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Abstract: The general practice of rainfall-runoff model development towards physically based and
spatially explicit representations of hydrological processes is data-intensive and computationally
expensive. Physically based models such as the Soil Water Assessment tool (SWAT) demand spatio-
temporal data and expert knowledge. Also, the difficulty and complexity is compounded in the
smaller watershed due to data constraint and models’ inability to generalize hydrologic processes.
Data-driven models can bridge this gap with their mathematical formulation. Long Short-Term
Memory (LSTM) is a data-driven model with Recurrent Neural Network (RNN) architecture, which is
better suited to solve time series problems. Studies have shown that LSTM models have competitive
performance in watershed hydrology studies. In this study, a comparative analysis of SWAT and
LSTM models in the Cork Brook watershed shows that results from LSTM were competitive to
SWAT in flow prediction with NSE of 0.6 against 0.63, respectively, given the limited availability
of data. LSTM models do not overestimate the high flows like SWAT. However, both these models
struggle with low values estimation. Although interpretability, explainability, and use of models
across different datasets or events outside of the training data may be challenging, LSTM models are
robust and efficient.

Keywords: rainfall runoff modeling; streamflow; SWAT; LSTM; physically based; data driven

1. Introduction

The history of rainfall–runoff modeling is among the oldest yet evolving in hydro-
logical sciences. Initially, attempts were made to simulate and predict discharge based
on precipitation events using regression-based approaches dating back over a century [1].
Physically based concepts, formulations, and algorithms followed this development. How-
ever, as computational technology and high-resolution spatial and temporal data availabil-
ity advanced, the modeling concepts evolved to incorporate physically based processes
and spatiotemporal variability of catchments enabling more accurate representations of
hydrological processes [1–4].

Despite the progress in physically based modeling, its application in operational
rainfall–runoff forecasting remains limited owing to the main challenges posed due to
high computational costs and the extensive meteorological data requirements [5]. This
limitation has led to the continued use of simplified physically based or conceptual models
for operational purposes [6–8]. The major hurdle caused by high computational cost
becomes more cumbersome when multi-model runs, and uncertainty analysis are to be
incorporated. However, data-based modeling approaches, such as regression and artificial
neural networks (ANNs), have been explored as viable alternatives to bridge the complexity
posed by physically based approaches [9–11].

Among these alternatives, ANNs have gained significant attention due to their ability
to effectively mimic highly non-linear and complex systems. Early studies in the 1990s
demonstrated the potential of ANNs for rainfall–runoff prediction, and since then, they
have been widely applied in hydrological modeling [12]. However, traditional feed-forward
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ANNs have limitations in handling time series data as they do not retain information about
the sequential order of inputs. To overcome this limitation, recurrent neural networks
(RNNs) were introduced. RNNs are a specialized type of neural network architecture
designed to understand temporal dynamics by processing inputs in their sequential order.
Using RNNs for rainfall–runoff modeling has demonstrated their potential for event-based
applications [13].

Further advancements in neural network architecture led to the development of Long
Short-Term Memory (LSTM) networks, which excel in capturing long-term dependencies
and storage effects within the hydrological catchments [14–16]. LSTM was introduced
to address the limitations of traditional RNNs, making them more suitable for problems
where the sequential order of inputs matters [17]. In recent years, deep neural networks,
including LSTM-based models, have gained traction in water quantity and quality due
to their capacity to leverage big data [18]. Researchers have increasingly utilized these
models to simulate rainfall–runoff relationships and improve water resources and flood
management. As data availability and computing power continue to grow, the application
of ANN models in hydrological sciences is expected to advance further, enabling more
accurate and reliable predictions of rainfall–runoff processes [4,15,19].

