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Abstract: It is essential to monitor the dynamics of vegetation at different scales in space and time to
promote the sustainable development of terrestrial ecosystems. We used the Google Earth Engine
(GEE) cloud platform to perform a comprehensive analysis of the changes in normalized difference
vegetation index (NDVI) Mann-Kendall (MK) + Sen trend in the hinterland region of the Maowusu
sandland in China over the last two decades. We performed bias-correlation studies using soil and
climate data. Furthermore, we performed a partial Mantel test to analyze the spatial and temporal
fluctuations of vegetation health-related indices. Additionally, we developed a logistic dual model
of the phenology index using the Lenvenberg-Marquardt technique. The objective was to uncover
the factors contributing to the regional shifts in vegetation dynamics. We provide a comprehensive
analytic method designed to monitor vegetation over some time and forecast its future recovery. The
findings indicate that over the past 20 years, more than 90% of the regional NDVI in the study area
has exhibited a consistent and significant upward trend. This trend is primarily influenced by the
adverse impact of temperature and the beneficial impact of precipitation. Additionally, long-term
phenological indicators in the study area reveal that the vegetation’s growth cycle commences on
the 125th day of the year and concludes on the 267th day of the year. This suggests that the shorter
duration of the vegetation’s growth season may be attributed to the local climate and unfavorable
groundwater depth conditions. levated temperatures throughout the next spring and autumn seasons
would significantly affect the wellbeing of plants, with soil moisture being a crucial determinant
of plant development in the examined region. This study presents a wide range of analytical tools
for monitoring vegetation over a long period and predicting its future recovery. It considers factors
such as vegetation health, phenology, and climatic influences. The study establishes a solid scientific
foundation for understanding the reasons behind regional vegetation changes in the future.
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1. Introduction

Vegetation is a crucial element of land-based ecosystems, serving as a natural con-
nection between the soil, water, and atmosphere. It also plays a vital part in the cycling
of materials [1], movement of energy, and transmission of information [2]. In this work,
surface phenology variables were used as landscape-scale metrics to assess the environ-
mental response, with terrestrial vegetation being widely acknowledged as the primary
indication of biological response to climate and other environmental conditions [3]. Gaining
a more profound comprehension of the inherent connections between vegetation, climate,
and phenology helps uncover the factors that influence changes in terrestrial ecosystem
vegetation [4].

NDVlI is the primary indicator for measuring vegetation change and has been exten-
sively used to investigate vegetation change and its reaction to climate change [5]. Recently,
several scientists have used moderate resolution imaging spectroradiometer (MODIS) and
Landsat data to extract and analyze NDVI to evaluate the state of vegetation [6]. Wang
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conducted research that examined the relationship between changes in the temporal and
geographical scales of NDVI and variables such as temperature, precipitation, and evapo-
transpiration [7]. The relationship between temperature and plant cover was identified as
the primary influencing factor throughout the majority of northern China [8]. Furthermore,
the modulation of vegetation phenology may govern the interplay between vegetation
and climate change by influencing the composition and operation of vegetation ecosys-
tems [9]. The precise assessment of plant phenology is crucial for enhancing vegetation’s
reaction to climate change, refining terrestrial ecosystem process models, and forecasting
agricultural yields [10]. Fayech, D. et al. conducted a study in which they utilized several
widely used approaches for extracting plant phenology using MOD09A1 and MOD13A2
datasets [11]. They discovered that there were no notable differences in the trends of the
start of season (SOS) or end of season (EOS) generated using asymmetric Gaussian, logistic,
and segmented logistic functions. There were no notable disparities [12]. Ghorbanian,
A. et al. used six different techniques to extract phenology information from AVHRR
data [13]. These approaches included the use of first-, second-, and third-order derivatives,
magnitude thresholds, relative rates of change, and curvature rates of change [14]. The
focus of the study was on determining the SOS and EOS for vegetation. Phenology, unlike
other methods, accurately measures the actual daily growth of vegetation. When combined
with climate and NDV], it provides a more comprehensive understanding of the primary
factors influencing regional plant cover development.

Drought is an inherent occurrence that arises from an disequilibrium between the
availability of water and the need for water, which is caused by extended periods of little
or nonexistent rainfall [15]. Hence, it is crucial to examine the correlation between dryness
and vegetation to provide a sound theoretical foundation for implementing climate change
mitigation strategies [16]. Maowusu sandland is a prominent sandland in China, situated
in an area where agriculture and animal husbandry intersect. The environment of this
region is delicate and characterized by a scarcity of forested areas [17]. The Maowusu
sandland has seen significant vegetation degradation as a result of both human activities
and natural processes [18]. The decline of vegetation is shown by the reduction of NDVL
Therefore, the retrieval and examination of NDVI in Maowusu sandland serve as a crucial
foundation for comprehending the geographical and temporal fluctuations of vegetation
in this region, as well as predicting future trends [19]. Conducting long-term monitoring
of the geographical and temporal variations of NDVI in Maowusu sandland is crucial for
understanding the patterns of change and ensuring ecological quality.

