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Abstract: Pipeline asset management derives from pipelines’ physical conditions, condition rating,
and serviceability through investigating, monitoring, and analyzing the rupture history. The remain-
ing asset life and structural condition of the pipeline network running near and under bodies of water
are often hard to predict. In case of a pipeline failure, major damage may occur to the surrounding
environment, adding up to disruptions in service and repair costs. This paper develops multinomial
logistic regression (MLR) and binary logistic regression models to predict how the bodies of water
could affect the soil surrounding wastewater interceptors. The models were developed based on
data from the City of Fort Worth, Texas. This study concludes that the pipe diameter, pipe age,
location of the pipeline with reference to bodies of water (far or near), and the pipe material are the
most significant variables that affect the surrounding conditions and remaining life of wastewater
interceptors. In future, a clearer perception through increased software development and machine
learning for managing pipeline asset management would provide impacts on different parameters
on pipelines’ expected life.

Keywords: asset management; wastewater; artificial intelligence; pipelines; multinomial logistic
regression; binary logistic regression

1. Introduction and Background

Utility and pipeline systems form one of the most capital-intensive infrastructure
systems, and they are aging, overused, possibly mismanaged, and neglected [1]. Most
wastewater systems are gravity systems; flow is transferred by natural forces rather than
complicated pumping technology. The United States’ wastewater network consists of over
800,000 miles of public sewers and 500,000 miles of private lateral sewers that connect
homes and businesses to public sewer lines. The typical lifespan expected for wastewater
pipes is 50 to 100 years [2].

The biggest challenges of maintaining wastewater systems are that the process is out
of view [3]. The latest 2021 infrastructure report card, published by the American Society
of Civil Engineering (ASCE), reveals incremental progress toward restoring our nation’s
infrastructure. For the first time, our infrastructure GPA went up from D+ in 2017 to C- in
2021 [2]. Furthermore, most municipal sewer systems are at least 60 years old, and some
utilities assume that newer pipes must be in good condition compared with older pipes,
which is not the case, since many examples show 80-year-old pipes in excellent condition
and 30-year-old pipes near failure [3].

An estimation of how much pipe of each size in each region must be repaired and
rehabbed in the coming 40 years is compiled by combining the demographically based
pipeline inventories with the projected service lifetime for each region [4]. The effects
that are associated with pipeline failures can be extended to impact other infrastructures,
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so many utilities have adopted new technologies in pipeline asset management to en-
hance proactive asset management strategies [5]. Moreover, the U.S. utilities must meet
all National Pollutant Discharge Elimination System (NPDES) permit requirements and
innovative the geographic information system (GIS)’s cloud-based data combined with
mapping technologies within utility asset management planning to begin the next step of
risk analysis based on the condition assessment [6].

Evaluating pipe management strategies with an Envision pre-assessment checklist
resulted in three main strategies, as explained below [6,7]:

• A run-to-failure strategy is recommended only if the pipe failure consequences are
minimal with financial shortfalls.

• A pre-emptive replacement strategy is shared and reduces the impact of pipe failures.
Pipe replacement should be based on the actual condition; otherwise, some pipes will
be replaced even when they have a remaining useful life.

• Under a balanced approach strategy, repair and rehabilitation decisions will be based
on the pipe condition factor.

Asset management is a comprehensive plan for managing infrastructure assets to
deliver a satisfying service level and minimize operating and ownership costs. A com-
prehensive asset management plan can help municipalities turn from a reactive approach
to a proactive approach while providing life cycle cost analysis based on cost–benefit
analysis [7].

Many pipelines that cross under bodies of water are buried deep underneath the soil
and must regularly be inspected and evaluated. Once the pipeline conditions are available,
asset management, repair, and rehabilitation decisions will be made. Asset management
strategies start with reviewing the available historical pipeline data and understanding
the failure and deterioration models [8]. Repair and rehabilitation decisions control the
continual performance of pipeline systems. A proactive asset management system will
overwhelm the reactive system to stay within the cost-effective choices and keep the system
at an acceptable level.

