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Abstract: CO2-brine relative permeability significantly impacts CO2 injection and is a key parameter
for carbon dioxide storage simulation in saline aquifers. In the study of relative permeability, factors
such as temperature, pressure, and reservoir rock physical properties play a crucial role. To better
understand the impact of confining pressure on the CO2-brine relative permeability characteristics of
sandstone in the Ordos Basin, five sets of CO2-brine relative permeability data were obtained through
unsteady-state displacement tests conducted at various confining pressures ranging from 12 to 20 MPa.
The research findings indicate that with an increase in confining pressure there is a slight decrease in
irreducible brine saturation. Furthermore, the CO2 relative permeability in the irreducible brine state
decreased by 57% as the pressure increased from 12 MPa to 20 MPa. The study demonstrates notable
differences in the CO2-brine relative permeability curves under varying confining pressure conditions.
As the confining pressure increases, the CO2 relative permeability curve decreases, while the brine
relative permeability increases. The change in brine relative permeability is not as pronounced as
that of CO2. These experimental results offer essential support for subsequent numerical calculations
and practical applications in engineering. Experimental research holds significant importance in the
assessment of storage potential and the prediction of the evolutionary patterns of CO2 migration.

Keywords: CO2-brine relative permeability; confining pressure; unsteady-state experiment; Carbon
Capture and Storage

1. Introduction

Climate change has been identified as one of the most significant global environmental
issues due to the continuous increase in carbon dioxide (CO2) and other greenhouse gas
emissions in recent years. Consequently, reducing atmospheric CO2 content has become a
critical area of research within the international scientific community [1]. Carbon Capture
and Storage (CCS) technology has emerged as a highly effective method for reducing
significant CO2 emissions into the atmosphere [2]. One of the potential sites for large-scale
CO2 storage is deep saline aquifers. This is because the rocks in saline aquifers are often
permeable sandstones, and the depth of the reservoir allows CO2 to be maintained in a
dense supercritical state. In these deep saline aquifers, supercritical CO2 can be permanently
stored through structural, solubility, mineral, and residual trapping mechanisms [3].

The flow and distribution of CO2 in saline aquifers are highly complex processes
influenced by reservoir characteristics, interactions between CO2 and brine, as well as flow
and transport properties [4]. Relative permeability (RP) is an important basic parameter for
predicting CO2 reserves in deep saline aquifers; it significantly affects the CO2 injection
capacity and transportation capacity [5]. Currently, the primary method of obtaining RP is
laboratory testing, usually using steady-state and unsteady-state methods [6].
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Several studies have reported data on the CO2-brine RP in common sedimentary
formations, including Berea sandstone, carbonate rocks, and other rock types [7–21]. Most
of these studies discussed the impacts of temperature, injection pressure, and porosity on
RP. Apart from the aforementioned influencing factors, confining pressure (CP) is also an
important parameter. Given that the stress state can influence the rock physical properties
of the reservoir [22], studying the impact of alterations in CP on RP is essential. In previous
studies, research efforts have explored the influence of CP on absolute permeability, and
these studies typically arrive at consistent conclusions [23–26]. However, there is limited
research focusing on RP, and the existing studies have presented conflicting conclusions
regarding the impact of CP on RP.

Fatt [27] was the first to investigate the correlation between RP and CP in sandstone.
There are no effects on non-wetting RP at all considering CP. Zhang et al. [28] employed
the unsteady-state method and identified significant variations in gas–water two-phase
RP curves under various CP conditions. With an increase in CP, the water RP experiences
a significant decrease. Additionally, when the water saturation is below 80%, the gas RP
exhibits a discernible increasing trend. Liu et al. [29], through experiments, demonstrated
that with an increase in CP the gas RP increases while the water RP decreases. Lai and
Miskimins [30] observed the influence of CP on the gas–water RP curve through experi-
ments. With an increase in CP, the gas RP decreases significantly, whereas the water RP
shows minimal change. Thomas and Ward [31] believed that the RP of both the gas and
water phases would remain unaffected by changes in CP. It is evident that researchers hold
varying opinions on the impact of CP on RP, and there are very limited studies on the effect
of CP on CO2-brine RP. There are numerous factors influencing the RP of two-phase fluids,
encompassing temperature, pressure, rock type, wettability, and interfacial tension [32–34].
Changes in CP can modify pore properties, wettability, and interfacial tension within
rocks, thereby inducing notable correlations in the two-phase fluid flow characteristics and
varying CPs [35,36]. Adenutsi et al. [37] and others conducted comparisons of NMR T2
spectra before and after applying CP, revealing a decrease in pore volume with increasing
CP. This corresponding reduction in the local pore throat radius heightens the capillary
resistance of the oil phase through the pores, resulting in a diminished RP of the oil phase
as CP rises. Lei et al. [38] and Zhang et al. [28] applied fractal theory to investigate the
pressure correlation with the RP. The pressure correlation was expounded by analyzing the
relationship between fractal dimensions, pore radius ratios, wettability, and RP. Existing
studies generally concentrate on a singular factor, and observing changes in pore properties,
wettability, and interfacial tension in rocks is challenging. This results in a lack of clarity
regarding the potential causes of changes in RP due to variations in CP. Therefore, in the
absence of CO2-brine RP CP correlation data, it is imperative to conduct CO2-brine RP tests
on cores under various CPs. This is crucial for enhancing our understanding of CO2 storage
in saline aquifers, particularly in the geographical locations where the cores are obtained.