In recent years, deep learning, particularly through neural networks, has garnered
significant attention and success in various fields, including hydrological modeling. While
deep learning is well-known for its applications in computer vision, speech recognition,
and natural language processing, researchers have explored its potential in hydrological
problems. LSTM has shown promise in various hydrological applications The research
conducted in precipitation nowcasting, soil moisture prediction, water quality, and stream
flow predictions show that deep learning has had large success and generated huge interest
in hydrological sciences recently [4,18,20–23]. These studies have shown the predictive
capacity of such model par with the current state-of-the-art hydrological models [14,24–26].
These advancements are largely facilitated by improvements in computer technology,
especially through graphic processing units, and the availability of vast datasets. Moreover,
the increasing popularity is attributed to solving environmental problems due to their
ability to handle highly nonlinear challenges without requiring knowledge of physical
processes and often large volumes of data [14,26,27].

Various studies have evaluated the effectiveness of ANN models in predicting water
quantity. Still, they come with challenges, such as determining the optimal network struc-
ture through trial and error and selecting the best input variables [8,17,28]. Extrapolation
beyond the training data range can also lead to significant errors, and ML-based models
may need help to capture the impact of changing land use in watersheds [29]. In recent
hydrological studies, recurrent neural networks and long short-term memory networks
have gained momentum due to their ability to handle time series data effectively [4,13,26].
RNNs have loops that allow information from previous time steps to be passed to the next,
making them suitable for time-dependent data [13]. However, the vanishing or exploding
gradient problem hampers their ability to learn long-term dependencies [30]. LSTM net-
works were developed to overcome this issue, allowing them to effectively learn long-term
dependencies in the data series [31].

Despite the successes, there is still a need to understand how LSTM structures and
parameters affect predictive accuracy in different hydrological contexts [9,32]. Research
in this area is ongoing, and applying deep learning approaches, especially LSTM, holds
promise for advancing hydrological modeling and improving our understanding of com-
plex hydrological phenomena [16,33]. In addition to the applications of deep learning
in hydrological modeling, it is worth noting that regardless of the modeling approach
used, models are typically calibrated for specific catchments where observed time series of
meteorological and hydrological data are available [34]. Predictions in ungauged regions
have shown decreased performance [19]. The calibrated model and parameter are localized
or need explainability for the usability field [19,33,35]. Moreover, the calibration process
is essential because models are simplified representations of real catchment hydrology,
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and parameters must effectively represent hydrological processes and address hydrologic
behavior and catchment characteristics [1,36].

Although SWAT is very popular in hydrological studies, the inference of performance
has largely been drawn from a couple of goodness of fit measures like the Nash–Sutcliffe
model efficiency coefficient (NSE) and Coefficient of Determination (R2) [37]. In this study,
a case study was conducted to investigate the performance of SWAT and LSTM in a
small undisturbed forested watershed with limited data in Rhode Island. Apart from the
frequently used goodness of fit measures, model results were compared against various
percentiles of flows and flow duration curve (FDC) signature indices for a better assessment
of model performance. Further developments in this approach can lead to in-depth analysis
for water quality modeling and climate change impact assessment.

2. Materials and Methods
2.1. Study Area

The study area is Cork Brook in Scituate, Rhode Island, USA. It is a small, forested, and
pristine watershed with a 7 sq km area contributing to the Scituate Reservoir (Figures 1 and 2).
The Scituate Reservoir is a large reservoir serving as a drinking water source to Providence.
The main land use of the study area is undeveloped forest covering 79% of the area and
brushland, where 14% of land use is classified as medium-density residential [38]. The soil
in this area is mainly coarse-loamy, mixed, mesic Typic Dystrudept [39].
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The climate of the study area consists of a humid continental climate with warm
summers and cold winters with a mix of rain and snow in the form of precipitation. The
meteorological forcing data used here are daily rainfall and average daily temperature
from 2009–2014 from the Parameter-elevation Regressions on the Independent Slopes
Model (PRISM), and daily discharge data for the same period is used from USGS station
01115280. The watershed has an annual average discharge of 0.0914 m3/s, an average
annual precipitation of around 1380 mm, and an average daily temperature of around
9.6 ◦C since 2001. The discharge is characterized by flood events in winter, mainly in March
and December, and a low-flow period in summer months from July to October. There is
uniformity and coherence in the observed flow and meteorological data with high flows
matching high precipitation events (Figure 3).
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2.2. Model
2.2.1. SWAT

