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Abstract: Streamflow forecasting plays a crucial role in the operational planning of hydro-dominant
power systems, providing valuable insights into future water inflows to reservoirs and hydropower
plants. It relies on complex mathematical models, which, despite their sophistication, face various
uncertainties affecting their performance. These uncertainties can significantly influence both short-
term and long-term operational planning in hydropower systems. To mitigate these effects, this study
introduces a novel Bayesian model averaging (BMA) framework to improve the accuracy of stream-
flow forecasts in real hydro-dominant power systems. Designed to serve as an operational tool, the
proposed framework incorporates predictive uncertainty into the forecasting process, enhancing the
robustness and reliability of predictions. BMA statistically combines multiple models based on their
posterior probability distributions, producing forecasts from the weighted averages of predictions.
This approach updates weights periodically using recent historical data of forecasted and measured
streamflows. Tested on inflows to 139 reservoirs and hydropower plants in Brazil, the proposed BMA
framework proved to be more skillful than individual models, showing improvements in forecasting
accuracy, especially in the South and Southeast regions of Brazil. This method offers a more reliable
tool for streamflow prediction, enhancing decision making in hydropower system operations.

Keywords: hydro-dominant power systems; multi-model ensemble; rainfall–runoff models; Bayesian
model averaging; streamflow forecasting

1. Introduction

Water is a limited resource that is essential for hydropower generation, irrigation,
navigation, industrial supply, and basic sanitation [1]. Typically, planners and managers of
hydropower systems use hydrological models to predict streamflow scenarios for varying
forecast time horizons [2–5]. However, several sources of uncertainty affect the forecasting
performance of such models, leading to less reliable predictions that may compromise all
the work that is performed by the planning agent [6,7]. To overcome this, it is essential to be
aware of the uncertainties related to predictors (e.g., measured streamflows and forecasted
precipitation), mathematical model structure (i.e., model type and architecture), initial
conditions, and calibration parameters [8–12] of hydrological models.

Beyond the uncertainties linked to the structure, parameters, and inputs of mathemati-
cal models, in water systems with strong integration of hydropower plants and cascading
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reservoirs, it is crucial to account for the impacts of human activities on river courses.
Reservoirs change how water is distributed over time and space. They store water during
periods of abundance and release it when there is a shortage, helping to balance the flow
in the rivers where they are established. Therefore, the flow rate at a specific river section
downstream from a reservoir no longer matches what would naturally occur without this
flow-regulating structure in place. Other human actions such as the diversion of flows and
the extraction of water for consumptive uses (for instance, irrigation, livestock farming,
and supplying to industrial, urban, and rural areas) also influence the river flow regimes.

In this context, Galletti et al. [13] emphasize the importance of accurately simulating
both river flow and hydroelectric power generation. When applying the HYPERstreamHS
hydrological model to the Adige basin, an Alpine watershed, the authors underline the
necessity of precisely depicting hydraulic infrastructures and operational schedules for
trustworthy simulations, particularly considering the variability in reservoir levels and
hydraulic capacity. This work highlights the impact of hydropower on water resources and
energy production, underscoring the need for detailed modeling approaches. In the context
of uncertainties and human impacts on water systems, the need for accurate simulation of
streamflow and hydropower production, as discussed by Galletti et al., parallels the ideas
of Smajgl et al. [14] on the interconnection between water, food, and energy. The authors
advocate for the dynamic integration of water, food, and energy systems for sustainable
management, particularly highlighted in the Mekong basin context. Their discussion,
emphasizing a balanced Nexus framework, underscores the critical need to consider inter-
sectoral connections and the impacts of human actions on sustainable development.

Over the years, ensemble techniques have been used to mitigate the uncertainty
effects on predictions [15–19]. One of the most promising strategies in this research field
explores the use of artificial neural networks (ANNs) to create, for example, (a) a system of
independently trained ANNs, also known as ensemble neural networks (ENNs), whose
predictions are combined in some way to obtain a deterministic forecast [20–22]; or (b) a
single ANN to combine streamflow predictions that are not necessarily made by a set of
ANNs [23], but made by models with different structures such as data-driven and physically
based rainfall–runoff models, an approach known as a multi-model ensemble (MME).

Building on the concept of an MME as outlined above, where different models are com-
bined, Kim et al. [24] explored statistical methods, such as the minimized sum of squared
differences, simple average, constant coefficient, and switching regressions, as alternatives
to single ANN methods for integrating multi-model ensemble forecasts. Among these, the
approach employing time-varying weights and the minimized sum of squared differences
demonstrated superior performance in terms of reducing the root mean square error of the
forecasts. Devineni et al. [25] proposed another strategy for combining ensemble members.
The authors introduced an MME approach that integrates models based on their predictive
performance, quantified by the ranked probability score. Greater weights were assigned to
models with high predictability, leading to more reliable forecasts according to the results of
the study. Muhammad et al. [26] also explored several statistical techniques within an MME
framework to develop an enhanced streamflow prediction system. The authors tested meth-
ods such as linear regression, quantile mapping, quantile model averaging, and Bayesian
model averaging (BMA) to combine predictions from a collection of rainfall–runoff models,
resulting in improved streamflow forecasts compared to single-model predictions.

MME-based techniques such as those mentioned earlier have gained popularity in
recent years because of their ability to leverage the predictive strengths of competing
models to create more robust forecasts. Among the methods used to develop an MME,
BMA is a primary approach [27]. BMA addresses the issues associated with relying on
a single model, such as overconfidence in a deterministic prediction. This method uses
the posterior probability distributions of a set of models (i.e., probability distributions
that have been adjusted or modified based on actual observed data) to assign weights
and combine streamflow predictions through a model-averaging process. For example,
in [28,29], two alternatives were explored to account for the uncertainty of mathematical
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forecasting models using BMA: (a) an ad hoc procedure called Occam’s Window, which
reduces the original set of models and subsequently computes a simple average of their
forecasts, following the principle that models with a low relative predictive performance,
compared to the best model, should be discarded; and (b) the use of the Markov chain
Monte Carlo (MCMC) method to approximate the posterior probability distributions to
compute the set of weights that are applied in the model averaging process. In the last
approach, the weights vary according to the models’ posterior probability of selection
rather than being equal.

Some authors claim that BMA performs better than individual models [11,30] in
diverse streamflow regimes [31], which is mainly due to its ability to capture the relative
performance of ensemble members via observation-corrected probability distributions.
Such a result is exemplified in several studies [32,33] that investigate the use of Bayesian
weighting of hydrological models to develop more accurate and reliable probabilistic
forecasts. In [32], for example, the authors show that the combination of skillful models that
can capture certain aspects of the hydrograph (such as average, low, and peak streamflows)
performs better than the best individual model, especially when a BMA approach based on
several sets of weights is adopted (i.e., one set of weights per streamflow level). Similarly,
in [34], the authors propose an MME composed of seasonal forecasting models with
hydrological rainfall–runoff integration and stochastic machine learning models using
endogenous and exogenous variables. In this approach, BMA is used to combine the
forecasts according to classes based on 20, 40, 60, and 80 streamflow percentiles (i.e., very
low, low, normal, high, and very high streamflows), for every month of the year, already
discarding ensemble members with low performance. As a result, BMA provides more
accurate forecasts than the individual models.

Building on the successful application of BMA in combining multi-model predictions,
this study aims to introduce a novel BMA-based framework for large-scale streamflow fore-
casting. The primary goal is to enhance the predictive performance of streamflow forecasts,
ensuring that they are both robust and reliable. Furthermore, this framework is designed
to serve as an operational tool that incorporates predictive uncertainty into the forecasting
process, thereby offering more accurate predictions for hydropower system management.
The approach presented here differs from those in other studies for several reasons:

■ It explores the use of dynamic weights that are updated weekly in response to new
streamflow measurements (considering a rolling window of 120 days of data). Con-
sequently, the streamflow predictions are more aligned with reality, given that static
weights cannot account for the varying predictive performance of rainfall–runoff
models as streamflow levels change;

■ It incorporates Occam’s Razor principle from Raftery et al. [28] and Hoeting et al. [29]
to select good ensemble members from a prior multi-model ensemble. Our approach
differs from [28,29] because it does not constrain the model-averaging weights to have
the same value. As a consequence of Occam’s Razor principle, ensemble members
with lower performance are discarded to avoid degradation of the BMA predictions,
given that the joint contribution of models with higher forecasting uncertainty strongly
affects the BMA results;

■ This was tested in a real large-scale hydropower system, aiming to produce a reliable
forecasting engine that can be used to support operational scheduling of hydropower;

■ The individual ensemble members and the BMA predictions were assessed taking
into account the spatial variability of the Brazilian large-scale hydropower system and
the varying days ahead of the forecast horizon. A hypothesis test was also applied to
compare the predictive performance of BMA to the ensemble members.