This article explores the influence of CP on the CO2-brine RP characteristics of sand-
stone in the Ordos Basin. Unsteady-state drainage experiments were performed in five sets
under varying CP conditions (12, 14, 16, 18, 20 MPa). The ‘J.B.N’ method was employed
to calculate CO2-brine RP. The study analyzed the impacts of CP on irreducible brine
saturation, CO2 RP in the irreducible brine state, and CO2-brine RP curves. The results of
the experiments provide necessary data support for numerical calculations of CO2 storage
in saline aquifers.

2. Materials and Methods
2.1. Experimental Sample and Conditions

The experiment was conducted using a natural sandstone core extracted from the
Yi-Shan slope in the eastern Ordos Basin. Five cores are shown in Figure 1. These were
all drilled from the same original full-diameter core. Each core is approximately 2.5 cm in
diameter and 6.0 cm in length. The five cores were tested for their porosity and single-phase
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gas permeability. Detailed information on the size, porosity, and permeability of each core
sample is given in Table 1.
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Figure 1. Five cores for CO2-brine relative permeability experiments, numbered as 1-1, 1-2, 1-3, 1-4,
and 1-5, respectively.

Table 1. Detailed information on experimental cores.

Core
Number Length/cm Diameter/cm Porosity/% Dry

Weight/g Permeability/mD

1-1 5.965 2.502 8.9 69.89 97
1-2 5.977 2.506 8.4 70.95 101
1-3 5.965 2.502 8.4 70.28 103
1-4 5.965 2.502 8.1 70.33 97
1-5 5.977 2.506 8.4 70.95 101

An incubator was used in the experiment to maintain a constant temperature of
70 ◦C, representing the formation temperature. The core holder’s inlet pressure was kept at
10 MPa by a constant speed and constant pressure pump. Meanwhile, the back pressure
pump maintained the outlet pressure at 8 MPa. The pressure difference between the core’s
inlet and outlet was always maintained at 2 MPa. Therefore, the physical properties of
brine and CO2 were determined based on the temperature and average core pressure
(9 MPa). The salinity of brine is 23.5 g/L, density is 0.984 g·cm−3, and viscosity is
0.415 mpa·s at 70 ◦C [39,40]. For temperatures (T) and pressures (P) exceeding the critical
point (Tc = 31.1 ◦C and Pc = 7.38 MPa), CO2 exists in the supercritical phase, exhibiting gas-
like behavior while possessing the density of a liquid. Therefore, CO2 is in a supercritical
state at a temperature of 70 ◦C and a pressure of 9 MPa, with a density of 0.208 g·cm−3 and
a viscosity of 0.021 mpa·s. Five sets of CP conditions were established, namely 12 MPa,
14 MPa, 16 MPa, 18 MPa, and 20 MPa.