The SWAT model is a physically based hydrological model developed by the U.S.
Department of Agriculture and the Agricultural Research Service [40]. It represents the
hydrologic process at hydrological response units, which are the building blocks of wa-
tersheds representing similar land use, soil type, and elevation class. The SWAT model
has a strong conceptual and physical understanding of watershed processes and the ex-
plainability of parameters. Numerous studies have been conducted using the application
of SWAT in forested watersheds [41–43]. In this study, the SWAT model is calibrated
using the Uncertainty in Sequential Uncertainty Fitting (SUFI) in SWATCUP, a Calibration
Uncertainty Procedure program, which has the ability for sensitivity analysis, calibration,
validation, and uncertainty analysis of the SWAT model [44].

The SWAT model uses the soil water equation to simulate the water balance of a
watershed.

SWt = SWo + ∑t
i=1 (Pi − Ri − ETi − Wi − Qi) (1)

where SWt is the resultant soil water content from SW0 which is the initial soil water
content, t is time (days), Pi is the amount of precipitation(mm), Ri is the amount of surface
runoff (mm), ETi is the amount of evapotranspiration (mm), Wi is the percolation of water
the soil profile (mm), and Qi is the amount of return flow all at the same daily time step.

The spatio-temporal data requirements of SWAT are generally topography, soil char-
acteristics, land cover or land use, and meteorological data. In this study land use was
retrieved from 2011 statewide 10-m resolution National Land Cover Data imagery [38];
soil data were retrieved from a soil map from the Natural Resource Conservation Service
(NRCS) Soil Survey Geographic database (SSURGO); and topographical data was retrieved
from USGS 7.5-min digital elevation models (DEMs) with a 10-m resolution. These spatial
data were sourced from a public database called the Rhode Island Geographic Information
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System (RIGIS) database. Gridded PRISM meteorological data from 2009 to 2014 was
used as temporal data as the USGS gauge has flow records starting only from 2009. SWAT
employs the spatial data to create subbasin and HRU units. The Cork Brook SWAT model
consists of seven subbasins and 60 HRUs using land, soil, and slope thresholds of 20%,
10%, and 5%.
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2.2.2. LSTM

LSTM’s structure is developed based on recurrent neural networks. RNN has an
architecture with a feedback loop that simulates time series data. However, it cannot
remember longer dependencies. In contrast to RNN, LSTM employs gates and cell states
which addresses challenge of the remembering long-term dependencies and gradient
explosion [31]. This robustness introduced in the algorithm enables LSTM to model
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processes with long-term dependencies like snow moisture groundwater recharges and
enables its robust prediction algorithm to be better suited to time series data [45].

An LSTM network consists of an input layer for input sequence data, the fully con-
nected layer that feeds input data to LSTM cells, the LSTM cell layer acting memorizing
cells, and output layers that result in an output vector. In the LSTM architecture, the main
elements are fully connected layers and LSTM cells [46]. Within each LSTM layer, there
are two main states, the cell state and the hidden state which are carried over to the next
steps (Figure 4) [47]. These memory states are responsible for remembering the model
learnings. Three major gates namely input, output, and forget gates are used to manipulate
this memory. Forget and input gates update the cell state and output gate updates the
hidden state at each sequence.
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represents the hidden state and cell state [48].

Rewriting these into equations, LSTM has 3 gates: input, output, forget gate, cell state,
and hidden states. The equation of gates is as follows:

it = σ (wi[ht−1,xt] + bi) (2)

ft = σ (wf[ht−1,xt] + bf) (3)

ot = σ (wo[ht−1,xt] + bo) (4)

Čt = tanh(wc[ht−1,xt] + bc) (5)

Ct = ft × Ct−1 + it × t (6)

ht = ot × tanh(Ct) (7)

where it, ft and ot are input, forget, and output gates, wt weight matrix at each gate,
ht−1 is the output of each previous block, xt is input, bx are biases of each gate(x), Ct
are cell state at t, and Čt candidate for cell state, σ is the sigmoid function; tanh is the
hyperbolic tangent function.