This study utilized the GEE cloud platform to combine 20 years of vegetation sig-
nificance trend analysis with the Lenvenberg—-Marquardt algorithm. The result was the
development of a comprehensive analysis system for long-term monitoring of vegetation
and pre-recovery. This system takes into consideration the impact of climate and vegetation
health on the analysis. The objective of the system is to uncover the underlying factors
behind the fluctuations in plant dynamics within the Maowusu sandland region. Its pur-
pose is to provide scientific assistance for the restoration and development of the ecological
and environmental conditions in that area (Figure 1). The primary goals of this research
are (1) to investigate the distinct impacts of regional and temporal scales on alterations in
vegetation. An ecological evaluation was undertaken on the hinterland area of Maowusu
sandland to investigate the changes in NDVI and phenological features during the last
20 years. (2) This study focuses on the impact of climate change and human activities
on soil moisture and vegetation dynamics in an ecological restoration project. It aims
to understand the relationship between changes in vegetation and climate over time by
examining the interactions between soil moisture, climate change, and human activities.
(3) The Maowusu sandland hinterland was chosen as the study area to analyze the spatial
and temporal variations of NDVI, as well as the performance of the vegetation soil wetness
index (VSWI), the vegetation condition index (VCI), and the vegetation health index (VHI)
during different growing seasons. The goal is to develop a comprehensive analytical tool
that can provide insights into the growth status of vegetation in arid regions from multiple
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perspectives. The results of this research will enhance our comprehension and control of
vegetation ecosystems in dry locations in the future.
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Figure 1. Methodological flow chart.

2. Materials and Methods
2.1. Overview of the Experimental Area

The Maowusu sandland is situated in the semiarid area of northwest China. Its
hinterland, Wutian Banner, is part of Ordos City in the Inner Mongolia Autonomous
Region. The Maowusu sandland’s geographic coordinates are 108°17'-109°40" E and
37°38'-39°23' N (Figure 2). The region spans about 1.16 x 10* square kilometers, with an
average altitude of 1300 m. The topography is characterized by high height in the northwest
and low elevation in the southeast [20]. The landforms of the Wushen Banner include a
diverse range of kinds, which may be classified into five categories: tectonic denudation
terrain, accumulation terrain, wind-accumulation terrain, loess terrain, and river formation
terrain. Based on morphology, there are eight distinct kinds of landforms: undulating
plateau, beam land, inland lake NAO, beach land (alluvial lagoon plain), flowing and semi-
flowing dunes, fixed sand, loess beams, and river valley land [21]. Deserts, beach lands,
and beam lands are primarily spread in bands. The predominant soil type in Uttarakhand
is wind-sand soil, covering 78.4% of the total soil area. The remaining 21.6% of the soil
area is occupied by meadow soil, chestnut-calcium soil, salty soil, loess soil, and marshy
soil. The primary flora consists of Artemisia ordosica, Ephedra sinica Stapf, and other species.
The research area has a moderate continental monsoon climate, which is influenced by
global warming, with an average annual temperature of around 7.0 °C [22]. The region has
abundant water resources, characterized by several natural alkaline water lakes and river
systems, including the Yellow River system and the interior river system. Notable rivers in
the area include the Wuding River, the Nalin River, and the Hailutu River. Global water
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resources amount to around 534 million cubic kilometers, with surface water accounting for
over 0.71 billion cubic kilometers and groundwater making up approximately 412 million
cubic kilometers. The yearly rainfall is 331.5 mm, while the yearly evaporation ranges from
2000 to 3000 mm. The average annual wind velocity is 3.4 m/s [23]. The climatic features
are primarily defined by aridity, high rates of evaporation, irregular precipitation patterns,
intense sunlight, and strong winds accompanied by sand movement. These attributes have
a significant influence on the biological environment and land use in the research area.
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Figure 2. The geographic location of Maowusu sandland.

2.2. Data and Processing

This work included the creation of extended timeseries and multi-year average analysis
utilizing the MOD13Q1 and MOD11A2 data packages obtained from MODIS on the GEE
cloud platform. The provided data were used to create index datasets, including NDVI,
VSWI, VHI, and VCI, using long-timeseries remotely sensed data at a spatial resolution
of 500 m in the designated research region. We successfully eliminated limitations related
to time and space in geographical research and performed a comprehensive analysis of
vegetation cover change and health in the study region from 2000 to 2019 using long-term
monitoring and the Mantel test. For the monthly time scale, we used the highest pixel
values from the monthly picture data to create a sequence of photos spanning 20 years.
Furthermore, to address the uncertainty arising from the limited number of photos obtained
in a year, we conducted a pixel-by-pixel 95th percentile compositing analysis of MODIS
images obtained within each year [24].

We obtained ASTERGDEM 30M resolution digital elevation model (DEM) data from
the geospatial data cloud (https:/ /www.gscloud.cn/) on 8 June 2023. Subsequently, we
conducted a comprehensive analysis of the DEM data using ArcGIS 10.8 software to obtain
precise elevation data.