Local municipalities use geographical information systems (GISs) for archival, revenue,
and information retrieval purposes, but the use of GISs varies among municipalities within
each state. Effective asset management requires evaluating pipeline systems and identifying
pipelines with a high risk of failure. A geographic information system (GIS) data set
consisting of pipe age, length, material, and previous repairs will allow municipalities to
make asset management decisions while continuously updating the GIS data set [9].

2. Pipeline Condition Assessment
2.1. Phases of Condition Assessment Projects

Condition assessment projects typically have four phases: preliminary investigations,
field investigations, integrity assessments, and post-processing condition assessments.
Generally, various tools and techniques will be used, since no single tool can provide all
the required information for the condition assessment. Once the main pipeline details
such as diameter, length, age, and failure history are available, technique selection will be
uncomplicated [10].

2.2. Factors Impacting Pipeline Service Life

The ability of the pipeline to carry external and in-service loads forms the pipeline’s
structural integrity. Pipeline structural integrity must be assessed during condition assess-
ment to determine the level of deterioration. For example, the pipeline material could react
with the environment, causing corrosion that can vary along the pipeline. The corrosion
mechanism could act entirely differently inside and outside the pipe [10]. Figure 1 illus-
trates water seepage and movement of soil when the pipeline is installed using trenchless
technology methods and is under or near bodies of water.
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2.3. Asset Management Strategies

Infrastructure asset management is the continual assessment of the operations and
maintenance history and projected life expectancy, with a long-range plan for financing
asset rehabilitation or replacement (R&R); this results in prioritizing infrastructure assets
and incorporating assets into the annual capital improvement planning [4].

Condition assessment will enable municipalities to understand the current structural
condition of pipelines and implement the predictive-level strategy [11]. The traditional asset
management strategies are operative (reactive), inspection (condition-based), proactive
(preventive), and predictive (advanced). Each strategy has a specific role in the asset
management methodologies series. In general, asset management strategies fall under four
main categories, as shown in Table 1.

Table 1. Categories of asset management strategies [11].

Operative (reactive)

• Municipalities often make decisions based on
practical experience.

• It is emergency repairs and rehabilitation.
• In a simple approach, the pipe section will

consume its full-service life.
• It causes interruptions in traffic and services.

Inspection (condition-based)

• Municipalities monitor pipelines periodically.
• Pipelines are classified based on their condition

rating.
• It recognizes the current pipeline condition without

failure consequences.



Water 2023, 15, 4176 4 of 15

Table 1. Cont.

Proactive (preventive)

• Repair and rehabilitation are carried out before
failure.

• It needs more time to choose the best cost-effective
repair.

Predictive (advanced)

• Cities provide economic analysis support for the
proactive approach.

• It provides the ability to choose between regular
maintenance and rehabilitation.

• It indicates long-term implications on life cycle
cost.

3. Research Needs

The focus of this paper is based on buried wastewater interceptors’ asset management
adjacent to bodies of water. Wastewater assets have long life cycles. Furthermore, a
wide assortment of studies has been carried out to demonstrate the asset management of
wastewater pipelines. The following recent research highlights the need for inspection and
monitoring of pipelines:

• Ref. [6] encouraged municipalities to enhance affordable resources such as GIS in
conducting asset management planning to plan well-conceived projects properly.

• Ref. [12] indicated that the surrounding soil condition has a vital role in the pipeline
loads, which is more important to expose than the visible condition.

• Ref. [13] recommended that wastewater utilities use timely information technologies
to address the most critical infrastructure needs, since inspecting and rehabilitating
large-diameter wastewater systems is expensive.

• Ref. [14] recommended that integrating GISs during inspection of pipe segments
would help map the critical pipelines and condition assessment.

4. Objectives

The main objective of this paper is to evaluate the life of wastewater interceptors
considering the long-term impacts of surrounding soil conditions for operational and
maintenance tasks. The secondary objective is to evaluate the significant factors that affect
the condition levels of assets. Furthermore, the objective is to compare the wastewater
interceptors surrounding soil elevations from 2010 through to 2015. The comparison will
be between wastewater interceptors that are adjacent (less than 10 ft) to bodies of water
and the interceptors that are further away (more than 10 ft) from bodies of water.

5. Methodology and Scope

The models developed in this study will be used to link the dissimilarity between
wastewater interceptors near to and away from bodies of water by considering physical
and environmental factors. The following steps present an approach to developing the
outcome of this research. Figure 2 presents the detailed research methodology.