After the forward propagation process, the backpropagation algorithm updates the
parameters and optimizes the model. In this study, observed flow data are used as targets
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to evaluate the loss values of the simulated flows by the LSTM network, and the Adam
algorithm was proposed and applied to optimize and update the network weights.

2.2.3. Methodology

The main steps in building the LSTM model are (a) feature selection and data prepro-
cessing (b) LSTM model structure hyperparameters tuning (c) model evaluation.

2.2.4. Feature Selection and Data Preprocessing

To set up the model, the data from 2009–2014 was split into 70% training data and 30%
test data. Data splitting is a common practice to evaluate model performance and avoid
overfitting. This was kept uniform for SWAT as well.

Also, for the LSTM model, the training data are manipulated by varying the time lags
of the stream flow to find the best feed for the subset of features. As this is closely linked to
the autocorrelation in the data, this is tuned as a parameter to train the model. It varied
from 3 days to 365 days and the best values were chosen from optimization.

The data is further transformed by scaling and normalization which is a key pre-
processing step in deep learning models. Normalization is a generally used transformation
method that transforms the data between a standard range of zero and one. In this study,
the MinMax Scaler was used to subtract the minimum values in the feature and divide by
the range of the original data. This helps to balance the impact of variables and helps aid
the performance of the algorithm [14,49].

2.2.5. LSTM Model Structure and Hyperparameter Tuning

The model structure of a neural network is complicated as there is no established
approach to define the hydrological system. This necessitates the use of hit and trial over
different model structures and configurations that can mimic a hydrological system. LSTM
model structure was composed of five neural network layers and two dense layers with
Adam as the model optimizer and mean square error as the loss function. Moreover, we
used a regularization method as early stopping and dropout to reduce overfitting and
enhance the model speed and performance. A batch size of 75 is used with a number of
epochs as 300 which defines the total number of iterations for training all data in one cycle
as 300 and, regularizers as an early stop of 50 epochs combined with dropout optimized
from 0 to 0.5. An iterative process was followed for LSTM layers, batch size, timestep, and
dropout to finalize all the hyperparameters tuning processes.

2.2.6. Model Evaluation

For model performance in hydrology, the NSE and R2 are generally used [37,50]. For,
evaluating the performance of SWAT and LSTM models. NSE and R2 were calculated using
the following equations.

R2 =
∑ (yi − y)(yi, sim − ysim)

∑ (yi − y)2 ∑ (yi, sim − ysim)2 (8)

NSE = 1 − ∑ (yi − yi, sim)2

∑ (yi − y)2 (9)

where yi and yi,sim is the observed value and simulated value at i and y and ysim are the
mean of observed and simulated values.

Apart from the comparison of the goodness of fit parameters, there is an increasing
trend to compare FDC and signature indices for a better understanding of estimation. FDC
is simply a plot of the cumulative distribution of flow against the probability of exceedance
whereas signature indices help investigate the various aspects of hydrograph at different
exceedance probabilities [51]. Here we have three of the signature indices relevant to
our study.

Bias FDC mid-slope: bias of the mean slope in mid-segment of FDC in percentage
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Bias FDC =
(log(FDCsim,0.2)− log(FDCsim,0.7))− (log(FDCobs,0.2)− log(FDCobs,0.7))

(log(FDCobs,0.2)− log(FDCobs,0.7))
(10)

Bias FLV: bias of the low segment of the FDC

Bias FLV =

∫ 1
0.7(log

(
FDCsim,p

)
− log

(
Qsim,min)

)
dp −

∫ 1
0.7(log

(
FDCobs,p

)
− log

(
Qobs,min

)
)dp∫ 1

0.7 log
(

FDCobs,p

)
− log

(
Qobs,min)

