuous functions, there must exist a unique two-dimensional copula
function Cθ (x, y), F(x, y) = Cθ(FX(x), FY(y)) [27]. Similarly, this definition can be ex-
tended to the joint distribution functions in n dimensions. The Sklar theorem demonstrates
that the generation process of joint distributions primarily depends on the determination
of the copula function and marginal distribution functions. Common copula functions
are mainly classified into three categories: elliptical, quadratic, and Archimedean types.
Among them, Archimedean copula functions, due to having only one parameter and
simplicity in modeling, have been widely used in hydrological research for modeling vari-
able dependence, frequency analysis, obtaining reliable design values for specific return
periods, and risk mitigation [28,29]. Consequently, this study focused on the application
of copula functions in bivariate analysis by utilizing three common Archimedean copula
functions (the Gumbel–Hougaard copula, Clayton copula, and Frank copula) (Table 3) to
establish the bivariate joint probability distributions for three extreme precipitation indices
(PRCPTOT-SDII, R90P-SDII (90), and R95P-SDII (95)).

Table 3. Information on the copula functions.

Copula
Function

Generating
Elements Density Function Distribution Function

G-H ϕ(t) = (− ln t)θ

cG(u, c) = (− ln u)θ−1(− ln v)θ−1 [θ−1+(− ln u)θ+(− ln v)θ ]

uve[(− ln u)θ+(− ln v)θ ]
1/θ ; θ ∈ [1, ∞)

CG(u, c) = exp
{
−[(− ln u)θ + (− ln v)θ ]

1/θ
}

; θ ∈ [1, ∞)

Clayton ϕ(t) = t−θ − 1 ccl(u, c) = (1+θ)µ−1−θ v−1−θ

(u−θ+v−θ−1)
1+2θ

θ

; θ ∈ [1, ∞) Ccl(u, c) = (u−θ + v−θ − 1)−1/θ ; θ ∈ [1, ∞)

Frank ϕ(t) = − ln e−θt−1
e−θ−1

cF(u, v) = θe−θ(u+v) (e−θ−1)

(e−θ(u+v)−e−θu−e−θ+e−θ )
2 ; θ ∈ R CF(u, v) = − 1

θ ln[1 + (e−θu−1)(e−θv−1)
(e−θ−1)

]; θ ∈ R

There is a non-deterministic interaction and interdependence among hydrological
events. In this study, the Kendall rank correlation coefficient was chosen as a metric to
measure the correlation between variables. Parameter estimation is a critical component
in building copula multivariate stochastic models. Currently, commonly used estimation

https://esgf-index1.ceda.ac.uk/projects/cmip6-ceda/
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methods include the correlation index method, the maximum likelihood method, the kernel
density estimation method, the moment estimation method, and the Inference Function for
Margins (IFM) estimation method. Among these, the correlation index method is preferred
for constructing two-dimensional probability models due to its simplicity in computation,
good convergence properties, and ease in implementation. Therefore, in this study, the
correlation index method was used to estimate the parameters of the copula function [30,31]
with the specific solution methods detailed in Table 4. In addition, to select the most
appropriate copula function to describe the correlation between two variables, this paper
used the Genest–Rivest graphical analysis method and the least squares OLS discrepancy
criterion to evaluate and test the goodness of fit for three Archimedean copula functions.

Table 4. Functional correlation and Kc.

Function Relationship between τ and θ Kc

Gumbel τ = 1− 1
θ , θ ∈ [0, 1) K = t− t ln t

θ

Clayton τ = θ
2+θ , θ ∈ (0, ∞) K = t− t(tθ−1)

θ

Frank τ = 1 + 4
θ [

1
θ

∫ θ
0

t
exp(t)−1 dt− 1], θ ∈ R K = t− (eθt−1)

θ ln e−θt−1
e−θ−1

2.3.2. Calculation of Return Periods

In the context of hydrological events, there is often a focus on the frequency of ex-
ceeding a particular threshold, which is referred to as the exceedance probability (return
period). When calculating return periods for two-dimensional joint distributions, they can
be categorized based on different definitions of risk, including univariate return periods,
joint return periods (logical “or”), concurrent return periods (logical “and”), and Kendall
return periods. The calculation methods are as follows:

Return periods for univariate events:

T(x1) = 1/ (1− F(x1)) (1)

The joint recurrence period means that at least one of the two variables exceeds the
given recurrence period, which is calculated as:

Tor =
1

1− C(u, v)
(2)

The co-occurrence recurrence period means that two variables exceed the given recur-
rence period at the same time, and its calculation formula is as follows:

TAnd =
1

1− u− v + C(u, v)
(3)

The Kendall return period is determined by the Kendall measure Kc:

TKendall =
1

1− Kc(t)
(4)

Kc(t) = P(C(u, v) ≤ t) = t− ϕ(t)
ϕ′(t)

(5)

where ϕ(t) is the generator of the copula function, ϕ’(t) is its derivative, and the value of Kc
is given in Table 4.