• Step 1: Problem definition;
• Step 2: Literature review;
• Step 3: Data collection;
• Step 4: Data analysis;
• Step 5: Model development;
• Step 6: Model validation;
• Step 7: Model comparison;
• Step 8: Selecting the best model based on the results;
• Step 9: Asset management strategy recommendations.
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6. Data Analysis

Based on the available historical data, it is conceived that planning and managing
wastewater interceptors through bodies of water is an exceptional task, taken on to provide
municipalities and governments with the needed resources and obtain the highest benefit–
cost ratio for the plans. Therefore, the following section explains the development and
validation of the research model.

6.1. Binary Logistic Regression

The dependent variable must be only two different values (e.g., 0 and 1) regarding
the binary logistic regression. If the dependent variable is categorical or numerical, the
corresponding variable must be dummy-coded into two values before employing the binary
logistic regression.

Binary logistic regression generates a model to account for relationships between log
odds of the dependent and independent variables.

Log likelihood is used to determine whether the binary model is significant. In this
methodology, the model is developed by including the variable of interest. By eliminating
that variable, followed by comparing those data sets by using a chi-square distribution
corresponding to the degree of freedom, it equals the number of eliminated variables.
Meanwhile, if the independent variable is categorical and takes on more than one value,
the degree of freedom will be the number of categorical values minus one.

After developing the logistic regression model, Equation (1) provides the prediction
elevation difference over the years 2010–2015.

g(x) = ln
(

P(C=1)
1−P(C=1)

)
=

−6.73 + 0.004 × Age − 0.001 × Diameter + 0.12 × DMaterial = HDPE + 0.185
×DMaterial = CI − 0.12 × DMaterial = DI + 0.101 × DMaterial = PVC + 0.227

×DMaterial = Concrete + 0.09 × DFar/Near Bodies of Water

(1)
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where
P(C = 1) =

1
1 + e−g(x)

(2)

P(C = 0) = 1 − P(C = 1) (3)

The next step is to go under the validation phase by identifying the predicted results.
The remaining 20% of the data will be used for validation. A cut-off value is determined
and then compared with the estimated probability. If it is greater than the cut-off value, it
is assigned to class one. Otherwise, it will be given a class zero. Usually, the cut-off value
for the binary dependent variable is 0.5.

The percentage of correct predictions is calculated based on a classification table using
the below Equation (4):

Percentage of correct predictions =
100(A11 + A22)

(A11 + A12 + A21 + A22)
(4)

Table 2 presents the classification table for the binary logistic regression.

Table 2. Classification for binary logistic regression model.

Observed
Predicted

0 1

0 267 52

1 68 251

Based on Table 2, the percentage of correct predictions is illustrated in Figure 3.
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6.2. True vs. False and Positive vs. Negative

Figure 4 illustrates the different true/false and positive/negative scenarios for the
model.
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Table 3 summarizes the binary logistic regression model using the confusion matrix
that shows the four expected outcomes, and we will evaluate our model classification based
on these four outcomes.

Table 3. Confusion matrix for binary logistic regression model.

True Positive (TP): False Positive (FP):

• Reality: Elevation Increased.
• Model Prediction: Elevation Increased.
• Outcome: Correct Prediction.

• Reality: Elevation Decreased.
• Model Prediction: Elevation Increased.
• Outcome: Wrong Prediction.

False Negative (FN): True Negative (TN):

• Reality: Elevation Increased.
• Model Prediction: Elevation Decreased
• Outcome: Wrong Prediction.

• Reality: Elevation Decreased.
• Model Prediction: Elevation Decreased.
• Outcome: Correct Prediction.

6.3. Accuracy

One parameter for evaluating classification models is accuracy; this represents the
percentage of correct predictions made by our model. The following Equation (5) is the
general formula of accuracy:

Accuracy =
Number of correct predictions

Total number of predictions
(5)

Accuracy can also be assessed in terms of positives and negatives in our model, as
shown below (Equation (6)):

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

where
TP = True Positives.
TN = True Negatives.
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FP = False Positives.
FN = False Negatives.
Based on the above formulas, the degree of accuracy for the binary logistic regression

model is 0.812, or 81.2%. Accuracy alone does not convey the whole evaluation classification
to understand our model’s performance better. The following section will discuss the ROC
curve (receiver operating characteristic curve) (Equations (7) and (8)).