The meteorological data used in this research were primarily sourced from two platforms:
the ERAS5 dataset, a fifth-generation atmospheric reanalysis provided by the European Centre
for Medium-Range Weather Forecasts (ECMWF), which was accessed via the GEE cloud
platform, and the National Tibetan Plateau Science Data Center. We obtained daily average
temperature and daily precipitation data from the ECMWEF Reanalysis v5 (ERA5) dataset,
which has a resolution of 27,830 m, for the period spanning from 2000 to 2019. The data
were derived from the mean_2m_air_temperature band, which provides hourly tempera-
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ture measurements at a height of 2 m above the ground, as well as the total_precipitation
band. Additionally, we used data obtained by academics affiliated with Peng Shouzhang
from the National Tibetan Plateau Science Data Center (NTPSSDC), which included the
regional and temporal fluctuations of average yearly temperature and annual precipitation.
The data presented here were produced using the Delta spatial downscaling software for
regional downscaling in China. This program used the global 0.5° climate dataset released
by CRU and the global high-resolution climate dataset supplied by World Clim. To ascer-
tain the credibility of these data, the data center used information from 496 autonomous
meteorological observation locations for validation. The validation results indicate that the
data are reliable. These data offer robust evidence for our investigation [25].

The land cover/utilization dataset includes data for three time periods: 2000, 2010, and
2020. Each era has a geographical resolution of 30 m. The data were georeferenced using
the WGS 1984 coordinate system. The source of the data was GlobeLand30, a worldwide
land cover dataset with a spatial resolution of 30 m generated in China. The dataset may
be accessed at https:/ /www.globallandcover.com/ on 3 July 2023. The dataset consists of
10 level 1 land use/cover categories, including agriculture, forest land, grassland, wetland,
construction land, and unutilized land. In light of the current conditions in the study region
and the requirements of this research, we have recategorized the land type data to include
farmland, forest land, grassland, water bodies, and manmade surfaces [26].

We acquired our soil moisture data by employing surface soil moisture characteristics
from the reanalysis data of ERA5. We used interpolation techniques to obtain continuous
spatiotemporal data for soil moisture at a resolution of 0.25°. This included interpolating
the surface soil moisture products from ESA-CCI daily. Subsequently, we used data from
the International Soil Moisture Observation Network (ISMN), a worldwide soil moisture
observatory, and integrated it with additional high-resolution optical remote sensing data.
Ultimately, we used a machine learning technique to reduce the day-to-day 0.25° resolution
surface soil moisture data to a day-to-day 1 km resolution [27].

2.3. Methodology
2.3.1. MK + Sen Trend Analysis

Significant patterns in the temperature-rainfall timeseries were detected using non-
parametric approaches. Due to the nonnormal distribution of the temperature and rainfall
data, the Mann—Kendall and Sen slope estimators were used for trend detection and slope
estimation, respectively [28]. These estimators are known for their computational efficiency.
Its calculation formula is as follows:

(X=X L
B = Median =i Vi>i (1)

where, if B is greater than zero, it indicates an increasing trend in vegetation cover, and vice
versa for a decreasing trend.

The Theil-Sen and MK tests can be jointly employed to analyze long-term vegetation
timeseries. The Sen trend is a highly robust nonparametric statistical method for calculating
trends, which is not affected by measurement errors or outlier data. On the other hand, the
MK test does not assume any specific distribution for the samples and is less influenced by
outliers, making it suitable for significant trend testing in long-timeseries data [29]. The
test statistic S is calculated as follows:

n—1 yn
S=Yi Zj:i+1 sgn(xj — xi) 2)
where: sgn is calculated as follows:

+1 Xj— x;>0
sgn(xj—x;) =4 0 xj—x=0 (3)
-1 Xj— x; <0
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Trend test using test statistic Z. Z value calculation method:

S
Var(S) (S > 0)
Z = 0(S=0) (4)
S+1
Var(S) (S < 0)
where: Var is calculated by the formula:
Var(s) = n(n—1)(2n+5) 5)

18

where 1 is the number of data in the sequence; m is the number of repeating data groups in
the sequence; and x; is the number of repeating data in the ith repeating data group.

2.3.2. Lenvenberg-Marquardt Technique for Constructing Logistic Dual Models

We used bi-logistic smoothing and automated object extraction methods to compute
object quantities [30]. The annual growth pattern was modeled using the following dual
logistic function:

1 1
/ () = ol + 02 ( TR e o ) (6)

where f(t) is the fitted EVI value at the day t; v1 and v2 are the background and amplitude
of EVI over the entire year, respectively; the first sigmoid (Sigl: (m)) with pair
parameters of m1 and n; captures the green-up phase of vegetation growth; and the second
sigmoid (Sig2: (m)) with pair parameters of m; and 1, captures the senescence
phase of vegetation growth.

The logistic model enabled us to automatically derive phenological characteristics
for six specific dates of seasonal transitions, which include germination initiation, SOS,
maturity, EOS, dormancy, and the duration of the season. The points of SOS and EOS of the
first-order derivatives matched the steepest slopes of the model on the trajectories of spring
growth and autumn senescence. The initiation of the green phase, the initiation of the
mature phase, and the initiation of the dormant phase, however, correspond to the sites of
change in the model, namely, the highest points of change in the second-order derivatives.
The season length refers to the duration of days between the SOS and the EOS. Furthermore,
many other attributes may be used to define the phenology of specific datasets, including
the seasonal magnitude and the rate of change at the start of the growing season (SOS) and
the end of the growing season (EOS).

2.3.3. Bias Correlation Analysis

Partial correlation analysis is a robust statistical technique that adjusts for the impact
of one or more confounding factors on the association between two variables, allowing
for a more precise assessment of the correlation between those two variables [31]. This
methodology may be used for multivariate data and facilitates hypothesis testing to ascer-
tain the statistical significance between two variables. We used the t-test for performing the
correlation study. For this study, we conducted a statistical examination of each pixel and
subjected it to a significance test with a threshold of 0.05. This work used MATLAB 2016 to
conduct partial correlation analysis to investigate the association between three variables:
temperature, precipitation, soil moisture, and the fluctuations in NDVI from 2000 to 2019.