The remainder of this paper is organized as follows: Section 2 presents the proposed
framework, data sources, rainfall–runoff models, multi-model ensemble generation, BMA
methodology, and evaluation metrics. Section 3 describes the case study and the results that
were obtained from the backtesting simulations and discusses the results of the multi-model
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ensemble and BMA predictions. Section 4 summarizes the main results of our research and
provides the next steps.

2. Materials and Methods

Mathematical models are simplifications of a complex reality that we want to under-
stand. “Essentially, all models are wrong, but some are useful” [35], and they make it
easier to understand, explain, or predict a process. Inevitably, they are subject to many
types of uncertainties (i.e., inputs, initial conditions, structure, and parameters) that affect
the quality of the results. One way to explore the predictive ability of a set of competing
models and mitigate the uncertainty is through a multi-model ensemble. The framework
that is proposed in this study (see Figure 1) shows the stages of the streamflow forecasting
process to create a multi-model ensemble (precipitation forecasts → rainfall–runoff models
→ streamflow forecasts) and a deterministic streamflow forecast via BMA (pre-processing
of data → weight computation procedure → BMA predictions).
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Three distinct mathematical models are employed to generate daily streamflow pre-
dictions here: the large basin hydrological model, originally named in Brazilian Portuguese
as “Modelo de Grandes Bacias” (MGB), the soil moisture accounting procedure (SMAP),
and multilayer perceptron artificial neural networks (ANNs). These streamflow models are
informed by the precipitation forecasts of four distinct weather prediction models, and their
streamflow predictions are combined using a BMA algorithm. The following subsections
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provide more details about the numerical weather forecast systems, rainfall–runoff models,
the BMA method, as well as the evaluation metrics that were applied in the process of
streamflow prediction assessment.

2.1. Precipitation Forecasts

Over the years, streamflow predictions have increasingly relied on precipitation fore-
casts from numerical models that simulate the climate system [36]. Such predictive tools
are key in the process of forecasting river flow, since they provide a forward-looking view
of the expected rainfall in river basins. The results from these models are categorized as
either climate forecasts or weather predictions, depending on the forecast horizon (lead
time) that is covered by the simulation. Predictions covering a period of up to two weeks
in advance are classified as weather forecasts. Their primary objective is to determine the
intensity, location, and timing of weather systems and their effects. In our research, we
used weather forecast data sourced from climate and weather forecasting agencies. We
collected real-time forecast data by accessing the links referenced in Table 1.

Table 1. Numerical weather forecast systems.

Model Details

GFS

The Global Forecast System (GFS) is a global numerical weather prediction system that has been operational at
the National Centers for Environmental Prediction (NCEP) since 1991 [37]. The system couples individual
numerical models of atmosphere, ocean, land, and sea ice to portray the weather conditions using atmospheric
and land–soil variables [38], thereby establishing itself as one of the state-of-the-art numerical systems that are
capable of running at various spectral resolutions [39]. At NCEP, this integrated system of models runs four
times daily—at 00, 06, 12, and 18 UTC—producing deterministic scenarios with a forecast horizon of up to 16
days [40]. In the present study, we use the total precipitation data from the GFS’s 18 UTC runs [41], provided
at a horizontal spatial resolution of 0.25◦ latitude by 0.25◦ longitude.

GEFS

The Global Ensemble Forecast System (GEFS) is a global numerical weather forecasting system developed by
NCEP that generates predictions up to 16 days in advance. The 11.0 version of the system was actively used
for forecasting from December 2016 until September 2020. During its operational period, GEFS generated
21 different precipitation scenarios (i.e., ensemble prediction). The first one is the base scenario or the control
member, and the remaining ones underline uncertainties from the input data, such as limited coverage,
instruments, or observing system biases [42], by using a breeding method to introduce perturbations in the
initial conditions [43]. In the present study, we use the total precipitation data from the GEFS’s 18 UTC
runs [44] in a horizontal spatial resolution of 1◦ latitude by 1◦ longitude.

ETA

The η (ETA, from Greek alphabet) is a regional numerical weather forecasting model developed by the
University of Belgrade in collaboration with the Institute of Hydrometeorology of Yugoslavia [45]. The ETA
model became operational at CPTEC (Center for Weather Forecasting and Climate Studies) in the 1990s and
has been used since then to forecast the South American weather. The model’s name refers to a vertical
coordinate η that represents the vertical structure of the atmosphere, taking the sea level as a reference [46].
Initially, the ETA model was developed only to make regional weather predictions, but it was later successfully
applied in climate prediction and projection studies [47]. The operational version of the ETA model used to
forecast the weather conditions of South America has a horizontal spatial resolution of 0.4◦ of latitude × 0.4◦

of longitude, as well as a forecast time horizon of 11 days ahead. Unfortunately, the daily forecasts made by
the ETA model were downloaded using a link that is no longer available. The precipitation data from the ETA
model are now available through the SINtegre portal [48].

ENS

The ensemble forecast (ENS) consists of an ensemble of possible future weather states, generated by the
ECMWF Integrated Forecast System [49]. This ensemble includes one control/unperturbed member and fifty
disturbance members, all of which are produced twice daily, at 00 and 18 UTC, by the IFS at the European
Climate Center. The ECMWF IFS is a numerical system composed of several coupled components that model
the atmosphere, ocean, wind-generated ocean waves, sea ice, land surface, and lakes to predict the evolution
of the climate system [50]. In this study, we use the ENS total precipitation dataset, which provides forecasts
extending 15 days ahead and has a horizontal resolution of 0.20◦ latitude by 0.20◦ longitude. Although the
original product was an ensemble of predictions, we did not have access to the individual members, but to the
average, through the SINtegre portal [51].
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2.2. Natural Streamflow

The historical time series of daily natural streamflows used here are available on
SINtegre database [52,53] for each reservoir and hydropower plant of the Brazilian system.
The natural streamflows are the flows that would happen in a river section if there were
no human intervention, like reservoirs, power plants, artificial channels, and consumptive
water use. In our framework, the BMA predicts this kind of streamflow. The calibration,
training, and testing of the rainfall–runoff models also use natural time series. Annually
updated by the National System Operator (ONS), this dataset, which encompasses stream-
flow at river sections where reservoirs and hydropower plants are situated, dates back to
1931. These streamflows were reconstituted by ONS using the data provided by measuring
stations in a process that accounts for the effects of the operation of upstream reservoirs,
water evaporation, and other water uses, as discussed in detail in [54]. Additionally, more
recent data in spreadsheets from hydraulic–hydrological reports published in SINtegre [55]
have been integrated into the historical dataset of natural streamflows, resulting in a prod-
uct called QObs, which is used in the BMA computation process and the evaluation of
streamflow predictions.

2.3. Rainfall–Runoff Models

Streamflow forecasting consists of estimating the water flow in a section of a river in
advance [56]. Streamflow predictions are made using mathematical models that convert
rainfall events into runoff. Depending on their nature, such models can be classified as
empirical, conceptual, or physically based [57]. Empirical models are those in which the
relationship between inputs and output is statistically determined using data-driven meth-
ods [58] such as, for example, artificial neural networks [22,59,60], periodic autoregressive
moving average [61], and support vector machines [62–64], among other methods. On the
other hand, conceptual models are based on empirical water balance equations in which
their parameters are determined through a calibration process [58]. Some well-known
examples of conceptual models are SMAP/ONS [65] and MGB [66]. The third class of
models, the physically based one, is characterized by the use of physical laws, such as mass,
energy, and momentum conservation equations, to model real hydrologic responses [58].