6.4. Receiver Operating Characteristic (ROC)

A receiver operating characteristic (ROC) curve is a graph that shows how well a
classification model performs across all categorization levels. Two parameters are plotted
on this curve:

True Positive Rate (TPR) is a synonym for sensitivity:

TPR =
TP

TP + FN
(7)

False Positive Rate (FPR):

FPR =
FP

FP + TN
(8)

TPR vs. FPR is plotted on an ROC curve at various categorization levels. As the
classification threshold is lowered, more objects are classified as positive, increasing both
False Positives and True Positives. A logistic regression model can be analyzed multiple
times with different classification criteria to compute the ROC curve points, but AUC is the
fastest sorting-based method. AUC stands for “Area under the ROC Curve”, which refers
to the complete two-dimensional area beneath the entire ROC curve from (0, 0) to (1, 1).

6.5. Sensitivity and Specificity

Other alternatives for checking the model performance are sensitivity and specificity.
Sensitivity represents how effectively the classifier predicts positive samples, whereas
specificity expresses how well classifiers detect negative samples (Equations (9)–(11)).

Sensitivity is a synonym for the True Positive Rate (TPR):

Sensitvity = TPR =
TP

TP + FN
(9)

Specificity:

Specificity =
TN

FP + TN
(10)

FPR = 1 − Specificity = 1 − TN
FP + TN

=
FP

FP + TN
(11)

Based on the above formulas, the sensitivity and specificity for our model are as
follows (Figure 5):

Sensitvity = TPR =
TP

TP + FN
=

251
251 + 68

= 78.68%

Specificity =
TN

FP + TN
=

267
52 + 267

= 83.70%

True Positive (TP): 251 False Positive (FP): 52
False Negative (FN): 68 True Negative (TN): 267

TPR = Sensitvity = TP
TP+FN = 251

251+68 = 78.68%
FPR = 1 − Specificity = FP

FP+TN = 52
52+267 = 16.30%

AUC = 0.879
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6.7. Insignificant Variables

According to the backward stepwise analysis, the insignificant variable for the binary
logistic regression model was Material (VC or Steel). Several aspects must be addressed to
assess the influence of pipe lengths, including the soil type, water table, pipe material, and
pipe diameter.
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Different materials used in wastewater interceptors react differently to the environ-
ment. For example, abrasion resistance is vital in concrete pipes, and acid resistance is high
in clay pipes. Other pipes have superior resistance to acidic and alkaline wastes, but they
can distort excessively under strain. Corrosion of steel pipes affects pipe strength, resulting
in leaks, breaks, low water pressure, blockages, and other issues.

6.8. Soil Erosion

The annual global soil erosion is substantially higher than the annual soil replenish-
ment [15]. Soil erosion is the loss of the top layer of soil, which can be caused by various
factors, including wind and water.

Streams and rivers are avenues for soil transportation. Watersheds will become prone
to floods when vast volumes of soil deposits accumulate in local lakes and reservoirs. This
erosion causes valuable agriculture and infrastructure to be destroyed.

Below are some common strategies for effective erosion control:

• Plant Vegetation: Wind can be blocked by trees, bushes, hedgerows, and ground
plants. Maintaining continuous ground cover, such as planting cover crops, also aids
in binding soil to roots.

• Matting: This ground covering, also known as an erosion control blanket, comprises
open-weave, biodegradable materials that insulate the soil while also supporting
growing vegetation on bare ground. This erosion control method is generally effective
for solar farms and building sites where vast regions are left barren and subject to
wind and water erosion.

• Grazing: Rotational grazing involves moving cattle from one pasture plot to the
next. Each paddock is given a break and allowed to recover naturally, reducing soil
compaction and erosion. Installing fencing and stream crossings to protect pastures
from degradation is also practical.

To summarize the recommendations for the City of Fort Worth:

• Future asset management plans must include bodies of water and erosion control
methods as essential, and these factors must influence variables of the plan.