2.3.4. Partial Mantel Test

The data was subjected to statistical analysis using the R programming language
software (version 4.2.3). To guarantee the replicability of the findings, we established
random seeds before conducting the statistical analysis [32]. We conducted Mantel tests
using the “vegan” package to analyze the NDVI, VSWI, VHI, TCI, and VCI. Through
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the utilization of the mutate function, we partitioned the R-values and p-values of the
Mantel test to ascertain the association between these indices. Ultimately, we generated
correlation heatmaps to visually represent the link between various indices. This method
offers us a powerful instrument to measure and depict the connections between different
environmental factors, thus enhancing our comprehension of the impacts of climate change
on vegetation.

3. Results
3.1. Characteristics of Spatial and Temporal Changes in Land Use Types

The land use categories in the research region between 2000 and 2020, listed in de-
creasing order, were grassland, bare land, plowed land, shrubland, water, artificial surface,
forest, and wetland, as seen in Figure 3. From 2000 to 2020, there was a notable upward
trend in the use of plowing, wave energy, and artificial surface area. Among these, plowing
experienced the most substantial increase. However, there was a significant decline in grass-
land, possibly due to the influence of agricultural activities, the conversion of grassland
to cropland or other types of land, and potential overgrazing. Shrubland, bare land, and
wetland areas experienced a slight decrease, while the forest area remained relatively stable.
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Figure 3. Map of land use types, 2000, 2010, 2020.

Between 2000 and 2020, there were notable changes in the land use categories within
the research region, as seen in Figure 3. More precisely, the regions of the plow, wave,
and artificial surface exhibited a notable upward tendency, with the plow seeing the
most substantial growth. This phenomenon may be ascribed to the rise in agricultural
endeavors, resulting in the transformation of grassland into cropland or other forms
of land or to the deterioration of grassland caused by excessive grazing. Nevertheless,
the grassland area saw a substantial decline. This phenomenon might be attributed to
the proliferation of agricultural practices or the deterioration of grasslands caused by
overgrazing. Furthermore, there was a minor reduction in the extent of shrubland, bare
land, and wetland, although the amount of forest remained rather stable. The observed
alterations may be attributed to a range of natural and human-induced variables, as seen
in Figure 4.

The studied area exhibits a progressive decline in plowed land from the western
region to the eastern region, but there is a noticeable upward trend in the presence of
forests and grasslands. The middle section of the study area has occasional artificial
surfaces, mostly concentrated in regions experiencing fast population expansion and
significant development. The ecological restoration and conservation efforts in the study
region mostly rely on grassland as the predominant land use type. The fieldwork findings
indicate that the prevailing vegetation consists of grease pencil communities, stinking
cypress scrub, intermediate mallow scrub, and willow bay woodland. During the last two
decades, there has been a consistent decline in the extent of bare ground in the study region.
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Conversely, artificial surfaces and cultivated land have seen a minor upward trend. As
a result, the overall ecological condition of the area is improving, indicating progress in
ecological restoration.
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Figure 4. Map of changes in land use types, 2000, 2010, 2020.

The Wushen Banner is situated in the heart of the Maowusu desert, where the bio-
logical landscape has seen significant changes. Since the 1960s, the Wushen Banner has
undertaken ecological restoration efforts, drawing on China’s significant ecological con-
struction projects. As a result, the Wushen Banner has successfully established a protective
forest system that integrates nets and grasses. Over the last two decades, the vegetation
in Wuxia Banner has relied on the year-to-year pattern of rainfall, and the highest annual
NDVI showed the strongest relationship with the precipitation occurring from August
of the preceding year to July of the current year. The sandy regions in the northwestern
portion of the Wushen Banner had the lowest levels of plant cover, while the cultivated
areas in the southern half displayed the greatest levels of vegetation cover. By the year
2020, the percentage of forest cover on the flag will be 32.92%, while the percentage of vege-
tation cover will be 80%. These statistics indicate a notable improvement in the ecological
conditions of the Wushen Banner, with a noticeable rise in plant coverage.

The vegetation changes in Wushen Banner are mostly a result of human activity
and climate change. The Wushen Banner has achieved significant ecological restoration
by actively engaging in ecological construction and management, resulting in improved
ecological conditions and increased plant coverage.

3.2. Estimation of Vegetation Phenology Parameters and Analysis of the Influence of
Ecological Factors

This research used NDVI data derived from the global inventory mapping and moni-
toring research (GIMMS) spanning the years 2000 to 2020. The objective was to illustrate
yearly variations in vegetation indices and calculate surface phenology parameters using a
bi-logistic function. The Levenberg—Marquardt technique was used to fit the timeseries data
and determine the start date (SOS) and end date (EOS) of the growth season for 12 average
distribution sites within the research region (Figure 5). Furthermore, we computed the
enhanced vegetation index (EVI) to provide a more precise representation of the current
state and vitality of vegetation at each location.
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Figure 5. Annual evolution of surface phenological parameters with a double logistic function.