2.3.3. Estimation of Design Values

Conducting frequency analysis of hydrological variables and obtaining reliable design
values for a given return period is a crucial reference point for the design of urban drainage
systems, dams, spillways, and other engineering projects. For univariate events, the critical
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probability P for a given return period T can be uniquely determined by using the inverse
function of Fx to obtain the design value. The design value is given as P = 1 − 1/T.

x = Fx
−1(P) (6)

For a two-dimensional joint probability distribution F(x, y) = Cθ(FX(x), FY(y)) = C(u, v),
given a return period T, there exists a series of bivariate combinations that satisfy design
requirements. Specifically, bivariate combinations with the same joint probability form a
critical curve C(u, v) = P. Among these combinations, there will inevitably be one combina-
tion that maximizes the joint density function f (u, v). This combination represents the most
likely design combination to occur. The design values of this combination are determined
using the maximum likelihood method, where the objective function is defined as follows:

Z = max f (u, v) = c(u, v) f1(u) f2(v) (7)

where f (u, v) represents the joint probability density function, c(u, v) represents the proba-
bility density function of the two-dimensional copula function, and f 1(u, v) represents the
marginal density functions of the two variables.

Based on the combination of (um, vm) that maximizes the f (u, v) obtained, we then
calculated the design values using the inverse functions of their marginal distribution
functions. Specifically, x = Fx−1(um) and y = Fy−1(vm), where Fx−1 and Fy−1 are the inverse
functions of the marginal distribution functions.

3. Results
3.1. Optimal Selection and Applicability Analysis of Copula Functions

Using the Kendall rank correlation coefficient to test the correlations between three
indices (PRCPTOT-SDII, R90P-SDII (90), and R90P-SDII (95)) (Figure 2), the results indicate
that as precipitation became more extreme, the correlation between precipitation amount
and precipitation intensity weakened, specifically Corr (PRCPTOT-SDII) > Corr (R90P-SDII (90)) >
Corr (R95P-SDII (95)). With an increase in radiative intensity, the correlation between the pre-
cipitation amount and precipitation intensity became stronger, with CorrSSP126 (PRCPTOT-SDII)
> CorrSSP245 (PRCPTOT-SDII) > CorrSSP585 (PRCPTOT-SDII). Spatially, there was noticeable spatial
continuity in the correlation between the precipitation amount and precipitation intensity,
mirroring the spatial distribution of the precipitation amount by generally exhibiting a
southeast-to-northwest decreasing trend. In regions with high precipitation amounts, the
correlation between precipitation amount and precipitation intensity was stronger.

Based on the graphical analysis and taking the upstream “Jiuzhi” station in the wa-
tershed as an example (Figure 3), in the context of the two-dimensional empirical points
and theoretical data points, there was a relatively uniform distribution on both sides of
the 45-degree line. The differences between the three Archimedean copulas were not
significant, and all of them could effectively describe the dependence between the indices.
The coefficients of determination (R2) for the functional fits were all greater than 0.99. The
fit of the empirical points for the three two-dimensional joint distributions was similar.
The Gumbel copula and Frank copula tended to underestimate the observed points, while
the Clayton copula tended to overestimate the observed points (Figure 3). Combining the
graphical analysis with the Ordinary Least Squares (OLS) minimum criterion (Figure 4),
the results indicate that during the historical period, the Clayton copula provided the best
description for the PRCPTOT-SDII index, the Frank copula was optimal for the R90P-SDII
(90) index, and the Clayton copula was optimal for the R95P-SDII (95) index. Similarly,
the optimal copula functions could be obtained for various indices between other stations
within the watershed, both historical and future.
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There was a clear spatial pattern in the optimal copula functions among the indices
within the watershed (Figure 5). Overall, when the G-H copula function was considered
as the optimal copula function, it tended to be more distributed in the midstream of the
watershed. When the Frank copula function was the optimal choice, it was more prevalent
in the upstream and downstream regions of the watershed. Looking specifically at the
index pairs (Figure 6), the Frank copula function provided the best description of the
dependence between the PRCPTOT-SDII index pairs, with proportions of 35.1%, 48.9%,
59.6%, and 60.6% for the historical and SSP126, SSP245, and SSP585 scenarios, respectively.
The Clayton copula function was optimal for describing the dependence between the R90P-
SDII (90) index pairs, with proportions of 56.4%, 67.0%, 44.7%, and 37.2% for the historical
and SSP126, SSP245, and SSP585 scenarios, respectively. The Clayton copula was also the
optimal choice for describing the dependence between the R95P-SDII (95) index pairs, with
proportions of 68.1%, 78.7%, 69.1%, and 63.8% for the historical and SSP126, SSP245, and
SSP585 scenarios, respectively. In general, the Clayton copula was selected more frequently
as the optimal copula function as quantile values increased. This suggests that the Clayton
copula has an advantage over the other two Archimedean copulas in describing the joint
probability distribution of extreme events.