2.2. Experimental Equipment and Process
2.2.1. Experimental Setup

Figure 2 illustrates the experimental setup for unsteady CO2-brine RP testing. The
system comprises a CO2 storage tank, constant speed and constant pressure pump, pressure
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gauge, incubator, core holder, CP pump, back pressure valve, back pressure pump, gas–
liquid separator, and gas–water metering device. The main equipment for the experiment is
divided into a core holder, various pressurization devices, and experimental measurement
instruments. The core holder fixes the core through the clamping heads at both ends
and the rubber sleeve in the middle. The inlet is connected to a CO2 storage tank and
a constant speed and constant pressure pump to provide CO2 injection pressure, set at
10 MPa for this experiment. The outlet is connected to a back pressure valve and a back
pressure pump to maintain the outlet pressure. In the middle of the core holder, there is a
connection for a CP pump, which supplies CP by injecting water into the rubber sleeve’s
outer periphery, simulating the reservoir pressure of the saline aquifer. It can provide
five sets of CP conditions from 12 MPa to 20 MPa. After the back pressure valve, the
experimental measurement instruments are connected, including a gas–liquid separator, a
graduated cylinder, and a gas flow meter, used to measure fluid flow rate.
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2.2.2. Experimental Process

In this study, the CO2-brine RP was measured using the unsteady-state method.
Compared with the steady-state method, which is more accurate but also more time-
consuming and expensive, the unsteady-state method allows for a significantly shorter
experimental time frame. To generate RP curves, different ratios of fluid injection were used
to obtain multiple data points [41]. The steady-state method involves the simultaneous
injection of CO2 and brine into the core, which does not reflect the actual injection scenario
for CO2 saline aquifer storage [42]. In contrast, the unsteady-state method displaces one
fluid with another, allowing for continuous changes in fluid saturation. This approach
better simulates the actual flow conditions of reservoir storage in saline aquifers.

Two types of RP affect CO2 migration, namely drainage and imbibition RP [43]. This
article focuses on the RP of drainage, which corresponds to the injection stage of the
geological storage project. The design method of this experiment only obtains the RP of
CO2-displaced brine at irreducible water saturation, that is, the drainage RP.

(a) Dry the core at 60 ◦C for 24 h and weigh it. Pump to vacuum, then saturate the core
with brine. Weigh the rock samples saturated with brine to calculate the effective pore
volume of the core.

(b) Before experimenting, CO2 needs to be pressurized. Open the outlet valve of the
CO2 cylinder to allow CO2 to enter the piston container. Close the inlet valve of the
container and utilize a booster pump to pressurize the CO2 to the required pressure
for the displacement experiment.

(c) Load the rock sample saturated with brine into the core holder. Utilize the CP and
back pressure device to apply the necessary back pressure and CP to both ends and to
the middle section of the core holder. After completing the pressurization, activate the
heating device and maintain the instrument at the experiment’s required temperature
conditions for 2 h before commencing the experiment.

(d) Activate the booster pump and apply a specific injection pressure to enable the
formation brine to pass through the rock sample. Once the pressure difference and
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flow rate at both ends of the inlet and outlet of the rock sample stabilize, record the
flow value.

(e) Utilize the CO2 displacement brine method and record the time, cumulative brine
production, CO2 production, and pressure conditions at both ends of the rock sample
until no brine is produced (visual observation). Reach the irreducible brine state,
establish the irreducible brine saturation of the core sample, and measure the effective
permeability of the CO2 in this irreducible brine state.

2.3. Experimental Data Processing Methods

The experiment uses the unsteady-state method to conduct a constant pressure drop
CO2 displacement brine test on the core. Record the flow rate of each fluid at the core outlet.
The CO2-brine RP is calculated using the ‘J.B.N’ method [44,45]. The method is as follows.

Due to compressibility, the average volume flow rate needs to be used to correct the
total fluid production according to Equation (1):

Vt = ∆Vw + Vt−1 +
2Pa

∆P + 2Pa
∆Vg (1)

where Vt denotes the cumulative flow rate of each fluid at time t, mL; Vt−1 is the cumulative
flow rate of each fluid at time t − 1, mL; ∆Vw is the increased flow rate of brine from t − 1
to time t, mL; Pa is the value of atmospheric pressure; ∆P is the value of the displacement
pressure difference; and ∆Vg represents the measured increase in CO2 flow rate over a
specific time interval under atmospheric pressure, expressed in mL.

After correcting the cumulative CO2 and brine flow rate according to Equation (1), use
Equations (2)–(6) to calculate the unsteady gas-water RP:

fw
(
Sg

)
=

dVw(t)
dV(t)

(2)

Krw = fw
(
Sg

) d
[
1/V(t)

]
d
{

1/
[
I·V(t)

]} (3)

Krg = Krw
µg

µw

1− fw
(
Sg

)
fw
(
Sg

) (4)

I = (Q(t)/ Q0)(∆P0/∆Pt) (5)

Sg = Vw(t)−V(t) fw
(
Sg

)
(6)

where fw
(
Sg

)
denotes the moisture content; Vw(t) represents the dimensionless cumulative

brine flow rate, expressed as pore volume fraction; V(t) is the dimensionless cumulative
CO2 and brine flow rate; Krw and Krg are the RP of CO2 and brine, respectively; I is the
relative injection capability; Q0 and Q(t) are the brine flow rate at the core outlet at the
initial time and time t, respectively, cm3/s; ∆P0 and ∆Pt are the driving pressure drop
at the initial time and time t, respectively, MPa. In constant pressure drop displacement
experiments, ∆P0 and ∆Pt are equal. Sg is the CO2 saturation at the core outlet.