The study findings reveal that the SOS at the 12 monitoring locations occurred on aver-
age on the 125th day of the year, while the EOS occurred on average on the 267th day. This
suggests that the duration of the vegetation growth season is around 142 days. Although
the highest enhanced plant index (EVI) typically occurs in July, which marks the apex of
the growing season, the remote sensing data indicated that the plant growth during that
time was unsatisfactory.
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The research area is situated in the inland region of the Maowusu sandland, where the
interplay of climatic conditions and geology has a substantial influence on the groundwater
level. Hou et al. observed that in 2019, the average groundwater level in the research
region located in the hinterland of the Maowusu sandland surpassed the maximum depth
necessary for plant development by 4 m [33]. The research area is situated in a region
characterized by a moderate continental monsoon climate, which is characterized by aridity,
strong winds, and little precipitation. The research location is in a region characterized
by a temperate continental monsoon climate, which is dry and windy with little rainfall.
This region is often referred to as experiencing “nine droughts in ten years”. These many
elements influence the fluctuation of the groundwater level. The groundwater level in
the research region is influenced, to some degree, by both the amount of rainfall and the
water requirements of the plants present in the area. The research region has seasonal
fluctuations in groundwater levels, with a fall of 23 cm seen in 2020. This indicates a
short growing season for vegetation in the area, which may be due to unfavorable soil and
climatic conditions that negatively impact plant development. These findings indicate that
the duration of the vegetation growing season in the studied location is brief and that soil
and climatic conditions may hurt plant development. The presence of EVI peaks does not
indicate the most favorable plant development and may be impacted by other biological or
environmental conditions, such as the depth at which groundwater is buried. Vegetation’s
ability to obtain sufficient water and nutrients may be restricted by water tables that are
located at significant depths, leading to suboptimal development.

3.3. Characterization of Interannual Variability of Climate Factors

We used GEE to collect data on daily total precipitation and daily mean air tempera-
ture for the four areas within the research area. This data were then analyzed thoroughly to
examine the impact of interannual variability of local climatic elements on the vegetation.
Our investigation revealed that the amount of rainfall in the research region varied through-
out the year during the last two decades. Additionally, we observed that days with heavy
precipitation often aligned with days with elevated air temperatures, as seen in Figure 6.
This indicates that in the summer, increased evaporation results in an arid atmosphere,
which hampers the development and regeneration of plants. Through the calculation of
total annual precipitation and mean annual air temperature, we have determined that
the annual precipitation has shown a notable rising trend from 2013 to 2019, while the
mean daily air temperature has seen a modest reduction. Particularly throughout the
summer months, there is a decline in peak temperatures, resulting in an increasingly wetter
environment that creates suitable circumstances for vegetation development.

From August to September, our analysis revealed that the primary period of rainfall
was concentrated in July to September, while the time of high temperature mostly occurred
from June to July. This scenario aids in mitigating elevated temperatures that intensify the
evaporation of soil moisture and transpiration of crops, thus diminishing the extent of soil
moisture depletion and decelerating the progression of drought conditions. With increasing
temperatures, the capacity of the atmosphere to retain water vapor before reaching satura-
tion is enhanced, hence raising the probability of intense and heavy precipitation events.
Furthermore, we observed a substantial increase in precipitation throughout the spring and
autumn seasons. The vegetation cover and growth were significantly enhanced as a result
of the increased precipitation, sufficient soil hydration, and favorable temperatures. These
elements facilitated optimal circumstances for the proliferation of plants, hence augmenting
the vegetation index (NDVI).
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Figure 6. Rainfall and temperature trends, 2000-2019.

3.4. Characterization of Changes in Vegetation Trends

The graph depicting variations in NDVI trends (Figure 7) provides a more precise
explanation for the greater NDVI in summer and lower NDVI in winter seen in the research
region. The presence of elevated NDVI values during the summer season may be ascribed to
the impact of the summer monsoon climate. The monsoon season offers enough rainfall and
favorable warm weather to the region, creating an optimal atmosphere for the development
and prosperity of flora. The elevated NDVI values imply that Uttarakhand Banner has a
substantial plant cover throughout the summer season, perhaps abundant in crops and
grassland vegetation. This aligns with the meteorological circumstances characterized by
optimal temperature and enough rainfall throughout the summer season, together with
the duration of plant growth. These factors provide a conducive environment for plant
growth, thereby resulting in the highest levels of NDVI. In contrast, during the winter
season, Uttarakhand has a dry and cold continental climate, which leads to a decrease in
the normalized difference vegetation index (NDVI) at this time. The decline in vegetation
cover was caused by less precipitation and inadequate soil moisture throughout winter,
as well as limited plant development due to low-temperature conditions. Consequently,
the normalized difference vegetation index (NDVI) exhibits a decrease over the winter
season. The arid and frigid winter climate restricted the development of plants due to less
precipitation, inadequate soil moisture, and diminished vegetation activity. Consequently,
this resulted in decreased NDVI values throughout the winter season. The greater NDVI
in summer and lower NDVI in winter in Uttarakhand may be attributed to the warm and
adequately rainy monsoon environment, as well as the dry and cold continental climatic
conditions. These elements have a direct impact on the development of plants and the
extent of vegetation coverage.