• ArcGIS could be the leading platform for the plan, since it can help prioritize time and
cost savings.

7. Discussion of Results

Streams and rivers are avenues for soil transportation. Watersheds will become prone
to floods. Wastewater systems collect sewage from different types of users. Generally,
infrastructures are designed and constructed to serve for many years. Over its life, the
system deteriorates, and the likelihood and consequences of pipe failure increase signifi-
cantly. The asset management plan is the central concept in making the systems’ repair and
rehabilitation decisions, since inspection and monitoring are time- and budget-consuming
tasks. This leads to the need for asset management plans that are developed with statistical
tools such as SPSS statistics software based on historical data [16–20].

Variables that influence the surrounding conditions for wastewater interceptors were
the pipe age, pipe diameter, pipe material (HDPE, CI, DI, PVC, and concrete), and pipes’
location with reference to bodies of water. Future asset management plans must include
these influence variables as an essential and practical part of the plan.

Consequently, the surrounding soil elevation for pipelines could be a valuable simple
metric compared with a holistic view across the entire wastewater system. A benchmarking
approach, every 5 years, could be used to predict the future condition of pipelines based on
the condition of similar but older pipelines [21–24].

There is no standard approach for evaluating the structural integrity of wastewater
pipelines in sewer system asset management. Different researchers have considered the
deterioration of the wastewater pipelines as their model [25–29]. However, the variables
used to develop the models were different. Table 4 presents a comparison of variables
among recent models.
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Table 4. Comparison of variables for recent models.

Current Study [18] [30] [14]

Age Age Age Age

Diameter Diameter Diameter Diameter

Material Depth Depth Slope

Surrounding Soil
Elevation Slope Slope Length

Location (with
reference to bodies of

water)
Length Length MAPSCOGRID

-

Soil pH Soil Sulfate SUBAREA

Material Soil pH PACP

Soil Type Water Table

--

Pipe Flow

Material

Soil Type

Soil Hydraulic Group

Soil Corrosivity

This research developed multinomial logistic regression and binary logistic regression,
and the accuracy for the models was 45.29% and 81.20%, respectively. However, it was
compared with different models by different authors, as shown in Table 5.

Table 5. Models’ accuracy comparison.

Model Model Accuracy Author

Multinomial Logistic Regression

65.8% [30]

75% [18]

45.29% Current Study

Binary Logistic Regression
84.6% [30]

81.2% Current Study

KNN 83.4% [30]

Neural Networks 85% [18]

Based on the binary logistic regression model, the influence variables for the wastewa-
ter pipelines’ surrounding soil were as follows:

• Pipe Age. The coefficient of pipe age is positive in the binary logistic regression equa-
tion. With Wald = 2280.199 and p-value = 0.013, the binary logistic regression findings
revealed that pipe age has a significant impact on the condition of the surrounding soil
condition for wastewater interceptors, as it has a positive coefficient, which indicates
that an increase in age will probably result in the surrounding condition to be in a risk
condition.

• Pipe Diameter. The coefficient of pipe diameter is negative in the binary logistic
regression equation. With Wald = 63.682 and p-value = 0.024, pipe diameter was also
found to significantly impact the soil difference elevation over the years for wastewater
interceptors near bodies of water. It has a negative coefficient, which means that an
increase in the pipe diameter will probably reduce the risk of the pipe’s surrounding
conditions changing.
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• Pipe Material. The Wald and p-values for the significant pipe materials were different.
The results of binary logistic regression revealed a moderate significance in High-
Density Polyethylene (HDPE), Cast Iron (CI), Ductile Iron (DI), Polyvinyl Chloride
(PVC), and concrete materials, as shown in Table 6.

• The location of Wastewater Interceptors. In the binary logistic regression model,
wastewater interceptors’ location with reference to bodies of water as far or near was
also determined to be a significant variable, with Wald = 1.181 and p-value = 0.028.
The coefficient is positive, which indicates that as the pipe is nearest to the bodies of
water, the risk of the surrounding pipe soil being in a poor condition and, indeed, the
pipe failing will increase.

Table 6. Binary logistic regression variables’ performance.