3. Results and Discussion
3.1. Relative Permeability Results for Five Sets of Confining Pressure Conditions

Five sets of CO2-brine RP were obtained through unsteady-state displacement tests
conducted at various CPs ranging from 12 to 20 MPa. The experimental data of CO2-brine
RP at various CPs were calculated using the ‘J.B.N’ method.
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The experimental data were fitted using the Corey model and the Van Genuchten
modified model. The basic expression of the Corey model is as follows [46,47]:

Krw = Krw
(
Sgr

)( Sw − Swr

1− Swr − Sgr

)a
, (7)

Krg = Krg(Swr)

(
1− Sw − Sgr

1− Swr − Sgr

)b
(8)

where Sgr is the irreducible CO2 saturation and Krw
(
Sgr

)
is the RP of brine in the irreducible

CO2 state; similarly, Swr is the irreducible brine saturation, and Krg(Swr) is the CO2 RP
in the irreducible brine state. Since the experiment is a drainage process, Sgr = 0 and
Krw

(
Sgr

)
= 1 are taken.

The expression of the Van Genuchten modified model is as follows [48]:

S∗ = (Sw − Swr)/(1− Swr), (9)

Krw =
√

S∗[1− (1− S∗1/λ)λ]2 (10)

Krg = Krg(Swr)(1− S∗)γ(1− S∗1/λ)2λ, (11)

Core 1-1 was used for a displacement experiment under a CP of 12 MPa. After
processing the experimental data, the irreducible brine saturation was 0.171, and the CO2
RP under irreducible brine saturation was 0.258. Figure 3 shows the experimental results
of CO2-brine RP, which were fitted using the Corey model—with parameters a = 7.661,
b = 3.251—and plotted as the black curve. The Van Genuchten modified model was also
used for fitting with parameters of γ = 2.761 and λ = 0.591. The resulting curve is shown in
red in Figure 3.
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pressure of 12 MPa.

Core 1-2 was used for a displacement experiment under a CP of 14 MPa. The irre-
ducible brine saturation was 0.143, with the CO2 RP under irreducible brine saturation
measured at 0.230. Corey model parameters were found to be a = 5.959 and b = 3.280.
Additionally, the Van Genuchten parameters were determined as γ = 2.704 and λ = 0.632.
Experimental and model-fitting results are depicted in Figure 4.
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pressure of 14 MPa.

Core 1-3 was used for a displacement experiment under a CP of 16 MPa. Irreducible
brine saturation was 0.138 and CO2 RP under irreducible brine saturation was 0.166. Corey
model parameters were a = 5.979 and b = 2.887. Van Genuchten parameters were γ = 2.267
and λ = 0.635. The results from experiments and model-fitting for RP are shown in Figure 5.
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Figure 5. Results from experiments and model-fitting for relative permeability under a confining
pressure of 16 MPa.

Core 1-4 was used for a displacement experiment under a CP of 18 MPa. Irreducible
brine saturation was 0.136 and CO2 RP under irreducible brine saturation was 0.117. Corey
model parameters were a = 5.591 and b = 2.796. Van Genuchten parameters were γ = 2.199
and λ = 0.644. The results from experiments and model-fitting for RP are shown in Figure 6.
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pressure of 18 MPa.

Core 1-5 was used for a displacement experiment under a CP of 20 MPa. Irreducible
brine saturation was 0.133 and CO2 RP under irreducible brine saturation was 0.110. Corey
model parameters were a = 5.494 and b = 2.814. Van Genuchten parameters were γ = 2.124
and λ = 0.668. Experimental and model-fitting results are shown in Figure 7.
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Figure 7. Results from experiments and model-fitting for relative permeability under a confining
pressure of 20 MPa.