We conducted a comprehensive categorization of NDVI trends in the research region
over the last 20 years using Theil-Sen median trend value analysis and Mann-Kendall non-
parametric test technique, with a significant threshold of « = 0.05. The findings indicated a
substantial rise in over 90% of the studied region. From 2000 to 2020, the NDVI exhibited
noticeable upward and downward trends (Figure 8). Approximately 93.23% of the region
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had substantial enhancement in vegetation cover, while only a small portion of the territory
showed deterioration in vegetation cover. On the whole, the normalized difference plant
index (NDVI) in the study region exhibited a noteworthy upward trend during the last two
decades of observation. Additionally, there was a substantial expansion in the area with a
considerable rise in plant cover. Through a comparative and analytical examination of the
NDVI trends across a 20-year timeframe, we have determined that the vegetation cover ex-
hibited a consistent and gradual growth from 2000 to 2020, with no notable variation in the
pace of expansion. The plant growth rate in the eastern section of the Maowusu sandland
is much greater than in the western part, suggesting that the ecological restoration project
has greatly contributed to improving vegetation cover. Consequently, according to the
findings of the Theil-Sen median trend value analysis and Mann-Kendall nonparametric
test method, we can infer the following: the NDVI in the study area exhibited a noteworthy
upward trend, the vegetation cover experienced a substantial enhancement, and the rate of
vegetation growth in the eastern region surpassed that in the western region. The findings
strongly indicate the enhancement of the ecological environment and the success of the
ecological restoration project in the study area.
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Figure 7. Trend map of NDVI time change, 2000-2019.
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3.5. Trend Map of NDVI Changes, 2000-2019

According to the data on population density and GDP in our research area in 2020 (as
shown in Figure 9), we can deduce that the population is mostly concentrated in regions
where there is an increase in vegetation cover (NDVI). Likewise, regions with abundant
vegetation tend to have better standards of life for humans. The rise of these regions
may be attributed mostly to the effective implementation of ecological restoration in the
outskirts of the city. Conversely, places without vegetation had fewer populations and
comparatively worse human living conditions, mostly because it was difficult to conduct
ecological restoration efforts in these regions. These results provide fresh insights into the
correlation between population distribution, living standards, and the natural environment.
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Figure 9. Population density and GDP in 2020.

3.6. Relationship between Climate Factors and NDVI

This research extensively examined the link between three factors—temperature, pre-
cipitation, and soil moisture—and the fluctuation in NDVI from 2000 to 2019 using partial
correlation analysis (Figure 10). The findings indicated that temperature had a detrimental
impact on plant development in the majority of regions. Still, rainfall and soil moisture had
a beneficial influence on vegetation growth in most places. The average bias correlation
coefficients for temperature, precipitation, and soil moisture about vegetation NDVI were
—0.39, 0.30, and 0.68, respectively. These values suggest that soil moisture has the most
pronounced impact on changes in vegetation. Our findings indicate that air temperature
has predominantly negative impacts on vegetation growth. This can be attributed to the
excessive evaporation of water caused by high air temperatures in temperate continental
monsoon climates. Consequently, soil moisture decreases, thereby limiting plant growth.
Consequently, elevated temperatures may hurt the development of plants in these regions.
Conversely, rainfall has a mostly favorable impact on plant growth, which is why places
where rainfall enhances vegetation growth are more common. In a temperate continental
monsoon environment, an adequate amount of precipitation may provide plants with the
necessary moisture, hence facilitating plant development. Consequently, more precipitation
in these regions might potentially enhance the development of plants. The relationship
between soil moisture and plant development had a significant positive influence, as shown
by a partial correlation coefficient of 0.68. This outcome aligns with our expectations. Soil
moisture is a crucial component that restricts plant growth. Sufficient soil moisture ensures
that plants obtain the necessary water and nutrients, promoting positive growth and de-
velopment. Hence, the augmentation of soil moisture in these regions might potentially
have a substantial impact on plant development. The research region is situated in the
steppe zone characterized by chestnut-calcium soil, where soil qualities have a significant
influence on plant development (Figure 11). The soil has high levels of calcium ions and
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carbonates, possesses a loose texture, and demonstrates excellent permeability. However,
its water retention capacity is rather low, which significantly affects plant development.
Within this particular ecosystem, precipitation assumes the primary role in stimulating
the development of nonwoody plants. The filtration rate and water saturation of the soil
are primarily determined by the composition of soil particles, which includes the relative
amounts of sandy and clay fractions. Sandy soils include bigger particles and a greater
number of spaces, leading to accelerated filtration rates but less water retention capacity. In
contrast, clay soils possess finer particles and a reduced number of empty spaces, resulting
in a slower filtering rate but an increased ability to retain water. The erosion resistance
of the soil will be indirectly influenced by these qualities. Consequently, precipitation
plays a crucial role in the development of herbaceous plants that thrive on calcareous
chestnut soils, serving as a primary catalyst for their growth. In general, climatic change
significantly influenced the favorable state of plant growth in the research region. These
results provide significant insights for comprehending and forecasting the effects of climate
change on ecosystems.
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Figure 10. Bias correlation coefficients for the three elements of temperature, rainfall, and soil
moisture.
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3.7. Long-Term Monitoring and Analysis of Vegetation Health Dynamics