Water 2023, 15, 3957 8 of 19Water 2023, 15, x FOR PEER REVIEW 8 of 20 
 

 

 
Figure 3. Cooperation between the two-dimensional empirical estimates and theoretical estimates. 

 
Figure 4. Features of optimal copula functions at Jiuzhi Station: (A,D) PRCPTOT-SDII; (B,E) R90P-
SDII (90); (C,F) R95P-SDII (95). 

Figure 3. Cooperation between the two-dimensional empirical estimates and theoretical estimates.

Water 2023, 15, x FOR PEER REVIEW 8 of 20 
 

 

 
Figure 3. Cooperation between the two-dimensional empirical estimates and theoretical estimates. 

 
Figure 4. Features of optimal copula functions at Jiuzhi Station: (A,D) PRCPTOT-SDII; (B,E) R90P-
SDII (90); (C,F) R95P-SDII (95). 

Figure 4. Features of optimal copula functions at Jiuzhi Station: (A,D) PRCPTOT-SDII; (B,E) R90P-
SDII (90); (C,F) R95P-SDII (95).



Water 2023, 15, 3957 9 of 19

Water 2023, 15, x FOR PEER REVIEW 9 of 20 
 

 

There was a clear spatial paĴern in the optimal copula functions among the indices 
within the watershed (Figure 5). Overall, when the G-H copula function was considered 
as the optimal copula function, it tended to be more distributed in the midstream of the 
watershed. When the Frank copula function was the optimal choice, it was more prevalent 
in the upstream and downstream regions of the watershed. Looking specifically at the 
index pairs (Figure 6), the Frank copula function provided the best description of the de-
pendence between the PRCPTOT-SDII index pairs, with proportions of 35.1%, 48.9%, 
59.6%, and 60.6% for the historical and SSP126, SSP245, and SSP585 scenarios, respec-
tively. The Clayton copula function was optimal for describing the dependence between 
the R90P-SDII (90) index pairs, with proportions of 56.4%, 67.0%, 44.7%, and 37.2% for the 
historical and SSP126, SSP245, and SSP585 scenarios, respectively. The Clayton copula 
was also the optimal choice for describing the dependence between the R95P-SDII (95) 
index pairs, with proportions of 68.1%, 78.7%, 69.1%, and 63.8% for the historical and 
SSP126, SSP245, and SSP585 scenarios, respectively. In general, the Clayton copula was se-
lected more frequently as the optimal copula function as quantile values increased. This sug-
gests that the Clayton copula has an advantage over the other two Archimedean copulas in 
describing the joint probability distribution of extreme events. 

 
Figure 5. Spatial distribution of the extreme precipitation index against the optimal copula joint 
distribution under historical and future scenarios. 
Figure 5. Spatial distribution of the extreme precipitation index against the optimal copula joint
distribution under historical and future scenarios.

Water 2023, 15, x FOR PEER REVIEW 10 of 20 
 

 

 
Figure 6. Combined distribution percentages of the extreme precipitation index for the optimal cop-
ula under historical and future scenarios. 

3.2. Bivariate Recurrence Period 
The index combining the precipitation amount and precipitation intensity represents 

the magnitude and intensity of precipitation occurring simultaneously in the region 
throughout the year. If the probability of both occurring together is high or the design 
value is significant, it indicates that the region is prone to exposure to extreme precipita-
tion with high amounts and intensity. This categorizes it as an area susceptible to extreme 
precipitation with a higher likelihood of experiencing flooding disasters. Using the se-
lected copula functions in Equations (3)–(5). We calculated the joint recurrence periods, 
coincident recurrence periods, and Kendall recurrence periods between the three index 
pairs (PRCPTOT-SDII, R90P-SDII (90), and R95P-SDII (95)) under different scenarios for 
historical and future periods and the given single-variable recurrence periods (2a, 5a, 10a, 
20a, 50a, and 100a). This analysis aided in identifying regions within the watershed that 
are prone to extreme precipitation. 