Based on the images of the results, differences were found in the accuracy of the
models used to determine the RP of CO2 and brine. Both fitting models agree with the
experimental results of CO2 RP. The Van Genuchten modified model was found to be more
consistent with experimental results when calculating brine RP. As the CP increased, the
coefficient λ in the model also increased, while γ decreased gradually.

The resulting curve in the study clearly shows the process of core drainage, where CO2
gradually replaces brine in the saturated core, resulting in a decrease in brine saturation.
With the decrease in brine saturation, CO2 RP increases while brine RP decreases gradually.
On the left side of the isotonic point, as brine saturation decreases, CO2 RP increases rapidly.
Conversely, on the right side of the isotonic point, as brine saturation increases, brine RP
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increases rapidly. When brine saturation decreases to the irreducible state, CO2 RP reaches
the maximum while brine RP decreases to 0.

3.2. Effects of Confining Pressures on Irreducible Water Saturation

Irreducible brine refers to the immobile water adsorbed on rock surfaces and trapped
in rock pores and throats [49]. Irreducible brine saturation (Swr) is a crucial parameter
in reservoir evaluation, directly influencing permeability prediction models and reserve
estimations [50]. In the displacement experiment, irreducible brine saturation is reached
when the core stops producing brine. The core is weighed, and irreducible brine saturation
is calculated.

This study investigates the impact of various CP conditions on irreducible brine
saturation. Figure 8 depicts the irreducible brine saturation under varying CP conditions.
It can be observed that with the increase in CP, there is a slight decrease in irreducible brine
saturation. The elevated CP can alter the rock pore structure [51,52]. Higher pressure may
compress larger pores, forming smaller capillary pores, thereby reducing the retention of
irreducible brine [53]. This alteration in pore structure might be a primary reason for the
decrease in irreducible brine saturation.
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3.3. Effect of Confining Pressure on CO2 Relative Permeability in the Irreducible Water State

The relationship between CO2 RP and CP in the irreducible brine state was studied
and the results are presented in Figure 9. The experimental findings indicated that as the
CP increased from 12 MPa to 14 MPa while in the irreducible water state, the CO2 RP
decreased considerably. However, as the CP was further increased to 20 MPa, the decrease
in the CO2 RP was relatively small.

This phenomenon may be due to alterations in the rock pore structure induced by CP,
involving a decrease in pore size and the development of capillary pores [54,55]. Certain
larger pores transform into capillary pores with water-binding potential [37]. This shift in
pore structure hinders CO2 flow, causing a decline in CO2 RP. Simultaneously, the reduction
in the pore throat radius results in increased capillary forces. This augmented capillary
force hinders CO2 from displacing bound water, further diminishing the CO2 RP. The
effect of pore structure compression might have been significant under the 14 MPa CP.
Consequently, under the 20 MPa CP the alteration in pore structure has a relatively minor
impact on CO2 RP.



Water 2023, 15, 4235 10 of 15
Water 2023, 15, x FOR PEER REVIEW 10 of 14 
 

 

 
Figure 9. Relationship between CO2 relative permeability and confining pressure in the irreducible 
water state. 

3.4. Effect of Confining Pressure on CO2-Brine Relative Permeability Curve 
Figure 10 illustrates the CO2-brine RP curves fitted by five sets of Van Genuchten 

modified models. The results show significant variations in the CO2-brine RP curves de-
pending on the CP. The CO2 RP curve decreases as the CP increases, while the brine RP 
increases. Specifically, as the pressure was raised from 12 MPa to 20 MPa, the CO2 RP in 
the irreducible brine state decreased by 57%. However, the change in brine RP is not as 
noticeable as that of CO2. The reduction in CO2 RP is more apparent when the brine satu-
ration is below the isotonic point saturation. Figure 10’s right image provides an enlarged 
view of the isotonic point area of the RP curve. The isotonic point shifts progressively to 
the left with increasing CP, while the brine saturation corresponding to the isotonic point 
decreases. This decrease significantly hampers CO2 flow. 

 
Figure 10. CO2-brine relative permeability under different confining pressures. 

The observed results may be attributed to changes in CP altering rock properties, 
thereby influencing the RP magnitude [9,56]. These rock properties encompass wettability 
and pore characteristics. Wettability plays a pivotal role in RP; a shift in rock wettability 
from strongly water-wetting to gas-wetting leads to a decrease in the RP of gas and an 

Figure 9. Relationship between CO2 relative permeability and confining pressure in the irreducible
water state.

