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Abstract: Based on the data of Sichuan Province from 2007 to 2021, the extreme climate events in
Sichuan Province was identified by statistical method, and the coupling coordination degree of
water resources-climate system and separate water resource system was analyzed. Based on the
difference of coupling coordination degree under these two systems, the influence mechanism of
extreme climate factors on the water resource system is analyzed. The results show that the extreme
climate types in Sichuan Province gradually transition from extreme drought to extreme precipitation
and from extreme low temperature to extreme high temperature. When climate factors are not
considered, the coupling coordination degree of the water resource system is generally improved
and the distribution is more concentrated. Moreover, the influence of climate factors on the water
resource system is not a simple linear relationship.

Keywords: extreme climate; coupling coordination degree; water resources-climate system; climate
factors; water resource system

1. Introduction

In the Sixth Assessment Report of the IPCC [1], “extreme weather events in climate
change” has been added, which indicates that extreme climate is happening more and more
frequently, and researchers have paid more attention to this issue. Many scholars have
analyzed the temporal and spatial changes of extreme climate events [2–4] and the effects
of extreme climate in a certain region [5–7]. Extreme precipitation has a huge impact on
agricultural production. Wang et al. [8] analyzed the changes of extreme precipitation in
South China by using the machine learning method and concluded that extreme precipita-
tion in South China in recent years decreased from April to May and increased from June
to August. It is mainly affected by the ECPC (extreme precipitation circulation pattern),
dynamic, and thermodynamic. Li et al. [9] used trend analysis to analyze the global extreme
precipitation events and concluded that the proportion of extreme precipitation was on
the rise worldwide. Zhu et al. [10] found through research that extreme precipitation
has an accelerated effect on nitrate leaching in farmland. Extremely high temperatures
pose a great threat to the survival and development of global organisms. Gao et al. [11]
believe that after an extremely high temperature occurs, the abundance of the large-animal
community in agricultural soil decreases. Yadav et al. [12] believe that high-temperature
and heat wave events increase mortality and urban heat island effect. Stoks et al. [13]
believe that an extremely high temperature has a great impact on all biological interactions
(such as predation, competition, parasitism, etc.). Moreover, many studies have shown that
extreme precipitation and high temperature interact [14–16], and that the occurrence of heat
wave events shortens the time interval of extreme precipitation [17–21]. Extreme drought
mainly has a great impact on cultivated land systems and water ecological environments.
Under the effect of extreme drought events, ecological functions of crops are inhibited,
photosynthetic efficiency and productivity are destroyed [22], and extreme drought also
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accelerates the discharge of groundwater in floodplain [23]. The simultaneous effect of
extremely low temperatures and reduced water content inhibit the respiration of the alpine
steppe on the Tibetan Plateau [24]. During the slowdown of global warming, extreme low
winter temperature events in Eurasia have a recovery trend [25].

Water resources are indispensable natural resources in the process of social de-
velopment. The research on water resource systems mainly focuses on two aspects:
sustainability [26,27] and carrying capacity [28]. The two major ways of water input
and output in the water resource system are precipitation and evaporation, which are
mainly affected by climate factors, so climate factors interact with the water resource
system [29]. Moses et al. [30] analyzed the effects of wind speed, solar radiation, and
relative humidity on the water resources of Okavango Delta through the K-M test method,
and the results showed that with the continuous development of climate, the evaporation
of water resources in this region would be further increased. Clifton et al. [31] use a
model to evaluate the impact of snow cover on the water resources of Blue Mountains in
Oregon, USA, and find that in areas with less groundwater resources, the reduction in
snow cover and summer rainfall will lead to the reduction in the water supply of aquatic
ecosystems and agriculture. Anik et al. [32] studied a large number of references and
concluded that Bangladesh faced the challenge of water scarcity due to climate change.
Globally, the frequency of extreme climate events is gradually increasing. Wang et al. [33]
believe that the global farmland will be exposed to complex drought and heat wave events
in the future, which will lead to a continuous increase in agricultural water use in the
future. Yang et al. [34] believe that climate change is the main factor leading to population
exposure, and it is expected that the population exposure in Asia will be the largest in the
future. In this case, it is crucial to ensure the safety of water supply. Therefore, from the
global perspective, it is necessary to analyze the impact of extreme climate factors on the
water resource system. Since the occurrence and distribution of extreme climate events will
vary greatly due to the different topography and geomorphology in the study area, the
selection of a small research scope can describe the impact mechanism of extreme climate
on the water resource system more accurately.