Through extended observation, this research examines the long-term fluctuations
in vegetation and its response to drought in the study region during a historical period
from 2000 to 2020, uncovering notable ecological changes. We conducted a quantitative
analysis on the trends of the monthly mean values of the NDVI, VSWI, VHI, and VCI
using remotely sensed data from 2000 to 2020 (Figure 12). The analysis revealed a notable
decline in the VCI from January to April. This decline can be attributed to the spring
season, characterized by rising temperatures but insufficient precipitation. Consequently,
the vegetation was in its early growth stage and was constrained by unfavorable climatic
conditions. During the period from May to August, the VCI consistently and gradually
increased. This may be attributed to the concurrent summer season, characterized by
higher temperatures and enough precipitation, which facilitated plant development. By
the end of the year, the VCI saw a significant reduction, perhaps due to the onset of lower
temperatures and the subsequent dormancy of vegetation. Over 20 years, the VHI saw
a substantial and consistent rise. This may likely be attributed to the prolonged time of
plant growth and expansion of vegetated areas, which resulted from the warmer environ-
ment. From February to November, VHI exhibited a consistent pattern, attributed to the
favorable temperatures and enough precipitation throughout this time, which supported
plant development. However, the VHI saw a progressive decrease throughout the winter
months, likely attributed to the decrease in temperatures and the dormant state of plants.
In general, the climate in the research region may influence the development of plants.
Fluctuations in temperature and insufficient rainfall during spring and winter may restrict
the development of vegetation, but favorable temperature and precipitation conditions
during summer and autumn promote plant growth. Over time, a higher temperature may
potentially benefit the extent of vegetation coverage.
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Figure 12. Characterization of interannual changes in VCI, VHI, and VSWIL.
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3.8. Study on the Correlation between Vegetation Index and Climatic Factors

Our analysis found that the R-values of the Mantel test in the study region were
all below 0.2. This suggests that the linear connection between NDVI and the other
variables is quite weak. Please refer to Figure 13 for further details. Meanwhile, all the
p-values of the Mantel test were found to be greater than 0.05. This suggests that there
is no significant correlation between NDVI and these factors. A robust linear association
was observed between VCI, VHI, and VSWI. Additionally, a significant linear link was
discovered between VSWI and temperature. This dataset illustrates the correlation between
climate and plant growth, as well as the impact of soil moisture and air temperature on
vegetation development. The robust linear connection between VCI and VHI implies
a substantial association between the state and vitality of plants. The VCI provides an
assessment of the state of vegetation, while the VHI indicates the overall wellbeing and
vitality of vegetation. This suggests that climatic conditions may have an impact on both
the state and wellbeing of plants. Furthermore, the robust linear association shown between
VCI, VHI, and VSWI indicates that the impact of soil moisture on plant development is
of utmost importance. The presence of soil moisture is a crucial element that affects the
development of plants. Consequently, the connections between VCI and VHI, as well
as VSWI, may suggest a significant impact of soil moisture on the state and wellbeing
of vegetation. The significant correlation between VSWI and temperature underscores
the crucial role of air temperature in influencing soil moisture and plant development.
Variations in air temperature have a direct impact on the process of water evaporation from
the soil and water transpiration from plants, thereby influencing both soil moisture levels
and the development of vegetation. These results provide novel insights for comprehending
the impacts of climate change on the development of plants.
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Figure 13. NDVI with VSWI, VHI, VCI, precipitation, temperature temporal, and spatial scale Mantel
test analysis.

4. Discussion
4.1. Characteristics of Dynamic Changes in Land Use Types and Changes in Groundwater
Resources in the Hinterland Area of the Maowusu Sandland

Our research findings indicate that the predominant land use categories in the study
region from 2000 to 2020 were grassland, bare land, plow, shrubland, water bodies, artificial
surfaces, forests, and wetlands. In general, the studied area exhibited a progressive decline
in cultivable land from the western region to the eastern region, although there was a
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noticeable upward trend in the extent of forest and grassland [34]. Evidence indicates
that the significant increase in vegetation mostly occurs in the study region, which is
characterized by rapid economic development and a pronounced tendency of population
expansion [22]. Over 20 years, the amount of bare ground consistently decreased annually,
whereas artificial surfaces and cultivated land exhibited a little upward trend, aligning
with prior findings [35]. The repair and protection of sandy land mostly relies on the
use of grassland as a land use category [36]. During the last fieldwork, it was observed
that the predominant vegetation consists of grease pencil community, stinking cypress
scrub, intermediate mallow scrub, and willow bay forest [31]. These vegetation types are
experiencing substantial growth and are showing positive signs of ecological restoration.

Through the examination of the EVI data obtained from GIMMS in 2020, we de-
termined that the duration of the vegetation growth season had an average length of
142 days [37]. Additionally, the start of the growing season (SOS) typically occurred around
the 125th day of the year, while the end of the growing season (EOS) was observed around
the 267th day. The influence of climatic conditions and regional water table on the growth
season of plants has been observed [30]. The combination of climate warming and greater
precipitation might result in an earlier start of the growing season (SOS) and a later end
of the growing season (EOS) [37]. Hou et al. observed that the average depth at which
groundwater is buried in the hinterland region of the Maowusu sandland is much higher
than the maximum depth necessary for vegetation to flourish [33]. This implies that the
majority of the water used in agroecology in the area likely comes from underground
sources [38]. Additionally, the presence of a deeply buried groundwater table may restrict
vegetation’s ability to obtain an adequate supply of water and nutrients, resulting in subpar
development [39]. Li et al. discovered that a dense concentration of flora in the Maowusu
sandland area not only helps to retain water in the soil but also has the potential to alleviate
the decreasing groundwater level [40]. Hence, we propose that future worldwide ecological
restoration initiatives should take into account the equilibrium of the groundwater table to
guarantee environmental sustainability.