As the single-variable recurrence periods increased, the joint recurrence period, co-
incident recurrence period, and Kendall recurrence period all increased. This suggests an 
inseparable inherent relationship between extreme precipitation indices, with larger sin-
gle-variable recurrence periods corresponding to greater increases in these three recur-
rence periods. Bivariate recurrence periods exhibit significant spatial differences. Taking 
the example of the R90P-SDII (90) index under a 20-year recurrence period, the difference 
between the maximum and minimum joint recurrence periods within the Yellow River 
Basin is 1.4 times, that of the coincident recurrence period is 7.0 times, and that of the 
Kendall recurrence period is 4 times, and this difference increases with larger recurrence 
periods. Similar bivariate recurrence periods under the same recurrence period show dis-
tinct differences among the index pairs, with the paĴern being PRCPTOT-SDII < R90P-
SDII (90) < R95P-SDII (95). For instance, in terms of the Kendall recurrence period, the 
maximum value of PRCPTOT-SDII is 1.8 times the minimum value, that of R90P-SDII (90) 
is 4.0 times, and that of R95P-SDII (95) is 4.0 times. 

Using a 20-year single-variable recurrence period as an example, the spatial distribu-
tion characteristics of bivariate recurrence periods are shown in Figures 7–9. For the joint 
recurrence period (Figure 7), its distribution was similar to that of the corresponding ex-
treme precipitation indices, generally decreasing from southeast to northwest and with a 
larger variability in recurrence rates from southeast to northwest. The smaller joint recur-

Figure 6. Combined distribution percentages of the extreme precipitation index for the optimal
copula under historical and future scenarios.

3.2. Bivariate Recurrence Period

The index combining the precipitation amount and precipitation intensity repre-
sents the magnitude and intensity of precipitation occurring simultaneously in the region
throughout the year. If the probability of both occurring together is high or the design
value is significant, it indicates that the region is prone to exposure to extreme precipitation
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with high amounts and intensity. This categorizes it as an area susceptible to extreme
precipitation with a higher likelihood of experiencing flooding disasters. Using the se-
lected copula functions in Equations (3)–(5). We calculated the joint recurrence periods,
coincident recurrence periods, and Kendall recurrence periods between the three index
pairs (PRCPTOT-SDII, R90P-SDII (90), and R95P-SDII (95)) under different scenarios for
historical and future periods and the given single-variable recurrence periods (2a, 5a, 10a,
20a, 50a, and 100a). This analysis aided in identifying regions within the watershed that
are prone to extreme precipitation.

As the single-variable recurrence periods increased, the joint recurrence period, coin-
cident recurrence period, and Kendall recurrence period all increased. This suggests an
inseparable inherent relationship between extreme precipitation indices, with larger single-
variable recurrence periods corresponding to greater increases in these three recurrence peri-
ods. Bivariate recurrence periods exhibit significant spatial differences. Taking the example
of the R90P-SDII (90) index under a 20-year recurrence period, the difference between the
maximum and minimum joint recurrence periods within the Yellow River Basin is 1.4 times,
that of the coincident recurrence period is 7.0 times, and that of the Kendall recurrence
period is 4 times, and this difference increases with larger recurrence periods. Similar bivari-
ate recurrence periods under the same recurrence period show distinct differences among
the index pairs, with the pattern being PRCPTOT-SDII < R90P-SDII (90) < R95P-SDII (95).
For instance, in terms of the Kendall recurrence period, the maximum value of PRCPTOT-
SDII is 1.8 times the minimum value, that of R90P-SDII (90) is 4.0 times, and that of
R95P-SDII (95) is 4.0 times.

Using a 20-year single-variable recurrence period as an example, the spatial distri-
bution characteristics of bivariate recurrence periods are shown in Figures 7–9. For the
joint recurrence period (Figure 7), its distribution was similar to that of the corresponding
extreme precipitation indices, generally decreasing from southeast to northwest and with
a larger variability in recurrence rates from southeast to northwest. The smaller joint
recurrence periods indicated a higher likelihood of large precipitation amounts or intense
precipitation occurring separately during the year, implying a lower risk of concentrated
extreme precipitation in these areas. High-value areas were located in the southern and
northwestern parts of the basin, including the Weihe River, Yiluo River, and parts of the
Jinghe River Basin. Low-value areas were found in the middle reaches of the basin, from
Lanzhou to Huayuankou, including the Kuye River Basin. Compared to the historical
periods, the joint recurrence periods tended to decrease in future scenarios, possibly due to
different sequence lengths. For the coincident recurrence periods and Kendall recurrence
periods (Figures 8 and 9), their distributions were opposite to those of the correspond-
ing extreme precipitation indices, showing an overall increasing trend from southeast to
northwest. Lower joint recurrence periods indicated a higher probability of encountering
heavy rainfall and intense precipitation events, implying a greater flood risk in these areas.
Figures 9 and 10 demonstrate that low-value areas were located in the southeastern part of
the basin, where precipitation was abundant and concentrated, resulting in a higher prob-
ability of extreme precipitation risk. High-value areas were situated in the northwestern
part of the basin, mainly from Lanzhou to Huayuankou, where precipitation was abundant
but less intense, indicating a higher number of rainy days and dispersed precipitation,
resulting in a lower risk of extreme precipitation.