In order to test the proposed framework for streamflow forecasting, we produced an
ensemble of competing predictions made by three rainfall–runoff models: MGB, SMAP,
and a set of ANNs. In this study, the rainfall–runoff chains from Figure 1 refer to the
combination of numerical weather forecasting models with rainfall–runoff models. The
set of forecasts made by such rainfall–runoff chains results in an ensemble of streamflow
predictions that is described in the following subsections.

2.3.1. MGB

MGB [66,67] is a distributed model that simulates the hydrological processes of large
river basins. It is classified as a distributed model because it considers the spatial variability
of hydrological processes within a catchment area [68]. MGB was previously used to
generate long-term projections of water inflows in [69,70] and for short- and medium-term
streamflow forecasts in [56,71–73]. This model includes conceptual mathematical equations
that simulate the balance of water and energy in the soil, water interception in the canopy
of plants, evapotranspiration of plants, evaporation of water from soil, surface runoff,
subsurface flow, percolation from the soil layer to groundwater, and drainage network
flow routing [74]. The drainage basin is divided into small spatial units that contribute to
a river segment called the unit catchment. Each type of flow from a unit catchment has
a different propagation speed. Such a hydrological characteristic is represented within a
unit catchment by a set of three linear reservoirs: the superficial flow, subsurface flow, and
baseflow reservoirs.

In the present study, MGB (version 2.0) was calibrated using measured streamflows
from the National Water and Sanitation Agency (ANA)’s hydrometric network and the
precipitation from measuring stations of ANA and the National Meteorological and Hydro-
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logical Service of Bolivia (SENAMHI) from 2001 to 2015 [71,75]. The forecasts were carried
out using GEFS, GFS, and ETA precipitation datasets from 2019 to 2020. As a result, six
sets of streamflow forecasts were created: (a) GEFS-MGB, MGB driven by the precipitation
ensemble mean from GEFS; (b) inf(GEFS-MGB), the most pessimistic scenario from MGB
driven by GEFS members (i.e., the lowest forecasted streamflows); (c) median(GEFS-MGB),
the median of the scenarios from MGB driven by GEFS members; (d) sup(GEFS-MGB), the
most optimistic scenario from MGB driven by GEFS members (i.e., the highest forecasted
streamflows); (e) ETA-MGB; and (f) GFS-MGB.

2.3.2. SMAP

SMAP is a rainfall–runoff hydrological model characterized by its simplified structure
and lack of consideration for the spatial variability of hydrological processes within a
catchment area [68]. It was introduced by Lopes et al. [65] in 1982, and since then, it
has been widely applied in daily and monthly streamflow forecast research [75–78], as
well as a flood prevention tool to mitigate the effects of natural disasters [79]. Regarding
its mathematical structure, SMAP has elements that account for the soil’s water balance,
evapotranspiration, surface runoff, subsurface flow, percolation from the soil layer to
groundwater, and water transfer process through three linear reservoirs (i.e., the soil,
surface, and underground reservoirs). In our study, we use the SMAP version 3.0 from [80],
referenced as SMAP/ONS. It was calibrated by the Brazilian system operator [81,82] and is
used here to predict streamflows from 2019 to 2020. The set of input variables considered
here is the climatological totals of potential evaporation, measured streamflows, and
predicted and measured precipitation (i.e., an ensemble forecast of ETA, GEFS, and ENS
predictions) [80] officially provided by ONS.

2.3.3. Artificial Neural Networks

ANNs are mathematical models that draw inspiration from biological neural net-
works [83,84]. Their architecture is based on layers of artificial neurons that exchange
information among themselves and have the ability to acquire knowledge from a training
process with historical data [85]. Once trained, ANNs gain the ability to perform data
classification or forecasts depending on the proposed application. Multilayer perceptron
networks [86] are typically composed of neuron layers that process information from the
input layer to the output layer. In the case of ANNs that were developed to perform
streamflow forecasts in this study, the input layer receives precipitation forecasts from
GEFS. This information is passed on to the first hidden layer, which applies linear combina-
tions ∑N

i=1 siui via weights si to each neuron input ui, adds them to a bias, and submits the
result to an activation function f (.). After repeating the previous procedure sequentially
for each hidden layer, the output layer receives the result of this process, performs a linear
combination, and generates the forecast. In this study, predictions made by ANNs between
2019 and 2020 are used. More information about the ANN model and the training process
are available in [60].

2.4. Bayesian Model Averaging

Choosing a single model does not take into account the inherent uncertainties in model
structure [29]. The first source of uncertainty, which comes from the modeling process, can
be reduced by combining the forecasts that are carried out by competing models with dif-
ferent structures [87]. Many authors have recognized the disadvantages of not considering
model uncertainty; however, little progress was made until new theoretical and com-
putational developments allowed for the implementation of Bayesian techniques [28,29].
BMA [88] is a statistical ensemble combination method that accounts for model uncertainty
by estimating the posterior probability distributions of a set of models to calculate the
weighted average of their predictions. The weights are always positive, with a sum that is
equal to 1 after a normalization process and reflect the relative performance of the models
based on prior probability distributions, corrected by measured data [32].
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This study applies BMA to forecast inflows to reservoirs and hydropower plants from
the Brazilian hydropower system. The use of BMA in this system is driven by the need to
account for uncertainties in streamflow forecasts. Additionally, the simplicity of the BMA
method, which relies solely on existing measured and predicted streamflow datasets, makes
it a practical choice for this application. To begin, consider Y as being the predicted variable
(i.e., streamflow), y as the measured values for Y, and xm as the forecasts made by model m,
where m = {1, 2, . . . , M}. The probability density function of the predictions performed
by a set of competing models that are combined via BMA, P(Y|y), is expressed in (1). The
term P(xm|y) is the likelihood of model m given the observational data, and Pm(Y|xm, y) is
the posterior distribution of Y given xm and y.

P(Y|y) = ∑M
m=1 P(xm|y)·Pm(Y|xm, y) (1)

The mathematical expectation and variance of P(Y|y) are outlined in Equations (2) and (3),
respectively. In the first mathematical expression, the expected value is given by the
weighted average of the forecasts that are produced by the ensemble of models. Here, the
weight assigned to model m, P(xm|y) = wm, represents the probability that model m is the
correct model given y. The variance, as shown in (3), represents the uncertainty related to
the BMA predictions, and σ2

m is the model m variance given measured data y.

E[Y|y] = ∑M
m=1 P(xm|y)·E[Pm(Y|xm, y)] = ∑M

m=1 wmxm (2)

Var[Y|y] = ∑M
m=1 wm·

(
xk − ∑M

m=1 wmxm

)2
+ ∑M

m=1 wm·σ2
m (3)

The weights assigned to the ensemble members are determined using the expecta-
tion maximization (EM) algorithm [32,89]. In this approach, the parameter estimation
problem via maximum likelihood estimation (MLE) [90] is handled as a problem of miss-
ing data. The EM algorithm alternates (at each iteration Iter) between an E (expectation)
step, in which we calculate the value of the latent variable ẑIter

m,t that indicates the best
model, and an M (maximization) step, where weights and variance σ2

m are updated via
maximization of P(Y|y). In this process, it is assumed that the term P(Y|y) is an ap-
proximate log-likelihood l(θ) that depends on θ = {wm, σm, m = 1, 2, 3, . . . , M}, given
that Pm(Y|xm, y) is a Gaussian function g(.), as shown in (4).

l(θ) = log (∑M
m=1 wm·Pm(Y|xm, y)), l(θ) = log

(
∑M

m=1 wm·∑T
t=1 g

(
yt

∣∣∣xm,t, σ
(Iter)
m

))
(4)

Steps E and M of the algorithm proposed in [32,89] are reproduced in mathematical
expressions (5) and (6). The log-likelihood function is also updated during this process,
and if l

(
θ Iter)− l

(
θ Iter−1) is greater than a pre-established value, steps E and M must be

executed again. Otherwise, the iterative process ends.
Expectation: the latent variable is updated for m = 1, 2, . . . , M and t = 1, 2, . . . , T.