Based on the above analysis, this paper will analyze the extreme climate events in
Sichuan Province from 2007 to 2021, explore the coupling coordination degree of the water
resource system when extreme climate events occur, and compare the coupling coordination
degree of the water resource–climate resource system and a separate water resource system
from 2015 to 2021. The difference between the two is used as an indicator of the degree of
influence of extreme climate factors on water resources, aiming to reveal the mechanism of
action of climate factors on the water resource system under extreme climate events, and
provide a theoretical basis for Sichuan Province to cope with extreme climate events.

2. Materials and Methodology
2.1. Materials
2.1.1. Study Area

With a total area of 48.6 km2 and a jurisdiction over 21 prefectures, Sichuan Province
lies between 26◦03′~34◦19′ north latitude and 97◦21′~108◦12′ east longitude (Figure 1).
The topography of Sichuan Province varies greatly, with a high elevation in the east and a
low elevation in the west. It is composed of mountains, hills, plains, basins, and plateaus.
The main rivers in Sichuan Province are the Yellow River, the Yangtze River, Yalong River,
Jinsha River, Minjiang River, Dadu River, and so on.
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Figure 1. Distribution map of the main rivers and elevation in Sichuan Province.

2.1.2. The Index System

The evaluation is mainly constructed by the climate system and water resource system,
in which the water resource system is divided into the water quantity subsystem, water sup-
ply subsystem, and water quality subsystem. After studying the previous references [35–41]
and testing the data consistency, 3 indicators were selected for each subsystem, and a total
of 12 indicators were selected to calculate the coupling coordination degree. The specific
selected indicators are shown in Table 1.

Table 1. Sichuan Province water resource–climate system evaluation indicator system.

System Layer Element Layer Indicator Layer Unit Nature

Water resource–climate system

water quantity
subsystem

surface water
resources 108 m3 +

underground water
resources 108 m3 +

total water resources 108 m3 +

water supply
subsystem

surface water supply 108 m3 +
groundwater supply 108 m3 +
water supply from

other water resources 108 m3 +

water quality
subsystem

sewage discharge 104 m3 −
sewage treatment rate % +

precipitation pH - +

climate
subsystem

rainfall mm −
temperature ◦C −

relative humidity % −

It is worth noting that in previous studies, scholars included rainfall in other subsys-
tems. For example, Xu et al. [42] included it in the water subsystem, Tao et al. [43] included
it in the water resource situation subsystem, and Xu et al. [44] included it in the ecological
subsystem. However, rainfall was included in the climate subsystem in this paper.
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2.1.3. Sources of Data

The data selected for this paper are mainly from the Sichuan Statistical Yearbook [45],
Sichuan Meteorological Bulletin [46], Sichuan Water Resources Bulletin [47], and Sichuan
Environmental Bulletin [48] for the years 2007–2021, as well as the Water Resources Bulletin
and the Statistical Yearbook for the 21 districts in the province.