Variable Coefficient (β) Wald p-Value Remarks

Material (1) = Concrete 0.227 0.319 0.047 Positive Coefficient

Material (2) = HDPE 0.120 1.145 0.028 Positive Coefficient

Material (3) = CI 0.185 4.130 0.004 Positive Coefficient

Material (4) = DI −0.120 0.114 0.054 Negative Coefficient

Material (5) = PVC 0.101 3.313 0.007 Positive Coefficient

8. Practical Applications

The results of this study can help municipalities in managing wastewater interceptors.
The model developed in this research may be used to create a wastewater interceptor
inspection schedule. A cost–benefit analysis may be conducted to evaluate the cost savings
that the model could lead to if used in place of yearly inspection programs. The developed
model has a degree of accuracy of 81.2%.

Moreover, the significant variables of the model could be an essential input for devel-
oping long-term asset management plans. On the other hand, ArcGIS could be the leading
platform for the asset management plan, since it can help prioritize time and cost savings.

This research was based on a 5-year span of data. It is recommended to monitor the
wastewater interceptors that are adjacent to bodies of water in short intervals. Frequent
inspections (every 5 years or less) are needed for wastewater pipelines when their locations
are less than 10 ft away from bodies of water. The distance from a body of water provides a
significant variable in the useful life of the pipeline, irrespective of the pipe material, such
as, concrete, HDPE, CI, or PVC. Moreover, as the pipeline age increases, the effect on the
surrounding soil elevation also increases.

However, the soil surroundings for DI pipelines were found to be more stable, since
69% of these pipelines are installed more than 10 ft away from a body of water. This research
also showed that the pipe diameter variable has a negative coefficient, which means that
an increase in the pipe diameter will probably reduce the risk of the pipe’s surrounding
conditions changing. After inspection and analysis of this, wastewater interceptors could be
labelled and scored. The high-risk-scored interceptors will have priority in the replacement
and rehabilitation plan. Indeed, this will limit the cost and time consumed in inspections
or in the case of an unpredicted pipe failure. The model developed in this research could
be used for different data years, which can help in defining the areas where the inspection
will take place to enhance asset management planning for municipalities.

9. Conclusions

Municipalities would benefit from knowing and predicting how the asset management
for wastewater interceptors is different with reference to the location of bodies of water.
Two logistic regression models were used to predict how bodies of water can affect the soil
surrounding wastewater interceptors. The models were created, verified, and tested. Both
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models were created using 80% of the data set, chosen at random. In the validation of the
model, the remaining 20% of the data were used at random.

According to the model’s findings, pipe diameter, age, pipe material, and location
with reference to bodies of water were the most important parameters. The multinomial
and binary logistic regression performances were 45.29% and 81.20%, respectively.

The binary logistic regression results revealed that the surrounding soil elevation
difference over the years 2010 to 2015 near water bodies has decreased compared with
the interceptors that are far away from bodies of water. Therefore, the interceptors are at
a higher risk of failure. As a result, the binary logistic regression equation is significant,
indicating that the area under the ROC curve was 0.879, indicating that the model is reliable.

10. Limitations

The study’s base year data were obtained for 2010 to 2015. It is natural to doubt that
the relevance of the surrounding condition changes will be detectable enough. The average
soil erosion is within the range of 5.6 to 7.7 tons per acre per year [31–34]. The loss of every
5 tons per acre represents 1/32-in. of topsoil [35–38].

This study did not consider other influencing factors, such as the depth and slope of
the wastewater interceptors and soil type [39–42]. As a result, the lack of information on
these factors is the main limitation of this research.

11. Recommendations for Future Research

Some of the significant prospective future development areas raised in this research
that should be addressed are other independent factors, such as the soil type, pipe installa-
tion method, and failure history, which can improve the model presented in this research.
Further exploration of deep learning algorithms to develop a model will be an important
critical component of future efforts. This study is based on data from the City of Fort
Worth. To improve the accuracy of models, more inspection data are needed to compare
the results of models developed for other cities, which could be an essential part of future
work. Future studies should include more data for more years to distribute the findings
over more than one five-year span, and the results should be compared with the findings
of this study. The model developed in this study can be utilized to create a wastewater
interceptor inspection schedule. A cost–benefit analysis can be used to determine the cost
savings that the model could lead to if used in place of yearly inspection programs.
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