The probability order of the four recurrence periods is as follows: TAnd > TKendall >
TSingle-variable > TOr. The joint recurrence period (Or) and coincident recurrence period (And)
can be considered as the maximum and minimum extremes under single-variable recur-
rence periods, serving as the estimated range for actual recurrence periods. The patterns
during recurrence periods can be explained from the perspective of safety thresholds and
danger thresholds. Figure 10 describes the safety threshold ranges identified by three
recurrence periods (the Kendall recurrence period, coincident recurrence period, and joint
recurrence period). The safety threshold range identified by the joint recurrence period
(Or) is the rectangular area in the lower left corner, while the Kendall recurrence period
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defines the lower part of the curve C(u,v) as the safety zone. The coincident recurrence
period, building upon the Kendall recurrence period, further adds the And part as a safety
threshold region. It can be observed that the danger threshold range defined by the Kendall
recurrence period is not excessively large or small compared to the coincident recurrence
period and joint recurrence period. This ensures engineering safety while avoiding exces-
sive costs. Thus, this paper used the Kendall recurrence period as the recurrence period
design for two-dimensional joint distribution.
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3.3. Bivariate Design Values

As shown in the contour plots (Figure 11), several combinations of extreme precipi-
tation characteristics satisfied a certain joint probability under a given recurrence period.
In this study, the maximum likelihood method was used to find the combination design
values that maximized the probability of occurrence under the specified Kendall recurrence
periods (2a, 5a, 10a, 20a, 50a, and 100a). Larger combination design values under a given
Kendall recurrence period indicated a higher probability of extreme precipitation in that
region. According to Table 5, under the influence of climate change, the future bivariate
design values showed variations ranging from 6.76% to 28.8% compared to historical
periods. The increase in magnitude was observed to be greater with increasing radiative
forcing scenarios, with a trend of SSP126 < SSP245 < SSP585. The bivariate design values
were significantly different from the single-variable design values, with variations ranging
from −0.79% to −18.67%. This difference increased with higher quantiles, as shown by
R95P-SDII (95) > R90P-SDII (90) > PRCPTOT-SDII.
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Table 5. Bivariate design values and their change rate with univariate design values during 1980–2022
(his) and 2023–2100 (SSP126, SSP245, SSP585).

Index
Recurrence

Interval

Design
Value

Rate of Change Relative to
Historical Period (%)

Rate of Change Relative to Univariate
Design Value (%)

His SSP
126

SSP
245

SSP
585 His SSP

126
SSP
245

SSP
585

PRCP
TOT
(mm)

100a * 631.33 28.88 23.83 24.83 −5.27 −3.30 −3.99 −0.79
50a 619.43 25.45 23.00 24.71 −5.08 −2.82 −3.21 −2.50
20a 601.56 20.50 21.81 24.12 −4.75 −2.14 −2.42 −5.17
10a 585.02 23.90 20.76 23.47 −4.45 −1.74 −1.92 −1.60
5a 529.11 31.30 27.40 30.63 −9.97 −1.42 −1.47 −1.34
2a 529.11 20.25 15.35 18.48 −1.45 −1.26 −1.15 −1.09

SDII
(mm/day)

100a 4.29 18.54 16.37 18.50 −7.77 −2.91 −3.26 −0.95
50a 4.21 16.18 15.91 18.33 −7.46 −2.45 −2.80 −2.29
20a 4.10 15.78 15.30 18.16 −7.04 −1.91 −2.07 −1.77
10a 4.00 15.48 14.75 17.89 −6.71 −1.51 −1.48 −1.40
5a 3.88 15.19 14.17 17.53 −6.42 −1.16 −1.16 −1.09
2a 3.64 14.98 13.41 16.92 −6.24 −0.87 −0.87 −0.81

R90P
(mm)