2.2. Methodology
2.2.1. Statistical Method

For the identification of extreme climate events, many scholars have adopted statistical
methods. For example, Kuwanto et al. [49] used the extreme value theory to analyze
the extreme precipitation events in Indramayo, Indonesia. Zhao et al. [50] used the non-
parametric M-K test method to calculate urban climate extremes in China; Stocker et al. [51]
defined climatic events with a probability of less than 10% as extreme climate events. In
this paper, the anomaly and standard deviation are used to analyze extreme climate events.
The specific calculation formula is as follows:

S =

√
1

n − 1∑n
i=1 (x − xi)

2, (1)

D = xi − x, (2)

γ =
D
S

, (3)

In the formula, S represents the standard deviation, D represents the anomaly,
xi represents the value of rainfall or temperature in the year i of a region, and x represents
the multi-year average of rainfall or temperature in a region. When γ ≥ 1.2, it is defined
that extreme precipitation or extreme high temperature events have occurred in the region.
When γ ≤ −1.2, it is defined that an extreme drought or extreme low temperature event
occurred in the area.

In the part of exploring the influence mechanism of extreme climate on the water
resource system, in order to increase the amount of data and obtain a more accurate fitting
function, the judgment conditions of extreme climate are appropriately relaxed in this part.
When γ ≥ 1.1, it is defined that extreme precipitation or extreme high temperature events
have occurred in the region. When γ ≤ −1.1, it is defined that an extreme drought or
extreme low temperature event occurred in the area.

2.2.2. Calculation of the Coupling Coordination Degree
Standardization of Data

The dimensions of the data collected in this paper are different, so it is necessary to
standardize the data, and the standardized values were made to lie between 0.001 and
0.999, using the following formula [52]:

Positive indicator:

x′i = 0.001 +
(xi − xmin)(0.999 − 0.001)

xmax − xmin
, (4)

Negative indicator:

x′i = 0.001 +
(xmax − xi)(0.999 − 0.001)

xmax − xmin
, (5)

In the formula, x′i is the value of the indicator after normalization, xi is the true
value of the indicator, and xmax and xmin are the maximum and minimum values of the
indicator, respectively.
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Determination of Weights

1. Calculation of subjective weights on IFAHP

The intuitionistic fuzzy analytic hierarchy process (IFAHP) [53] introduces the in-
tuitionistic fuzzy set in the basic hierarchical analysis method, which can quantify the
measured values of the indicators by describing the scores of the program with the affilia-
tion function. In order to solve the ambiguities occurring during the evaluation process
and minimize the influence of human factors, it is necessary to improve the reasonableness
of the subjective weighting, which is calculated as follows [54]:

(1) Construct the comparison matrix R
It is assumed that the number of experts attended the decision-making process is K.

Each element rk
ij in the comparison matrix R of the two indicators is an intuitionistic fuzzy

number corresponding to the evaluation result.

Rk =


1 rk

12 · · · rk
1n

rk
21 1 · · · rk

2n
...

...
. . .

...
rk

n1 rk
n2 · · · 1

, k = 1, 2, · · · , K, (6)

where rij =
(
µij, νij

)
, µij denotes the degree of affiliation, which is the level of preference of

the decision maker for indicator i, and νij denotes the degree of non-affiliation, which is
the level of preference for indicator j by the decision-maker. λij expression of the level of
uncertainty of the decision maker, λij = 1 − µij − νij.

(2) Construct the consistency intuitionistic fuzzy judgement matrix R = (rij)n×n

• When j > i + 1 or j < i, rij = (µij, νij).

Where

µij =

j−i−1

√
j−1
∏

t=i+1
µitµtj

j−i−1

√
j−1
∏

t=i+1
µitµtj +

j−i−1

√
j−1
∏

t=i+1
(1 − µit)(1 − µtj)

, (7)

νij =

j−i−1

√
j−1
∏

t=i+1
νitνtj

j−i−1

√
j−1
∏

t=i+1
νitνtj +

j−i−1

√
j−1
∏

t=i+1
(1 − νit)(1 − νtj)

, (8)

• When j = i + 1 or j = i, rij = rij.