)
dp

× 100 (11)

Bias FHV: bias of the high segment of the FDC

Bias FHV =

∫ 0.02
0 (log

(
FDCsim,p

)
dp −

∫ 0.02
0 (log

(
FDCobs,p

)
dp∫ 0.02

0 (log
(

FDCobs,p

)
dp

× 100 (12)

3. Results

The LSTM and SWAT models were calibrated against meteorological data during
2009–2013 and validated for the 2013–2014 data period which had spells of both high flow
and low event in continuous time series data. The LSTM model was calibrated using mean
square error as a loss function and Adam as an optimizer whereas the SWAT model was
calibrated in SWAT-CUP using observed streamflow data from the USGS gauge In general,
model simulation can be judged as satisfactory if NSE > 0.50 for streamflow [37]. The model
prediction results were found to be better than compared with previous studies in the same
study area [52].

The most sensitive parameters in SWAT SUFI calibration are summarized in Table 1.
The curve number and alpha-BF recession value were one of the most effective parameters
for all three models and the values were all very small. The curve number explains the
runoff response of the basin and the higher the values curve number, the higher the runoff
response likewise, the alpha baseflow factor is a recession coefficient attributing to the
aquifer contributing to baseflow. Higher values imply steep recession meaning quick
response and lower storage and vice versa. Groundwater in the shallow aquifer (GWQMN)
which indicates the threshold for a shallow aquifer to respond and Groundwater delay
(GW_DELAY) indicating groundwater response timing are both small in value. The other
parameters listed are all indicative of soil and groundwater characteristics. Due to the
nature of watershed soil and land use distribution, a groundwater-dominated response was
expected, and this also explains the high sensitivity of soil and groundwater parameters.

Table 1. Range of sensitive parameters during SWAT streamflow calibration.

Parameter Definition Range Units

CN2.mgt SCS runoff curve number 60–75 -

ALPHA_BF.gw Baseflow alpha factor 0.0–0.10 1/Days

GW_DELAY.gw Groundwater delay 0.0–7.0 Days

GWQMN.gw Depth of water in shallow aquifer for
return flow 0–1000 mm mm

SMTMP.bsn Snowmelt base temperature −0.5–2.0 ◦C

ESCO.hru Soil evaporation compensation factor
0.15–0.65 - 0.15–0.65 -

ALPHA_BNK Baseflow alpha factor for bank storage 0.0–7.0 Days

SLSOIL.hru Slope length for lateral subsurface
flow 0.0–15 m
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Regarding the model complexity, the strength of deep learning lies in the flexibility
of building complexity. The model was built with an LSTM layer and dense layer with
75 neurons and the number of time steps used was 10 (Table 2). The model structure and
parameters were finalized after optimization was performed on each of them. The values of
timestep were varied from 3 to 365 and the calibrated value of 10 can highly be correlated
with groundwater parameters of the SWAT model which indicates a quick response of
the watershed.

Table 2. Model Structure and parameters for LSTM streamflow calibration.

Layer (Type) Output Shape Param #

Lstm_1 (LSTM) (None, 10, 75) 23,400

Dropout_1 (Dropout) (None, 10, 75) 0

Lstm_2 (LSTM) (None, 10, 75) 45,300

Dropout_2 (Dropout) (None, 10, 75) 0

Lstm_3 (LSTM) (None, 10, 75) 45,300

Dropout_3 (Dropout) (None, 10, 75) 0

Lstm_4 (LSTM) (None, 10, 75) 45,300

Dropout_4 (Dropout) (None, 10, 75) 0

Lstm_5 (LSTM) (None, 75) 45,300

Dense_1 (Dense) (None, 75) 5700

Dense_2 (Dense) (None, 1) 76

Total Params: 210376

The parameters in SWAT have a defined range and parameters calibration is conducted
within the range. Unlike SWAT, the parameters of LSTM are not built with physical
meaning which causes a great hindrance in the deduction of model parameters. However,
there are defined parameters such as dropout which excludes parameters in the model
probabilistically, and early stopping which halts the training of the model when no real
progress is observed. Both of these parameters help ensure minimizing problems with
overfitting.