ẑIter
m,t =

g
(

yt

∣∣∣xm,t, σ
(Iter−1)
m

)
∑M

m=1 g
(

yt

∣∣∣xm,t, σ
(Iter−1)
m

) (5)

Maximization: using ẑIter
m,t (m = 1, 2, . . . , M and t = 1, 2, . . . , T), weights wIter

m and

variances σ
2(Iter)
m are updated as well.

wIter
m =

1
T ∑T

t=1 ẑIter
m,t , σ

2(Iter)
m =

∑T
t=1 ẑIter

m,t ·(yt − xm,t)
2

∑T
t=1 ẑIter

k,t

(6)

The posterior probability that gives weight wm, P(xm|y), is also a Gaussian function.
For this reason, the measured and forecasted streamflow time series must be Box–Cox
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transformed [91] to generate normally distributed data before applying the EM algorithm.
In this process, we compute a weekly set of dynamic weights, taking into account the
last 120 days of both measured and forecasted streamflows. This approach is designed to
reflect their recent behavior, acknowledging that the performance of rainfall–runoff models
can fluctuate over the course of the year. This is particularly important during periods of
significant change in precipitation regime, such as the transition from the rainy season to
the dry season. Some studies have shown that the use of multiple sets of weights improves
BMA predictions, suggesting that it is a way to accentuate the strengths of the individual
ensemble members in capturing the phases of a hydrograph [32]. However, time-variable
weights do not prevent ensemble members with low performance from influencing BMA
predictions. In fact, the joint contribution of bad ensemble members reduces the BMA
performance, even though their weights are low.

According to the philosophical principle of Occam’s Razor discussed by Raftery et al. [28]
and Hoeting et al. [29], models with lower relative performances must be discarded,
because they provide predictions that are far less assertive than those provided by the
best model. This principle advocates for simplifying the problem-solving process by
choosing the simplest hypothesis that is supported by evidence. In our streamflow fore-
casting problem, the problem of model selection is mathematically translated as follows:
Mk ∈ H i f max(P(y|M1), ..., P(y|MK−1), P(y|MK))

P(y|Mk)
≤ C, where Mk is the kth model (k = 1, . . . , K),

H is the set of models with acceptable performance according to the mathematical restric-
tion, y is the measured values, C is a constant, and P(y|Mk) is the probability of obtain-
ing y given model Mk. This approach, guided by Occam’s Razor principle, prevents bad
ensemble members from taking part in the BMA. Consequently, the streamflow ensem-
ble average is computed using a subset of models that are supported by the data [29],
employing normalized weights derived from the EM algorithm, as depicted in Figure 1.

2.5. Backtesting Simulation and Evaluation Metrics

Figure 2a shows the backtesting simulation process that is performed to evaluate the
performance of the ensemble members and the BMA predictions over a common period.
In this approach, BMA weights, calculated every Thursday, are reapplied throughout the
week (from Friday to Wednesday) to compute the average ensemble predictions, thereby
reducing the execution time. The forecasts produced by the rainfall–runoff chains and the
BMA are evaluated on a daily basis, with the exception of hypothesis testing, which uses
the entire dataset of predictions. For this reason, the streamflow predictions that are made
by the set of rainfall–runoff chains and the BMA are segregated in a similar way to the
example in Figure 2b, where each column (i.e., day 1, day 2, . . ., day 11) defines a dataset
to be evaluated separately. This procedure was adopted to verify how the accuracy and
efficiency of the changing forecasts over the forecast horizon.

The datasets defined in Figure 2b were assessed using the mean absolute percentage
error (MAPE), the Nash–Sutcliffe efficiency coefficient (NSE), and the multi-criteria distance
(MD), while the Diebold–Mariano test was applied considering all the eleven datasets at
the same time. Table 2 presents their definitions.
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Figure 2. The flowchart of procedures to compute BMA via backtesting simulations is illustrated in
(a), and the process to segregate the forecasts made by a rainfall–runoff chain, according to the days
of the forecast horizon (day 1, day 2, . . ., day 11), are exemplified in (b).

Table 2. Evaluation metrics and hypothesis test.

Metric/Test Details

MAPE

The mean absolute percentage error (MAPE) (7), as outlined in [92], is a metric to measure the predictive accuracy
of a time series. According to criteria established in [92], a MAPE between 0 (0%) and 0.1 (10%) indicates high
accuracy, values between 0.1 (10%) and 0.2 (20%) indicate good accuracy, values between 0.2 (20%) and 0.5 (50%)
indicate reasonable accuracy, and values above 0.5 (50%) indicate poor accuracy.

MAPE =
1
T ∑T

t=1

∣∣∣∣ xm,t − yt

yt

∣∣∣∣ (7)

where xm,t is the forecast made by model m and yt is the measured value.

NSE

The Nash–Sutcliffe efficiency coefficient (NSE) [93], (8), is a metric to evaluate the efficiency of rainfall–runoff
models. It measures the ratio of the residual variance (i.e., the residual sum of squares) to the variance of the
measured value dataset (i.e., the total sum of squares) subtracted from 1. NSE ranges from 1 to −∞. The
interpretation of NSE is also based on predefined intervals [94,95]. Values above 0.75 indicate that the model has
very good efficiency, values between 0.65 and 0.75 indicate good efficiency, values between 0.5 and 0.65 indicate
satisfactory efficiency, and values less than 0.5 indicate unsatisfactory efficiency. Additionally, NSE values below
zero also suggest that the mean of measured values is a better forecast than the predictions performed by the
model under evaluation.

NSE = 1 − ∑T
t=1(xm,t − yt)

2

∑T
t=1(yt − y)2 (8)

where xm,t is the prediction made by model m, yt is the measured value, and y is the average of a set of
measured values.

MD

Multi-criteria distance (MD) [96], (9), has been the metric officially used by ONS to assess streamflow forecasts
since 2010. MD is defined as the Euclidean distance between two points, p1 =

(
xp1, yp1

)
and p2 =

(
xp2, yp2

)
,

calculated as d =
√(

xp1 − xp2
)2

+
(
yp1 − yp2

)2. Here, the first point p1 represents the ideal values of MAPE and
NSE (i.e., xp1 = 0 and yp1 = 1, respectively), while the second point p1 represents the actual values of the model
being assessed (xp2 = MAPE and yp2 = NSE). MD ranges from 0 to ∞. The higher its value is, the worse the
performance of the assessed model is. Therefore, the optimal MD value is zero.

MD =

√
MAPE2 + (1 − NSE)2 (9)
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Table 2. Cont.

Metric/Test Details

Diebold–Mariano test

The Diebold–Mariano hypothesis test [97] is widely used to compare the predictive accuracy of a pair of time
series, A and B, using the difference between the measured data and the predictions (eA,t and eB,t). A loss
function loss(.) of absolute or quadratic error over time is computed for each time series, loss(eA,t) and loss(eB,t),
and the gap between them is known as differential loss function dt = loss(eA,t)− loss(eB,t). In the original version
of the Diebold–Mariano test (10), if the expectation of dt is equal to zero, E(dt) = 0 (i.e., null hypothesis H0), it is
said that A has the same level of accuracy as B; otherwise, their accuracies differ, E(dt) ̸= 0 (i.e., alternative
hypothesis Ha). On the other hand, in the alternative versions of the Diebold–Mariano test (11) and
(12), H0 and Ha are changed in order to determine whether series A is more accurate than series B, or if series B is
more accurate than series A, respectively. The results are evaluated through the analysis of the p-value, calculated
using the statistic DMT_calc (13). Values of p-value lower than the significance level (α) indicate that there is
sufficient evidence to reject H0 and accept Ha, while values of p-value greater than α indicate that there is
insuficiente evidence for the rejection of H0 and acceptance of Ha.
Original hypothesis:

H0 : E(dt) = 0
Ha : E(dt) ̸= 0

p−value = 2 × [1 − CDF(DMTcalc)]
(10)

Modified Hypothesis I:

H0 : E(dt) ≥ 0
Ha : E(dt) < 0

p−value = CDF(DMTcalc)
(11)

Modified Hypothesis II:

H0 : E(dt) ≤ 0
Ha : E(dt) > 0

p−value = [1 − CDF(DMTcalc)]
(12)

Diebold–Mariano statistic:

DMTcalc =
d√

γ0+2∑h−1
k=1 γk

n

(13)

where CDF is the cumulative distribution function of the DMT statistic; h is the forecast horizon; γk is the
autocovariance of lag k related to function d; n is the total number of data points of each time series; and d is the
mean value of the differential loss function.