(3) Determine the distance between R and R

d(R, R) =
∑n

i=1 ∑n
j=1

(∣∣∣µij − µij

∣∣∣+ ∣∣νij − νij
∣∣+ ∣∣λij − λij

∣∣)
2(n − 1)(n − 2)

, (9)

When d(R, R) > ς [55], the judgment matrix is considered to pass the consistency
test. For intuitionistic fuzzy judgment matrices that do not satisfy the consistency test, a
correction is required, and the corrected matrix is R′ = (r′ij)n×n

.The correction method is
as follows:

µ′
ij =

µ1−σ
ij µσ

ij

µ1−σ
ij µσ

ij + (1 + µij)
1−σ(1 − µij)σ

, (10)

ν′ij =
ν1−σ

ij νσ
ij

ν1−σ
ij νσ

ij + (1 + νij)
1−σ(1 − νij)

σ
, (11)
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(4) Calculation of subjective weights
The calculation of indicator weights for judgement matrices that satisfy consistency is

performed with the following formula:

W ′
i =

µi + λ
(

µi
µi+νi

)
∑n

j=1

[
µi + λi +

(
µi

µi+νi

)] , (12)

In the formula, W ′
i is the subjective weight.

2. Calculation of objective weights based on the improved CRITIC method

The CRITIC method was proposed by Diakoulaki et al. [56] and applied to the calcu-
lation of objective weighting, which can reflect the strength and conflict of the indicators
well. However, it lacks the consideration of data dispersion, so discrete coefficients should
be introduced into the calculation in order to find more reasonable objective weights [57],
which are calculated as follows:

W ′′
i =

(σi + δi)∑n
t=1 (1 − rij)

∑n
t=1 (σi + δi)∑n

t=1 (1 − rij)
, (13)

where σi is the mean difference of indicator i, δi is the newly introduced discrete coefficient,
rij is the correlation coefficient between indicator i and j, and W ′′

i is the objective weight.

3. Calculation of composite weights

In this paper, the subjective and objective weights are considered together and consid-
ered equally important, so the coefficient α = β = 0.5 is made to be calculated as follows:

Wi = αW ′
i + βW ′′

i , (14)

where Wi is the composite weights.

Modeling of the Coupling Coordination Degree

C = 4 ×
{

f (a)× g(b)× h(c)× q(d)

[ f (at) + g(bt) + h(ct) + q(dt)]
4

} 1
4

, (15)

where C is the degree of coupling; f (a), g(b), h(c), q(d) are the development indexes of
the water quantity subsystem, the water supply subsystem, the water quality subsystem,
and the climate subsystem; f (at), g(bt), h(ct), q(dt) are the development indexes of the
four subsystems in year t.

T = wα f (at) + wβg(bt) + wγh(ct) + wτq(dt), (16)

where T is the development index of the water resource–climate system, and wα, wβ, wγ,
wτ are the weights of the four subsystems.

D =
√

CT, (17)

where D is the coupling coordinate degree of the water resource–climate system.
The evaluation grades of coupling coordinate degree are shown in Table 2, and the

calculated coupling coordinate degree is divided into 10 grades [58], in which the former
five grades belong to the state of system imbalance, and the latter five grades belong to the
state of system coordination.
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Table 2. Classification of the coupling coordination degree levels.

Range of Coupling Coordination Degree Serial Number Coordination Level

[0.0, 0.1) 1 extreme imbalance
[0.1, 0.2) 2 serious imbalance
[0.2, 0.3) 3 moderate imbalance
[0.3, 0.4) 4 mild imbalance
[0.4, 0.5) 5 imminent imbalance
[0.5, 0.6) 6 barely coordination
[0.6, 0.7) 7 primary coordination
[0.7, 0.8) 8 intermediate coordination
[0.8, 0.9) 9 good coordination
[0.9, 1.0] 10 quality coordination

3. Results
3.1. Distributional Characteristics of Extreme Climate Events
3.1.1. Characteristics of the Temporal Distribution of Extreme Climate Events