In watersheds with short-spanned discharge data, further complexity, and uncertainty
may be accompanied by the presence of noise in data [53,54]. This is quite evident in
Figure 3 where sufficient discharge is not observed when similar precipitation was recorded
during other events at different times. This is an example of inherent non-linearity that
exists in small watersheds. Spatial variation in elevation profile, soil properties, and geology
impact catchment functioning [55].

It has been regularly observed that headwater hydrology is generally affected by
spatial variations [56,57]. Such variabilities causes the model difficulties in generalizing
and efficiently simulating the hydrologic process. The nature of LSTM is data-intensive
and short-spanned data means a big challenge in building LSTM models [14].

Although, modeling efforts with both conceptual and data-driven models are difficult
for small watersheds, in this study, both SWAT and LSTM model results were judged
satisfactorily but even though supervised calibration can be performed in SWAT, the LSTM
results were comparable to SWAT results (Figure 5, Table 3). Both SWAT and LSTM
results were often overestimating the low flows and some instances of high flows but
did not largely overestimate peak flow as the SWAT model. The SWAT also completely
misses some peaks (Figure 5) although, the physical parameters were available in SWAT
with the ability to be tuned to match high flows and has been also confirmed in other
studies as well [14,15,22]. In other percentiles, both models show better agreement with the
observed data.
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Table 3. Goodness of fit Parameters.

Calibration (2009–2013) Validation (2013–2014)

SWAT LSTM SWAT LSTM
NSE 0.65 0.77 0.63 0.60
R2 0.68 0.78 0.68 0.65

In addition to the comparison of goodness of fit, FDC and signature indices were also
analyzed for a better comparison of model performance at the percentile of flows (Figure 6).
From the FDC comparison at low flow areas, the difference is very apparent, but the log
scale does vertical exaggeration in terms of scale. A better representation is provided by
Bias FLV values. This value is positive for both SWAT and LSTM results and shows that
LSTM overestimated low flows more than SWAT. As for the comparison of high flows, Bias
FHV values are positive for SWAT and negative for LSTM which shows that while SWAT
overestimates the peak values, LSTM underestimates it. A further look at the area under
the curve till lower values of percentile from 5, 10, and 20 shows that SWAT continuously
overestimates peak till 10 percentiles but starts underestimating at 20 (Table 4). In the
case of LSTM, the negative discrepancy at high values continues to decrease and become
positive from the 10 percentiles. The bias in low flows is very high compared to high flows
and this is true for both the models. It has also been identified as LSTM’s weakness in
simulating low flow.

Table 4. Deviation of SWAT and LSTM FDC from Observed FDC.

Deviation (%)
Percentile SWAT LSTM

2 5 −7
5 4 −3
10 0 1
20 −9 7
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4. Discussion

Several studies have suggested that LSTM rainfall-runoff models learn a generalizable
representation of the underlying physical processes. This allows them to perform well
in out-of-sample conditions, such as prediction in ungauged basins [4,19,35] and unseen
extreme events [16]. These results suggest that LSTMs have captured information that
generalizes to these conditions, information that can help us improve hydrological theory
and predictions.

A robust hydrological model for ungauged catchment has been a challenge. SWAT
has been very successful in the simulation of water quantity and quality in both gauged
and ungauged watersheds across the world [57,58]. LSTM has also shown great promise
in simulating flows at ungauged watersheds. Recent studies conducted with LSTM show
that the prediction used in ungauged watersheds was better than conventional hydrologic
models [35,58].