3. Case Study, Results, and Discussion
3.1. An Overview of the Brazilian Hydropower System

The case study focuses on streamflow forecasting for reservoirs and hydropower
plants in the National Interconnected System, originally named in Brazilian Portuguese
as “Sistema Interligado Nacional” (SIN). SIN is an extensive hydro-thermal–wind-power
system, with a predominance of multi-owner hydropower plants in a cascade configu-
ration [98]. Due to its large size and regional differences, SIN is segmented into four
interconnected subsystems that are related to the five Brazilian geographical regions:
1—Midwest/Southeast, 2—South, 3—Northeast, and 4—North. Hydropower generation
prevails in almost all subsystems, except for the northeastern one, where wind power
production is dominant [99].

The Brazilian system operator coordinates a comprehensive network of 165 reservoirs
and hydropower plants, spanning 22 river basins and sub-basins. These include the
Grande, Paranaíba, Tietê, Paranapanema, Upper Paraná, Lower Paraná, Alto Tietê, Paraíba
do Sul, Itabapoana, Mucuri, Doce, Paraguay, Jequitinhonha, Amazonas, São Francisco,
and Tocantins river basins, spread across 11 hydrographic regions, as can be seen in the
schematic diagram of the hydropower plants of the National Interconnected System [100].
These hydropower plants represented about 64% of the total electricity generation capacity
of SIN [99] in mid-February 2021. Due to the high relevance of the hydro source, ONS not
only considers multiple uses and the future water resource availability but also relies on
extensive monitoring to ensure effective planning.

Streamflow rates in Brazilian rivers are tracked by a network of monitoring stations.
The collected data are used in a reconstitution process to compute the natural water inflows
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to each reservoir and hydropower plant, resulting in a set of historical time series of
streamflow levels which are later used to feed the streamflow forecasting process. In
this study, we employ streamflow time series data from 139 reservoirs and hydropower
plants to evaluate the framework shown in Figure 1 and the performance of the individual
ensemble members. Figure 3 illustrates the hydro system considered in this study.
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3.2. Time Series Forecasting Considerations

In this study, we considered a total of 139 reservoirs and hydropower plants across
Brazil. Of these, 67 had their natural inflow rates forecasted using SMAP/ONS, ANNs,
and MGB, while the remaining 72 lacked forecasts were made by SMAP/ONS. As a
consequence, the backtest evaluation process involved separate assessments for each group.

To produce the backtest simulation forecasts, we employed three rainfall–runoff
models: MGB, SMAP/ONS, and ANNs. These models relied on precipitation forecasts
for the next 11 days from four different weather forecasting models: ETA40, GEFS, GFS,
and ENS. The resulting ensemble of predictions were made by the set of rainfall–runoff
models encompasses eight members, GEFS-MGB, inf(GEFS-MGB), median(GEFS-MGB),
sup(GEFS-MGB), ETA-MGB, GFS-MGB, SMAP/ONS, and ANNs, all of which underwent
a Box–Cox transformation to ensure a normal data distribution prior to the BMA process.

The BMA framework was executed daily and individually for each reservoir and hy-
dropower plant, covering a backtest period of 386 days, from 15 August 2019 to 3 September
2020. BMA weights were updated weekly, specifically on Thursdays, based on the most
recent 120 days of measured and predicted streamflows. These updated weights were then
normalized and applied to the daily generated ensemble forecasts, resulting in the BMA
predictions scenario.

3.3. Overall Performance of BMA and Ensemble Members

3.3.1. The Illustrative Case of Água Vermelha Hydropower Plant

The framework proposed in Figure 1 was tested from August 2019 to September 2020
via backtesting simulations. Over this period, we carried out daily runs, considering a
forecast horizon of 11 days ahead for all reservoirs and hydropower plants, as highlighted in
Figure 3. For brevity’s sake and considering the large size of the hydro-dominant Brazilian
power system, we present the results of the backtesting simulations for all reservoirs and
hydropower plants collectively using boxplots and maps. First, however, we illustrate
the application of the proposed framework with a single test case to make the process of
understanding the methodology easier. Figure 4 shows the BMA predictions, time-variable
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weights, and streamflow ensemble members related to the Água Vermelha hydropower
plant, the last downstream plant in the Grande River basin in the Southeast Brazilian region.
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Figure 4. Ensemble weights and natural inflows of Água Vermelha hydropower plant. The first image
shows the ensemble members (GFS-MGB, ETA-MGB, GEFS-MGB, inf(GEFS-MGB), median(GEFS-
MGB), sup(GEFS-MGB), ANN, and SMAP/ONS), the BMA predictions, and the measured stream-
flows (QObs) from August 2019 to September 2020. The BMA’s MD is 0.084, which is lower than
those computed for the individual ensemble members.

The results for the Água Vermelha hydropower plant indicate that during certain peri-
ods (e.g., between August and December 2019), the SMAP/ONS and ANN chains receive
greater weighting than other rainfall–runoff chains, revealing that the BMA predictions are
not equally affected by the ensemble members. In fact, it is an effect of Occam’s Razor prin-
ciple that discards ensemble members with low relative performance and strengthens the
remaining ones. The selection of ensemble members with good performance can increase
the BMA accuracy [101], since the rainfall–runoff chain predictions with poor performance
affect the BMA forecasts even when they are low-weighted. As a consequence, the weights
that are assigned to the remaining ensemble members (i.e., the ones that are not discarded)
become larger, favoring rainfall–runoff chains such as the ANN and SMAP/ONS over
MGB-based chains.

Furthermore, note that many ensemble members continue to contribute to the BMA
predictions across different periods. Notably, their weights tend to be more similar during
certain intervals, such as between February and May 2020. This illustrates that the rainfall–
runoff chains have a variable performance that affects the BMA weights, resulting in
different weight intensities and model combinations over time. Several factors could be
influencing these performance variations, including the potential ineffectiveness of the
rainfall–runoff chain in accurately simulating streamflows at certain levels, inconsistencies
in the measured streamflow and precipitation data, or possibly, poor precipitation forecasts.
In this context, the strategy of applying weekly adjusted weights is designed to capture the
changing predictive performance of all rainfall–runoff chains. This is achieved by regularly
updating their posterior probability distributions, taking into account the most recent time
series of both predicted and observed streamflows. Consequently, this approach helps
address the short-term impacts of various sources of uncertainty in the forecasting data.
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3.3.2. Case Study Results

The overall forecasting performance of the rainfall–runoff chains and BMA is illus-
trated in Figures 5 and A1 in Appendix A using MAPE, NSE, and MD metrics. Figure 5
illustrates the results for 67 reservoirs and hydropower plants, which have their natural
inflows simulated by the SMAP/ONS model, primarily located in the South and South-
east regions of Brazil. Conversely, Figure A1 focuses on the remaining 72 reservoirs and
hydropower plants, whose natural inflows are not simulated by the SMAP/ONS model
and are predominantly situated in the North and Northeast regions of the country. For
each reservoir and hydropower plant, these evaluation metrics were calculated individu-
ally using datasets from days 1, 7, and 11 of the forecast horizon. The results were then
aggregated and presented in the form of boxplots, categorized according to the different
rainfall–runoff chains and specific n-day datasets.
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plants simulated by SMAP/ONS. The backtesting simulation datasets (days 1, 7, and 11) were used
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hydropower plants. The boxplots show the distributions of MAPE, NSE, and MD in quartiles. The
horizontal line inside each box represents the median, while the lines at the lower and upper bounds
represent the first quartile (Q1) and third quartile (Q3), respectively. The upper bound of the boxplot
is defined by Q3 + 1.5 × (Q3 − Q1) and the lower bound by Q1 − 1.5 × (Q3 − Q1). Colored dots
outside the boxes indicate outliers, and a black dot represents the mean. For better visualization of
the results, the y-axis scale of each plot underwent a transformation process using the cubic root
function 3