100a 247.30 24.53 26.56 32.32 −14.09 −15.35 −14.08 −11.85
50a 237.41 23.69 24.75 30.46 −13.13 −13.80 −12.78 −11.30
20a 223.13 22.37 22.14 28.55 −11.61 −11.50 −10.81 −8.53
10a 210.01 21.40 20.08 25.20 −10.39 −9.65 −9.24 −7.99
5a 185.84 25.45 22.88 23.63 −12.52 −7.63 −7.40 −9.84
2a 151.60 22.43 20.99 20.99 −10.75 −7.42 −4.68 −7.49

SDII (90)
(mm/day)

100a 13.53 8.77 11.61 13.21 −8.84 −7.30 −7.17 −6.84
50a 13.22 9.28 11.50 13.18 −7.46 −6.27 −6.16 −5.79
20a 12.79 9.95 11.42 12.95 −5.76 −4.90 −4.78 −4.59
10a 12.44 10.48 11.38 13.05 −4.56 −3.87 −3.76 −3.49
5a 12.04 10.99 11.31 12.78 −3.28 −2.76 −2.69 −2.56
2a 11.31 12.34 11.35 12.33 −1.51 −0.61 −1.12 −1.24

R95P
(mm)

100a 170.64 22.67 24.52 28.55 −16.61 −17.69 −18.67 −17.65
50a 161.08 22.48 23.38 25.20 −15.10 −16.15 −16.67 −17.88
20a 147.53 22.52 21.62 24.50 −12.73 −13.40 −13.73 −15.22
10a 135.68 17.66 19.82 23.20 −10.70 −14.63 −11.50 −13.27
5a 121.53 22.27 17.89 20.53 −8.14 −8.56 −8.79 −11.49
2a 91.22 19.53 14.24 16.77 −6.25 −8.93 −7.75 −9.77

SDII (95)
(mm/day)

100a 16.75 8.17 10.70 11.84 −10.54 −10.46 −10.53 −10.04
50a 16.30 8.52 10.82 12.10 −8.96 −9.00 −8.73 −8.35
20a 15.67 9.15 11.01 12.47 −6.99 −7.08 −6.49 −6.19
10a 15.15 9.73 11.27 12.77 −5.57 −5.61 −4.84 −4.66
5a 14.58 10.20 11.44 13.05 −4.05 −4.23 −3.29 −3.12
2a 14.08 6.76 6.79 9.13 −1.91 −2.39 −2.67 −1.13

Note: * Year.

The bivariate design values for different return periods under historical and future
scenarios are shown in Figure 12. The spatial patterns of the bivariate design values of
the three index pairs showed relatively small changes between the historical and future
scenarios and were generally consistent with the spatial patterns of their respective extreme
precipitation indices. Overall, they showed an eastern surplus and a western deficit,
with more in the south and less in the north. For PRCPTOT-SDII, the downstream areas
of the basin were characterized as high-value regions, while the northern part of the
middle reaches was a low-value region, with noticeable differences between high- and
low-value areas. Differences in the SDII and PRCPTOT design value spatial patterns were
mainly concentrated in the middle and upper reaches of the basin, where precipitation
was abundant but less intense, indicating a significantly higher number of rainy days
compared to other regions. For the R90P-SDII (90) index pair, differences compared to the
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PRCPTOT-SDII index pair were mainly observed in the upstream region of the basin. This
shows that the proportion of extreme precipitation was significantly lower in the upstream
region, meaning that extreme precipitation occurred less frequently in the upstream region,
while the southeastern part of the basin showed the opposite trend. The spatial pattern of
the SDII (90) index confirmed that the downstream region of the basin experienced higher
intensity of extreme precipitation, and the probability of short duration heavy rainfall
events was greater compared to the upstream region. For the R95P-SDII (95) index pair, the
spatial patterns of the bivariate design values under historical and future scenarios were
similar to those of R90P-SDII (90). The main difference was the greater contrast between
high- and low-value areas, which increased with increased radiative forcing.

Water 2023, 15, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 12. Bivariate design values of the three indices in the Yellow River Basin for the 20a recur-
rence period under historical and future scenarios. 

Table 5. Bivariate design values and their change rate with univariate design values during 1980–
2022 (his) and 2023–2100 (SSP126, SSP245, SSP585). 