Interpretability and explainability in hydrological systems have always been inte-
gral to hydrological modeling [14]. Although efforts are being made for the hydrological
interpretation of the LSTM from the cell states, this field is still evolving [33]. Like concep-
tual hydrological models, the LSTM processes the input data in increasing timestep. In
every time step, LSTM internal cell states are updated from the data, which is like what
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a hydrological model does when it updates its states like soil moisture, snow accumula-
tion, groundwater storage, etc. Studies have shown that individual LSTM cells correlate
with snow water content, although the model was only trained to predict discharge from
meteorological inputs [14]. The learned embedding of catchment attributes shows that
an LSTM variant had learned to group the rainfall-runoff behaviors of hydrologically
similar catchment characteristics [4]. One of the main uses of hydrological models is to
understand the hydrologic response of a system under various scenarios of land use and
climate change [59]. Studies show that SWAT has the ability to simulate land use changes
and land use is embedded in its structure, and it could be coupled with other tools for such
purposes [60,61]. There is very little research that shows the ability of LSTM to simulate
under changing land use scenarios. Such research uses a modified LSTM structure called
entity aware LSTM which is capable of incorporating static catchment attributed [4,62].
This may be a future direction for rainfall-runoff modeling studies.

The difficulty in hydrological modeling in smaller watersheds is large and challenging.
This may be attributed to complex hydro-geological settings and nonlinear interactions
among them [63]. Despite such complexities, the applicability of LSTM in small watersheds
can be justified with a study with its performance metrics comparable to SWAT. This may
be further tested in other smaller watersheds to bolster these results and findings. Also, it
may be tested for the applicability of LSTM under land use and climate change scenarios.

However, hydrological modeling in SWAT and LSTM is not without challenges and
limitations. The lack of interpretability and explainability in LSTM is present and in
SWAT, this remains its core strength. On the other hand, the need for strong hydrological
knowledge, and spatial data may be a major constraint for physically based models like
SWAT but not a constraint for LSTM. Like other data-driven methods, LSTM networks
require a large volume of data for training, which can be challenging to obtain, especially
in cases where data are scarce or expensive to collect. Training LSTM networks can be
computationally expensive, especially when dealing with large data and complex network
architectures [64]. Due to many parameters, LSTM networks are susceptible to overfitting,
especially when dealing with noisy or heterogeneous datasets hence, data validation and
sufficient data are a major pivot [23]. Despite its strong architecture, LSTM can still find
it difficult to establish long-term relationships, and the major hurdle when subjecting the
model to data it has yet to be trained [62].

5. Conclusions

This study assessed LSTM networks for river flow simulations in small, forested
watersheds, and cork brook river basins, and their prediction performances were compared
against SWAT. The results from LSTM are comparable to SWAT based on goodness of fit
parameters and FDC signature indices. Despite the positive results from the goodness of
fit parameters, both SWAT and LSTM struggle largely at low-value estimation. Although
discrepancy is also observed in high values, this is not a large discrepancy. This can be
also explained as an effect of the non-linear threshold behavior of watershed [22]. Despite
the successful implementation of LSTM on a small watershed, the method is scalable and
applicable to larger watersheds as well. Also, to further improve the model against FDC
signature indices, changes in the architecture of LSTM may be required. This could also be
enhanced by the addition of static input data of DEM, Land use, and soil or some physically
informed ML architecture [4].

The benefits of LSTM network models lie in their lower computational cost, lesser data
need requirement, knowledge-based assessment of watersheds compared to physically
based models, and its ability to handle data without requiring an in-depth understanding of
the underlying physical laws. Moreover, it is superior to traditional ANN networks, which
need help learning long-term dependencies such as snow accumulation, soil moisture, and
groundwater storage effects crucial to the hydrological process.

LSTM models have limitations, complexity, and interpretability issues. Data avail-
ability, computation cost, model calibration and susceptibility to overfitting, difficulties
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in establishing long-term relationships, agnostic to data range outside training data, and
interpretability are the major areas of challenge and limitation for LSTM. The lack of physi-
cal understanding of processes is a major challenge in the field of data-driven models as
a whole. It hinders their ability to provide insight into the causal relationships between
different hydrological variables when required. However, more research may help better
understand which conceptual structures the LSTM has learned and help diagnose potential
gaps existing in the current state.
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