√
y.
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Figure 5 indicates that the MGB and ANN models perform similarly on day 1, with an
average MAPE ranging from 0.19 to 0.25, suggesting a reasonable accuracy for the initial
day of the forecast horizon. For the SMAP/ONS and BMA, the results show superior
performance compared to the ANN and MGB-based forecasts, with good accuracy and
average MAPEs of 0.16 and 0.15, respectively. However, when evaluating the datasets
for days 7 and 11, the performance of BMA and other rainfall–runoff models declines.
Generally, all models maintain reasonable accuracy, with the exception of sup(GEFS-MGB),
which exhibits poor accuracy and an average MAPE that is greater than 0.5 on day 11,
making it the ensemble member with the most significant variation in performance as the
forecast horizon extends. When compared to the individual ensemble members, BMA’s
predictive accuracy is similar to the best-performing models, with an average MAPE
of 0.24 on day 7 and 0.30 on day 11. However, on day 11, it is outperformed by the
SMAP/ONS model.

As the length of the forecast horizon increases, uncertainty in precipitation predictions
grows [102], potentially accounting for the observed decline in the rainfall–runoff chain’s
performance. The SMAP/ONS chain has a significant advantage over other chains, since
it incorporates a combination of three precipitation datasets as input. In this chain, pre-
dictions from ETA 40, GEFS, and ENS undergo a bias correction process to enhance their
estimations of the average rainfall over Brazilian sub-basins. Subsequently, these three sets
of post-processed data are combined to obtain a more robust precipitation forecast [103].
Conversely, the MGB, another rainfall–runoff model, is more significantly affected by
precipitation data uncertainty for two primary reasons. First, as a distributed model that
accounts for the geographical variability of river basins [66], it is inherently sensitive to
spatial inaccuracies in rainfall predictions. Second, unlike the SMAP/ONS chain, the
precipitation forecasts used in the MGB do not undergo a bias correction process. Therefore,
for both the MGB and SMAP/ONS, if the numerical weather forecasting system tends to
overestimate or underestimate precipitation, these biased rainfall predictions can adversely
impact the performance of the rainfall–runoff chain.

Regarding the efficiency coefficient, BMA has an average NSE of 0.77 and very good
efficiency on day 1 (see Table 2 for NSE classification). Most streamflow ensemble members
also exhibit satisfactory efficiency, achieving an average NSE of up to 0.63. However,
exceptions include sup(GEFS-MGB) and the ANN, both of which display a good level of
efficiency. On days 7 and 11, there is a noticeable reduction in the NSE of all ensemble mem-
bers, with ETA-MGB and sup(GEFS-MGB) experiencing a significant drop in performance.
Despite this decline in the efficiency of individual ensemble members, BMA consistently
maintains the highest average NSE across all days of the forecast horizon. This underscores
the effectiveness of combining models to generate more efficient streamflow predictions.
Regarding the distribution of quartiles, the lower limit of boxplots and outliers of all models
moves towards the negative region as the n-day increases. This trend indicates that for
some reservoirs and hydropower plants, the models have a predictive performance that is
worse than the simple average of the measured streamflow values.

The last metric under consideration, the MD, reveals that BMA generally outperforms
individual ensemble members in terms of predictive accuracy on days 1, 7, and 11 of
the forecast horizon. This result suggests that when the MAPE and NSE are considered
together through the MD metric, BMA stands out as the best alternative for forecasting
streamflows in the Brazilian South and Southeast regions. Furthermore, in the case of
reservoirs and hydroelectric plants in the North and Northeast regions, the results derived
from the MAPE, NSE, and MD metrics, as illustrated in Figure A1, are similar to those
presented in Figure 5, in which BMA is able to capture the best ensemble members. In
summary, Figure A1 shows that according to the MD metric, BMA has the best performance
for reservoirs located in the North and Northeast regions on days 1 and 7. These results
corroborate the findings of other studies [11,30,32], which also indicate that BMA is capable
of generating forecasts that are superior to those of the best ensemble members.
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Regarding streamflow forecasting with the BMA approach, it is important to note
that the rainfall–runoff model predictions for days 1 through 11 are assigned the same
set of weights. Consequently, no distinction is made between the weights applied at the
beginning and at the end of the forecast horizon of the same rainfall–runoff chain. This
issue is relevant, since some chains had a good performance on day 1 but were unable to
maintain the predictive performance when the n-day increases; or even, there are cases
in which chains that show average performance on day 1 improved and provided more
accurate predictions in the subsequent days. As an example, graphs a., b., and c. from
Figure A1 show that inf(GEFS-MGB) did not have the best accuracy on day 1 but was
able to outperform the remaining models on days 7 and 11. In order to understand such
behavior, it is interesting to assess in future research a BMA approach with weights that
differ as the n-day increases. In this case, BMA would be computed using a specific set of
weights for each day of the forecast horizon, totaling 11 sets of weights for each reservoir
and hydropower plant in SIN.

3.4. Spatial Predictive Performance of BMA

Brazil has large territorial dimensions and lands that make up a significant part of
South America. As a result of the Brazilian territorial extension, there is a high diversity
of vegetation coverage, land relief, physical and chemical characteristics of soils, land use
and occupation, as well as climate conditions [104–106], which enable the existence of river
basins with different hydrological characteristics. For example, in the Northern Brazilian
region, situated within the Amazon rainforest, river basins generate streamflows that are
characterized by having a kind of short-term inertia. Meanwhile, in the Southern Brazilian
region, where the Atlantic Forest and Pampa biomes predominate, considerable variability
in daily streamflows is observed. This high level of short-term variability impacts the
streamflow predictability and, consequently, the performance of rainfall–runoff chains.
It contributes to the existence of spatial heterogeneity in the BMA model’s predictive
performance across the country. For this reason, we investigate the performance of the
BMA forecasts for all of Brazil using the MD metric, as illustrated in Figure 6.
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The first map, related to day 1, shows that BMA has a high predictive performance
and an MD that is lower than 0.3 for several hydropower plants in the North, Northeast,
Midwest, and Southeast regions, despite some exceptions along the coast. The Southeast,
characterized by a high density of hydropower plants that are essential to guaranteeing
adequate energy security levels, stands out due to the predominance of cascade systems
with natural inflows that are satisfactorily predicted using the Bayesian approach. In the
South, we observe a predominance of hydro reservoirs for which BMA has an inferior
predictive performance compared to the ones observed in the remaining regions. Rainfall
over this specific region is well distributed throughout the year, and the alternation of wet
and dry periods is very fast, contributing to the generation of an unpredictable streamflow
regime [107], characterized by high short-term streamflow volatility (e.g., in the Jacuí River,
streamflow peaks are often very high when it rains and challenging to predict accurately),
which is a typical characteristic of river basins with a short concentration time and a
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quick streamflow response to precipitation [108]. Such hydrological behavior explains the
significant drop in the performance of the Bayesian model, which makes the forecasting
process difficult, especially during the rainy season. A similar conclusion can be drawn
from the remaining maps, b. and c. We observe the same spatial pattern from map a., but
with higher values of the MD, a result that indicates a decreasing predictive performance
of the BMA along the forecast horizon.