Index 
Recurrence 

Interval 

Design 
Value 

Rate of Change Relative to Historical 
Period (%) 

Rate of Change Relative to Univari-
ate Design Value (%) 

His 
SSP 
126 

SSP 
245 

SSP 
585 

His 
SSP 
126 

SSP 
245 

SSP 
585 

PRCP 
TOT 
(mm) 

100a * 631.33  28.88 23.83 24.83 −5.27 −3.30 −3.99 −0.79 
50a 619.43  25.45 23.00 24.71 −5.08 −2.82 −3.21 −2.50 
20a 601.56  20.50 21.81 24.12 −4.75 −2.14 −2.42 −5.17 
10a 585.02  23.90 20.76 23.47 −4.45 −1.74 −1.92 −1.60 
5a 529.11  31.30 27.40 30.63 −9.97 −1.42 −1.47 −1.34 

Figure 12. Bivariate design values of the three indices in the Yellow River Basin for the 20a recurrence
period under historical and future scenarios.



Water 2023, 15, 3957 15 of 19

4. Discussion

While there has been increasing attention paid to the prediction of precipitation runoff
under the influence of climate change [32,33], relatively little research has focused specifi-
cally on the contribution of extreme precipitation to runoff. This study investigated extreme
precipitation and its differences from regular precipitation by analyzing the extreme an-
nual precipitation and corresponding extreme precipitation intensity indices at different
quantiles. The results show that the correlation between the annual precipitation and
precipitation intensity decreased with increasing quantiles, and the relationship is shown
as PRCPTOT-SDII > R90P-SDII (90) > R95P-SDII (95). The correlation between precipitation
amount and intensity was weaker and in some cases negative for extreme precipitation
conditions. This may be related to the different contributions of weather systems to pre-
cipitation of different intensities [34,35], making the relationship between precipitation
characteristics more complex for extreme precipitation. Extreme precipitation has a higher
degree of randomness compared to normal precipitation [36]. To place these findings in
context, it is important to compare them with previous research in this area. Previous
studies have also examined the relationship between extreme precipitation and runoff in
various regions [37,38]. However, our research uniquely focused on the Yellow River Basin,
where extreme precipitation events have significant implications for flood risk. Our results
corroborate earlier findings regarding the increasing complexity of the relationship between
precipitation amount and intensity, particularly in the context of extreme precipitation.

To estimate the tail distribution of correlated environmental variables (e.g., precipi-
tation and wind speed) and to account for interdependencies between variables, copula
functions have become the standard tool for describing joint distributions of hydrological
variables. However, the optimal type of copula function for describing the dependence
between hydrological extremes remains unclear among numerous choices. This study
shows that three commonly used Archimedean copula functions exhibited regular patterns
for the three index pairs in both spatial and index-related contexts. With increasing quan-
tiles, the correlation between precipitation amount and precipitation intensity weakened,
and the optimal copula function gradually shifted from the Frank copula to the Clayton
copula. This was due to the properties of the copula functions and their relationship with
the indices. The Frank copula was better at capturing upper-tail correlations, while the
Clayton copula was better at modeling lower-tail, heavy-tailed relationships [39–41]. This
advantage was consistent across historical and future scenarios, suggesting that climate
change has a relatively small impact on the dependence between extreme precipitation
indices. Therefore, the Clayton copula is recommended as a preferred alternative for
modeling multivariate dependence in extreme precipitation studies compared to other
copula functions.

In comparison to previous research on copula functions, our study provides insights
into the suitability of specific copula functions for modeling the dependence between
extreme precipitation indices. Our findings reinforce the utility of the Clayton copula
in capturing lower-tail relationships, particularly in the context of extreme precipitation.
This has significant implications for the accurate modeling of multivariate dependence in
extreme precipitation studies.

Based on the bivariate recurrence periods and design values, this study identified
regions prone to extreme precipitation events of high magnitude and intensity occurring
simultaneously. When increasing the given return periods (2a, 5a, 10a, 20a, 50a, and 100a),
all three bivariate return periods increased, indicating an inherent, inseparable relation-
ship between the extreme precipitation indices. Moreover, as the given recurrence period
increased, the variations in these three recurrence periods became larger. The observed pat-
tern was that the coincident recurrence period increased the most, followed by the Kendall
recurrence period and then the joint recurrence period. For a 100a recurrence period, the
difference between the single-variable recurrence periods and the coincident recurrence
periods could be several hundred times larger. This phenomenon may be related to the
properties of copula functions, as the estimation error of out-of-sample frequency values
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increases with higher frequencies. Therefore, when using copula functions in multivariate
analysis, estimates for smaller return periods are more reliable and appropriate [42,43].

In terms of hydrological frequency analysis, our research contributes to a deeper
understanding of the impact of different return periods on bivariate recurrence periods.
Our findings emphasize the importance of considering the reliability and appropriateness
of estimates for smaller return periods in multivariate analysis, which can significantly
affect the assessment of flood risk.