3.4. Effect of Confining Pressure on CO2-Brine Relative Permeability Curve

Figure 10 illustrates the CO2-brine RP curves fitted by five sets of Van Genuchten
modified models. The results show significant variations in the CO2-brine RP curves
depending on the CP. The CO2 RP curve decreases as the CP increases, while the brine
RP increases. Specifically, as the pressure was raised from 12 MPa to 20 MPa, the CO2
RP in the irreducible brine state decreased by 57%. However, the change in brine RP is
not as noticeable as that of CO2. The reduction in CO2 RP is more apparent when the
brine saturation is below the isotonic point saturation. Figure 10’s right image provides
an enlarged view of the isotonic point area of the RP curve. The isotonic point shifts
progressively to the left with increasing CP, while the brine saturation corresponding to the
isotonic point decreases. This decrease significantly hampers CO2 flow.
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The observed results may be attributed to changes in CP altering rock properties,
thereby influencing the RP magnitude [9,56]. These rock properties encompass wettability
and pore characteristics. Wettability plays a pivotal role in RP; a shift in rock wettability
from strongly water-wetting to gas-wetting leads to a decrease in the RP of gas and an
increase in the RP of water [57]. Research on wettability in saline aquifers indicates
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that increased pressure enhances the wettability of CO2 [58,59]. Wettability governs the
distribution and flow of CO2 and brine in rock pores. An escalation in CP transforms
wettability from water-wetting to mixed-wetting to CO2-wetting, ultimately resulting in
a decrease in the RP of CO2. Beyond altering wettability, CP may also impact the pore
properties of the rock, including porosity, pore size distribution, pore geometry, and pore
connectivity. Investigations into CO2-brine two-phase RP reveal a significant decrease in the
RP of CO2 with decreasing porosity [60]. An increase in CP compacts sand grains, leading
to a denser core structure, reduced pore volumes, smaller pore throat sizes, and diminished
porosity [61,62]. Small pores are occupied by the wetting phase, forming a thin film on
rock particle surfaces. The non-wetting phase occupies larger pores’ central region [63,64].
With rising CP, core pore volume decreases, causing pore fluids to redistribute. Some larger
pores that originally allowed the unrestricted flow of the non-wetting phase gradually
shrink, becoming pores bound by the wetting phase [65]. As the number of pores capable
of binding the wetting phase increases, the number of pores permitting non-wetting phase
flow decreases. As the CP increases, the local pore throat size decreases, resulting in higher
capillary resistance when the non-wetting phase passes through the pore throat. This makes
it more challenging for the non-wetting phase to traverse the pores. Consequently, with the
increase in CP, the RP of CO2 decreases. Pore connectivity similarly influences RP [66–68],
as fluid can efficiently flow only through connected pores. An increase in CP may isolate
pores that were previously interconnected, disrupting fluid flow and decreasing the RP of
the terminal gas, even as the final gas saturation increases.

Figure 11 demonstrates that when water saturation is below 80% the ratio of gas
RP to water RP (Krg/Krw) decreases as CP increases. The intersection point between the
horizontal line and the curve in the figure represents the isotonic point. The brine saturation
corresponding to the isotonic point decreases. This suggests that the increase in CP has a
more significant impact on gas RP than it does on brine RP.
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Compared with CO2, the mobility of brine within the core is less influenced by CP.
Water molecules may interact with the solid particle surfaces in the formation, and they
are more prone to forming water films within the formation pores [69]. At low CP, water
molecules can already flow relatively freely in the pores, and increasing the CP has little
effect on brine RP.
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4. Conclusions

Five sets of unsteady-state drainage experiments were conducted using natural sand-
stone cores in the Ordos Basin under different CP conditions (12, 14, 16, 18, 20 MPa).
The ‘J.B.N’ method was used to calculate the relative permeability of CO2-brine. Relative
permeability curves for the CO2-brine system at various confining pressures were plotted.
Analyses of confining pressure effects on irreducible brine saturation, CO2 relative per-
meability in the irreducible brine state, and CO2-brine relative permeability curves were
conducted.

The research results show that for the sandstone in the Ordos Basin in this study, as
the confining pressure increases irreducible brine saturation slightly decreases. As the
confining pressure was raised from 12 MPa to 20 MPa, the CO2 relative permeability in
the irreducible brine state decreased by 57%. The results reveal notable differences in the
CO2-brine relative permeability curves at various confining pressures. As the confining
pressure increases, the CO2 relative permeability curve decreases, while the brine relative
permeability increases. The change in brine relative permeability is not as pronounced as
that of CO2.
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