Regarding the predictions from individual rainfall–runoff chains, Figure 7 displays the
spatial patterns of the Diebold–Mariano hypothesis test, which is applied to compare the
streamflow forecasts from BMA with those of individual ensemble members. In this figure,
reservoirs and hydropower plants highlighted in green (or red) are those for which BMA
predictions are significantly more (or less) accurate than the ones made by the competing
ensemble member. On the other hand, the ones in yellow are those for which there is no
statistical difference between predictions from different models. Figure 7 demonstrates
that the time series of forecasts performed by GFS-MGB, ETA-MGB, GEFS-MGB, inf(GEFS-
MGB), sup(GEFS-MGB), and ANN are significantly less accurate than those made by the
BMA in most reservoirs and hydropower plants. In fact, we observe that the number of
cases in which the competing ensemble member has an accuracy that is significantly higher
than or equal to that of the BMA is quite limited in all regions of Brazil, demonstrating that
the predictions that are made according to the Bayesian framework are more consistent
and reliable all over the country.
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Figure 7. Spatial pattern of [1 − CDF(DMTcalc)] from Diebold–Mariano test for an 11-day fore-
cast horizon. Each map compares an ensemble member’s predictions with those of the BMA. If
0 ≤ [1 − CDF(DMTcalc)] < 0.05, the time series of predictions made by the BMA is significantly
more accurate than the competing ensemble member, where [1 − CDF(DMTcalc)] represents the
p-value from hypothesis test (12) at α = 0.05; if 0.05 ≤ 1 − CDF(DMTcalc) ≤ 0.95, none of the time
series are significantly more accurate than the others; and, if 0.95 < 1 − CDF(DMTcalc) ≤ 1, the
time series of predictions made by the multi-model ensemble member is statistically more accurate
than the time series of predictions made by BMA, where CDF(DMTcalc) represents the p-value from
hypothesis test (11) at α = 0.05.
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However, in the case of the median(GEFS-MGB) and SMAP/ONS chains, the total
number of hydro reservoirs in which the accuracy of the BMA predictions is not signifi-
cantly different increases, as does the number of cases in which the BMA is outperformed.
The results already observed in Figure 5a–c reinforce the outcome of the Diebold–Mariano
test regarding the SMAP/ONS chain. The average values of the MAPE on days 1, 7, and 11
for the SMAP/ONS and BMA are very similar, suggesting that BMA can reproduce the
accuracy of the best rainfall–runoff chain. In this case, despite the existence of some reser-
voirs and hydropower plants for which the BMA predictions cannot surpass the competing
ensemble member, we notice that when the entire Brazilian hydropower system is taken
into account in an assessment based on accuracy measures (and made by the combination
of the MAPE and NSE in the DM metric), BMA tends to provide superior predictions.

This result indicates that in a large-scale forecasting problem, the Bayesian approach
has advantages that compensate for the cases in which the BMA performs worse than an
individual ensemble member. The power of a multi-model ensemble, such as the one that
we propose herein, arises from two key factors. First, it benefits from collective offsetting of
errors across a range of models. This portfolio approach helps balance out individual model
inaccuracies. Second, the ensemble’s strength lies in the consistency of its predictions. These
predictions are the result of merging proficient models, each one with unique strengths and
weaknesses. Such a combination typically results in predictions that are, on average, more
accurate than those made by any single model in the ensemble, as discussed in [109,110].

3.5. Weights Applied to Ensemble Members

As discussed in previous sections, BMA generates a weighted average of forecasts
from many model chains. In the approach proposed here, the weights are updated weekly
as the time series of forecasted and measured streamflows are updated. This allows BMA
to take into account the recent behavior of the rainfall–runoff chains, a relevant feature that
needs to be considered when a model’s performance varies over time, as seen during dry,
rainy, and transition periods. Furthermore, it is important to recognize that the precise start
and end of these periods are not known in advance. Their onset may occur earlier or later
compared to previous years. This uncertainty justifies the use of dynamic weighting rather
than static weighting for each period.

Such evolving behavior impacts the accuracy and efficiency of streamflow forecasts
and also affects BMA. This influence is evident in Figures 8–10, which display the boxplots
of the weights assigned to several rainfall–runoff chains. Figure 8a shows the weights
related to 67 hydro reservoirs with natural inflows that are simulated by the SMAP/ONS
model without temporal information about when they were computed (i.e., weights com-
puted on different days were grouped by model for a more general evaluation of the results).
In this case, the MGB-based chains have weights ranging from 0.03 to 0.08. Their upper
limits are also relatively low (below 0.35), with some outliers exceeding 0.5. The similarity
in the weights applied to different MGB-based chains, such as GFS-MGB, ETA-MGB, and
GEFS-MGB, suggests that without considering the computation time, these chains tend to
receive similar weights.
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On the other hand, the ANN and SMAP/ONS boxplots indicate that these
rainfall–runoff chains have weights with higher values. The ANN has an average weight
of 0.23 and an upper limit reaching 1, whereas the SMAP/ONS has an average weight of
0.45, with an upper limit that is also equal to 1. Figure 8a indicates that BMA is mainly
influenced by the SMAP/ONS and ANN, while lower weights limit the remaining chains.
In contrast, Figure 8b shows that the MGB-based chains have higher average weights than
those in Figure 8a, ranging from 0.08 to 0.13. Nevertheless, the ANN model stands out as
having the highest weights, with an average weight of 0.38. Our findings indicate that for
reservoirs and hydropower plants that are situated in the Southeast and South regions, the
SMAP/ONS and ANN chains are the most critical contributors to BMA, while in the case
of the North and Northeast regions, the ANN chain stands out.
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When time is taken into account, weights tend to reflect the recent behavior of the
rainfall–runoff chains. As shown in Figure 9, related to hydro reservoirs with inflows that
are simulated by the SMAP/ONS, MGB-based chains always present average values of
weights that are lower than 0.25. For instance, we observe the case of GEFS-MGB, with
average values of weights that are near to zero on several days. In contrast, the ANN and
SMAP/ONS display a different pattern. The average values of weights are higher and close
to 0.5 in the ANN case but drop to around 0.25 and 0.00 on some days. The SMAP/ONS
stands out for having average values of weights that remain close to 0.5 most of the time,
reaching 0.75 on some days. Additionally, the complementarity between the weights of
the ANN and SMAP/ONS is remarkable. When the average weight of the ANN decreases
(or increases), there is a corresponding increase (or decrease) in the average weight of the
SMAP/ONS along the time axis.

In the case of hydro reservoirs with natural inflows that are not simulated by the
SMAP/ONS (refer to Figure 10), the weights assigned to MGB-based chains show a similar
pattern to those of ETA-MGB and GEFS-MGB. The average values of weights are slightly
higher, and the frequency at which these averages reach zero is low. Meanwhile, the ANN
stands out for having high weights along almost the entire time axis, close to 0.75 on many
days. Furthermore, it is interesting to note that there is no strong complementarity between
the ANN and another specific model.

Throughout the year, we expect the behavior of any rainfall–runoff chain to change
during the dry, rainy, and transition periods. This is primarily because making streamflow
forecasts becomes more challenging when the rainfall regime is intense and variable. Our
approach, which differs from other studies that adopt static weights for each season,
circumvents this issue. We use recent data from both measured and forecasted streamflow
time series to compute dynamic weights. These weights can be updated daily if necessary,
allowing the framework to systematically incorporate new information.

3.6. Remarks and Discussion

The substantive contribution of this research is the development of a multi-model
Bayesian framework to enhance streamflow forecasts in hydro-dominant power systems.
Designed to serve as an operational tool, it explores Bayesian model averaging to incorpo-
rate predictive uncertainty into the forecasting process [27–29], enhancing the robustness
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and reliability of predictions. The proposed method was tested in the Brazilian hydropower
system [100], considering a forecast horizon of up to 11 days ahead. The research findings
demonstrated that for the Southeast, Midwest, and South regions, BMA produces forecasts

with a mean MD (
√

MAPE2 +
(

1 − NSE2
)

) [96], which is lower than those obtained for

the individual ensemble members on days 1, 7, and 11 (i.e., 0.28, 0.54, and 0.72, see Figure 5),
while in the North and Northeast regions, the average MD is lower on days 1 and 7 (i.e., 0.34
and 0.52, see Figure A1). The results of the Diebold–Mariano test [97] also indicated that
BMA generates significantly more accurate forecasts than most of the individual ensemble
members (i.e., p-value < 0.05, see Figure 7). The only exceptions are the SMAP/ONS and
the median(GEFS-MGB), where the number of reservoirs and hydropower plants for which
it is not possible to indicate which streamflow forecast is more accurate is large.