4.2. Climate Effects on Changes in NDVI Trends

From 2000 to 2019, Pravalie et al. conducted a thorough observation of the plant
cover in the Maowusu sandland [41]. Their focus was solely on examining the correlation
between regional climate change and the fluctuations in vegetation. The geographical
distribution of vegetation does not capture the spatial and temporal variations in vegetation
patterns well [10]. Utilizing the Theil-Sen median trend analysis and Mann-Kendall
nonparametric test, we have shown that over 90% of the regions’ vegetation cover areas
exhibit a noteworthy upward trend, particularly in regions with low to medium vegetation
cover [42]. The studied area exhibits a notable upward trend in NDVI, suggesting a
substantial rise in plant cover [43]. This increase is particularly pronounced in the eastern
portion of the region, where vegetation growth outpaces that of the western section. This
finding aligns with prior studies [30]. These findings demonstrate the efficacy of local
initiatives aimed at enhancing ecological conditions and restoring ecosystems.

Shammi et al. demonstrated that precipitation is the primary factor influencing
alterations in vegetation within dry and semiarid areas of northwest China [42]. The confir-
mation was made that there exists a positive association between NDVI and precipitation.
Additionally, it was shown that precipitation has a greater impact on promoting plant
development compared to temperature, aligning with our results [41]. While our research
did not extensively investigate the impact of human activities, data from China indicated
that afforestation and agricultural operations accounted for 42% and 32% of the increase in
vegetation area, respectively [44]. Furthermore, climate change has a dual impact on vegeta-
tion development. It directly influences the growth of plants and modifies the physical and
chemical characteristics of the soil, including moisture levels and nutrient composition [43].
These changes in soil qualities subsequently impact the condition of the vegetation, as
shown in the study conducted by Ren et al. [45]. Zhang et al.’s research indicates that tem-
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perature and precipitation in the nongrowing season might potentially affect vegetation in
the growth season [46]. Our investigation revealed that the substantial rise in precipitation
in the study region not only stimulated plant growth, but also had a crucial impact on
enhancing soil moisture [46]. This, in turn, efficiently facilitated vegetation development
via the combined influence of both factors.

Wang et al. conducted a thorough analysis of the factors contributing to vegetation
droughts in China [47]. They developed a robust analytical technique that utilizes many
vegetation indices, including NDVI, VSWI, VHI, VCI, TCI, and TVD], to enhance our
knowledge and prediction of vegetation droughts. Zhang et al. emphasized that the VSWI
specifically emphasized the limited availability of water resources in the area [48]. They
also noted that the VHI is well-suited for monitoring widespread droughts and their effects
on vegetation [47]. Furthermore, they found that the VHI is more effective when used
alongside the VCI and TCI. Jin et al. demonstrated that the integration of plant soil wetness
index (VSWI) and land surface temperature (LST) yields a more comprehensible represen-
tation of plant development [49]. Our study integrated the VSWI, NDVI, VHI, and VCI
indices with local vegetation conditions to create a comprehensive analytical framework for
long-term monitoring and prediction of vegetation recovery [48]. We conducted a detailed
analysis of the factors contributing to the dynamic changes in vegetation at both spatial
and temporal scales. Amiri et al. highlighted that increasing temperatures in the mid-
to high-latitude areas are a significant contributing element, aligning with our research
results [50]. Our statistics also indicate that climatic warming might potentially enhance
vegetation coverage. Nevertheless, our research also indicates that inadequate precipitation
throughout the spring and winter seasons might restrict the development of plants, aligning
with the conclusions drawn by Wang [47]. The research area’s vegetation is influenced by
soil moisture and precipitation, which have a beneficial impact. Temperature variations
immediately impact the evaporation of water from the soil and the transpiration of water
from the plant [13]. These factors, in turn, affect the development of vegetation cover.

5. Conclusions

Through comprehensive research of regional vegetation climate and phenology rela-
tionships in the hinterland area of the Maowusu sandland, we have derived the following
conclusions: grassland is the largest land use type in terms of area. The region has an aver-
age vegetation growing season of 142 days, indicating a consistent growth cycle. Remote
sensing data from the past 20 years reveal that 90% of the area shows a significant increasing
trend in the vegetation index NDVI, suggesting an overall improvement in vegetation
condition. There is a strong linear relationship between the vegetation condition index
(VCI), health index (VHI), and soil moisture index (VSWI), emphasizing the significant
impact of soil moisture on vegetation condition and health. The correlation between VSWI
and air temperature further confirms the influence of air temperature on soil moisture and
vegetation growth.

These findings enhance our understanding of vegetation growth dynamics and the
effects of climate change in the hinterland area of the Maowusu sandland. They also offer
valuable data support and new research tools for ecological restoration and sustainable
agricultural development. The findings of this study have significant research implications
for the scientific community and practical implications for enhancing regional ecological
equilibrium and facilitating sustained socioeconomic progress.
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