Due to the inconsistency in the time series length between the historical and future
periods in this study, the bivariate return periods showed greater spatial differences in
historical periods compared to future scenarios. Therefore, the length and consistency of
time series are important considerations in studies investigating hydrological frequency
analysis under climate change. Longer and more consistent time series can capture more
characteristics, improve representativeness, and enhance comparability, leading to more
reliable results in hydrological forecasting [44,45].

In comparing historical and future scenarios, our research underscores the significance
of the time series length and consistency in the context of hydrological frequency analysis.
The differences observed between historical and future periods are a critical consideration
for researchers and policymakers when assessing the potential impact of climate change on
extreme precipitation events.

Lower joint return periods indicate a higher likelihood of large amounts of precipita-
tion or intense precipitation occurring separately during the year. This implies a greater
likelihood of heavy precipitation events with large precipitation amounts and intensities,
which means a higher risk of flooding in these areas. Overall, the southern part of the
middle and upper reaches and the downstream areas of the basin are prone to extreme
precipitation, while the northern part of the middle reaches is less prone [46–48]. Com-
pared to historical periods, the common return periods tend to decrease in future scenarios,
possibly due to different time series lengths. Similarly, regions with larger design values
for given Kendall recurrence intervals have a higher probability of experiencing extreme
precipitation events. The identified regions prone to extreme precipitation based on bivari-
ate design values for PRCPTOT-SDII, R90P-SDII (90), and R95P-SDII (95) were consistent
with the recurrence period-based identifications. The contrasting index pairs at different
quantiles show that as precipitation becomes more extreme, high-precipitation areas shift
from the southern upstream and southeastern parts of the basin to the more southeastern
parts, indicating a greater likelihood of concentrated heavy rainfall in downstream areas
compared to other basin regions, making them flood-prone areas. This could be due to
the southeastern region of the basin being influenced by the monsoon, which is more
sensitive to temperature increases [49,50]. In the same region, future bivariate design
values are larger than those in historical periods, indicating a significant increase in extreme
precipitation risk within the basin under the influence of climate change. In addition, the
differences between the high and low values became more pronounced with increasing
radiative forcing, suggesting that climate change may exacerbate the differences between
wet and dry regions [4].

In the context of regional flood risk assessment, our research provides valuable insights
into the geographic areas prone to extreme precipitation events and the potential changes
in these patterns under the influence of climate change. These findings have implications
for disaster management and planning in the Yellow River Basin and similar regions.

5. Conclusions

This study focused on the analysis of extreme annual precipitation and the associated
extreme precipitation intensity indices at different quantiles in the Yellow River Basin.
Copula functions were employed to assess the bivariate return periods and design values
of the extreme precipitation indices for both historical and future scenarios, allowing us
to identify regions within the Yellow River Basin that are prone to extreme precipitation
events. Our analysis demonstrated that three Archimedean copula functions are well
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suited for modeling the joint distribution of precipitation amount and intensity indices at
different quantiles in the Yellow River Basin. Among these, the Clayton copula exhibited
a significant advantage, particularly as precipitation became more extreme. Therefore,
the Clayton copula stands out as a preferable choice for the multivariate modeling of
extreme precipitation events in this region. In summary, our findings identified the upper
reaches in the southern and downstream regions of the basin as areas susceptible to
extreme precipitation, including the Weihe River, Yellow River, and parts of the Jing River
Basin. In contrast, the northern middle reaches from Lanzhou to Huayuankou were
characterized as low-susceptibility areas, including the Kuye River Basin. As precipitation
becomes more extreme, the high-precipitation area in the upper reaches gradually decreases,
and the high-precipitation area in the southeastern downstream region also shifts to the
southern downstream region. This shift suggests a higher probability of concentrated
heavy precipitation events in the downstream area compared to other parts of the basin,
especially under high radiative forcing scenarios.

As we conclude this study, it is important to consider future research directions in the
field of extreme precipitation and hydrological risk assessment. Subsequent studies may
benefit from further investigation of the impact of climate change on extreme precipitation
in the Yellow River Basin, with a focus on specific climate model projections and scenarios.
Additionally, the application of advanced statistical and hydrological models can enhance
the accuracy of flood risk assessments. The proposed model based on copula functions was
proven to be effective in characterizing the joint distribution of extreme precipitation indices.
It provides valuable insights into the spatial and temporal patterns of extreme precipitation
in the Yellow River Basin. However, it is important to acknowledge certain limitations
of the model, including the assumptions and simplifications inherent in copula functions.
Further research is needed to explore alternative modeling approaches that can address
these limitations and improve the precision of extreme precipitation risk assessments.
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