The results from the study reveal that, in terms of predictive performance, BMA
generally outperforms individual ensemble members at different days of the forecast
horizon in the Southeast, Midwest, South, North, and Northeast regions of Brazil. Both the
accuracy and the efficiency metrics show that the Bayesian technique produces predictions
that are more in line with real streamflows. The rationale for this finding is based on the
fact that rainfall–runoff models, differing in structure (such as MGB, the SMAP/ONS,
and ANNs) and in the types of input data that they use, like streamflows and forecasted
precipitation (for instance, the GFS, GEFS, ETA, and ENS), are effective in detecting intrinsic
patterns in the streamflow time series [25,26]. Thus, by integrating models with different
strengths and weaknesses, BMA manages to reinforce the positive aspects and mitigate the
negatives, resulting in a more reliable forecast [32].

Other studies conducted along the same line of research also indicate that predictions
made using Bayesian frameworks are more accurate [11,30–32,34]. However, there are
methodological differences that must be underscored. In the framework proposed in
the current paper, the weights that are applied to the ensemble members are dynamic
and updated weekly, taking into account the historical data of observed and forecasted
streamflows that are available right up until the forecasting process begins. This process,
which updates the posterior probability distribution and adjusts the weights at a higher
frequency, ensures that the combined forecasts always incorporate updated information
about the performance of the forecasts and the uncertainties that are associated with
each ensemble member. Research traditionally limits the ensemble weights to static or
unchanging values. Studies developed by other authors, such as those by Duan et al. [32]
and Souza Filho et al. [34], while considering different weights for predefined ranges of
flows (i.e., for example, very low, low, normal, high, and very high streamflows), maintain
invariant values for the weights that are assigned to each range. Approaches like these,
based on static datasets for weight computation, do not account for potential variations
in model performance over time. Incorporating adaptive mechanisms that adjust weights
based on recent data could enhance the robustness and reliability of predictions, ensuring
that the model remains responsive to new information and evolving patterns [111]. In our
understanding, it is necessary to constantly reassess and adjust weights, with the aim of
ensuring the Bayesian framework’s effectiveness in applications extending beyond the
academic boundaries.

Another significant aspect of the study, worth highlighting and discussing, is that our
framework is able to eliminate the contribution from specific members of the ensemble. As
has been emphasized in the paper, while the weights that are assigned to underperforming
ensemble members are relatively low in the traditional BMA method, it has been noted that
when the number of these underperforming members increases, their collective influence
has the potential to compromise the predictive performance of BMA, which underscores
the importance of their removal [28,34]. Here, the selection of members that effectively
take part in the composition of the BMA is carried out weekly together with the update
of weights, following the principle of Occam’s Razor [28] (i.e., models with lower relative
performances must be discarded, since they provide predictions that are far less assertive
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than those provided by the best model). Consequently, the streamflow ensemble’s average
is calculated using a subset of models that are supported by the data [29]. In the studies
conducted by Duan et al. [32], Wagena et al. [31], and Ajami et al. [11], BMA frameworks
were proposed to generate streamflow predictions without discarding ensemble members
with low performance. Although these studies indicate that BMA generates more accurate
forecasts, it is noteworthy that the ensemble includes members whose weights are signifi-
cantly lower than those assigned to the top-performing model (members that, if removed,
might contribute to improving BMA’s performance).

The dynamism of the proposed Bayesian framework, grounded in the frequent up-
dating of weights and the removal of low-performing members, is a characteristic that
makes it suitable for applications aimed at large-scale systems with high hydrological
diversity. In hydro-dominant power systems spanning continental dimensions, such as the
Brazilian system, watersheds have diverse physical attributes [99,100], resulting in varied
hydrological regimes. In some cases, these watersheds generate streamflows that are more
difficult to predict due to sharp peaks in flow rates [108]. As a consequence, the predictive
performance of some models may vary by area. For instance, a model X that performs well
in watershed A may perform poorly in watershed B, thereby proving unsuitable for use in
B. Alternatively, this performance pattern may also change over time if, for example, model
X starts to underperform in watershed A. The framework that is proposed in this research
automatically manages these issues, as it establishes, following the Bayesian theory and
using up-to-date data, the ensemble that is believed to be the most suitable for every time
series being predicted across spatial and temporal dimensions. This flexibility is a key
feature that supports its application in large-scale systems, an advantage not covered by
other research in the existing literature [11,30–32,34].

The approach proposed here has a variety of advantages. Among the main ones, the
following stand out: (a) the framework accounts for the uncertainties in forecasts from
rainfall–runoff models (MGB, SMAP/ONS, and ANNs) during the ensemble members’
weighting process, enhancing the robustness of the final forecast; (b) an extensive database
is not required for the operationalization of the framework, as the BMA weights are derived
from the most recent 120 days of forecast and observed streamflow data, facilitating its
application in river basins with newly operational rainfall–runoff models; (c) ensemble
members that show low performance are discarded by the principle of Occam’s Razor [28],
preventing the degradation of the BMA results; and, additionally, it is worth noting that (d)
the weights that are applied in the weighted average are dynamic, which means that they
adapt to the signals from the recent history of forecasted and measured streamflows. This
feature allows recent changes in performance to be detected and taken into account in the
BMA weights.

Despite the outlined advantages, it is important to note that the BMA framework’s
reliance on a multi-model ensemble makes its operation more complex compared to a single
rainfall–runoff model. Indeed, it is more practical and less costly to operate with a simple
structure in which only one mathematical model is used for streamflow forecasting [11].
However, the improvements in accuracy and efficiency of the forecasts that are made
by applying BMA justify its use. In electrical power systems with a strong integration
of hydropower plants, as is the case in Brazil, streamflow forecasting is a key factor in
achieving optimized and robust operation of power plants [13,14], yielding benefits that
outweigh the challenges of implementing a more complex framework.
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4. Conclusions

This paper addressed the use of Bayesian model averaging to forecast the water in-
flow in a large-scale hydro-dominant power system. The proposed framework combines
streamflow forecasts from several rainfall–runoff chains using weights based on their pos-
terior probability distributions. As a result, better-performing models get higher weights,
whereas models with poorer performance receive lower weights, affecting their impact
on the ensemble’s average. The approach takes into account the existing limitations of
real-time forecasting and incorporates the use of precipitation predictions from weather
forecast systems into rainfall–runoff modeling. The limited availability of historical fore-
casts and the need to capture the recent performance of rainfall–runoff chains lead to the
use of dynamic ensemble weights, which are updated weekly, avoiding the need for a very
long time series to operationalize the framework. Regarding the data from the numerical
weather forecasting models, it should be noted that the forecasted precipitation introduces
significant uncertainties in streamflow forecasts. However, this effect is taken into account
in the model combination process, when historical time series from rainfall–runoff models
are used in the computation of real-time weights.

The results have shown that the proposed approach is more robust than using a single
rainfall–runoff chain, since we consider the uncertainty of each ensemble member. In gen-
eral, a rainfall–runoff chain that performs well in a specific river basin may have medium
or lower predictive performance in another river basin. The proposed framework takes
advantage of this and gives more value to the forecasts of the best rainfall–runoff chains of
each river basin (also considering each reservoir and hydropower plant individually), re-

sulting in an average MD (
√

MAPE2 +
(

1 − NSE2
)

) that is better than the ones computed

for the individual ensemble members.
Future work should focus on improving the model averaging process by applying a

different set of weights to each day of the forecast horizon. In this study, we demonstrated
that the predictive performance of rainfall–runoff chains changes over time. Consequently,
we believe that if the weights are able to capture such a characteristic, they are likely to
reduce the degradation of streamflow predictions as the n-day of the forecast horizon
increases. Additionally, training different architectures of artificial neural networks (such
as long short-term memory, Bayesian networks, and transformers) along with machine
learning models (like support vector machines, random forests, and Ridge regression)
should be considered for inclusion in the framework and BMA forecasts.
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Figure A1. MAPE, NSE, and MD computed using natural inflows to reservoirs and hydropower 
plants not simulated by SMAP/ONS. Datasets from backtesting simulation were used to evaluate 
the streamflow forecasts of 72 reservoir and hydropower plants. Black squares represent the average 
values in each boxplot, and the colored dots represent the outliers. 
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