According to the above statistical methods, extreme climate events in Sichuan Province
in the past 15 years were analyzed, and the results are shown in Figure 2. It can be seen
from the figure that the frequency of extreme climate events shows an overall upward trend,
which is consistent with the environment in which extreme climate events have become
more frequent in many regions in recent years [59–61]. In the past 15 years, three cities
had extreme drought events in 2009, which was the year with the fewest extreme climate
events. In 2015, nine cities had extreme high temperature events, two cities had extreme
precipitation events, and one city had extreme drought events, which was the year with the
most extreme climate events. In order of frequency, the five extreme events were: extreme
precipitation events (34%) > extreme drought events (24%) > extreme high temperature
events (18%) = extreme low temperature events (18%) > comprehensive extreme climate
events (6%).
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The frequency of extreme precipitation events is the highest, but as can be seen from
Figure 2, the frequency of extreme precipitation events was low before 2014, and extreme
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precipitation events began to occur frequently in 2015. The extreme drought events all
occurred between 2007 and 2018, and there was no such extreme climate in 2019–2021.
Although the frequency of extreme low temperature events and extreme high temperature
events is equal, the extreme low temperature events mostly occurred between 2007 and
2014 (79% of the total number of extreme low temperature events occurred during the
study period), and the extreme high temperature events mostly occurred after 2014 (60% of
the total number of extreme high temperature events occurred during the study period).
Through the above analysis, it can be concluded that the type of extreme climate occurring
in Sichuan Province gradually transitions from extreme drought to extreme precipitation,
and from extreme low temperature to extreme high temperature. These conclusions are
consistent with those of Wang et al. [62], Rush et al. [63], and Zhu et al. [64].

The statistical data of specific extreme climate events are shown in Tables 3–7. Due to
the large amount of data, only the statistical data of extreme climate events are listed. It can
be seen from Table 3 that in the past 15 years, the maximum and minimum rainfall values
occurred in Ya’an and Panzhihua, respectively, and the highest and lowest temperature
values occurred in Panzhihua and Tibetan Autonomous Prefecture of Garzê, respectively.

Table 3. The maximum, minimum, and average values of rainfall and temperature in 21 regions of
Sichuan Province.

City
Rainfall

(mm)
Temperature

(◦C)

Maximum Minimum Average Maximum Minimum Average

Aba Tibetan and Qiang
Autonomous Prefecture 1074.4 588.8 858.3 9.9 8.9 9.4

Bazhong 1728.7 863.1 1204.6 17.9 16.3 17.1
Chengdu 1343.3 610.9 972.2 16.9 15.9 16.5
Dazhou 1638.1 976.1 1271.4 18.6 17.3 17.9
Deyang 1650.6 711.0 963.2 17.9 16.0 16.9

Tibetan Autonomous
Prefecture of Garzê 994.9 712.9 847.1 8.4 7.1 7.9

Guang’an 1538.6 837.6 1144.7 18.3 17.2 17.6
Guangyuan 1485.1 895.4 1036.2 17.3 17.1 16.5

Leshan 1555.3 768.9 1226.7 18.8 17.2 18.1
Yi Autonomous

Prefecture of Liangshan 1284.3 558.2 1015.3 19.2 17.3 17.8
Luzhou 1443.7 765.0 1149.5 18.6 17.2 18.1
Meishan 1310.5 754.9 999.2 18.4 17.1 17.8

Mianyang 1367.0 545.5 911.7 18.1 16.5 17.3
Nanchong 1262.8 863.6 1095.4 18.9 17.4 17.9
Neijiang 1246.3 646.5 1000.9 18.6 17.1 17.9

Panzhihua 1053.4 537.7 759.7 22.6 20.5 21.3
Suining 1311.0 795.6 1024.5 18.2 16.8 17.6
Ya’an 2161.3 1833.6 1729.5 17.5 15.9 16.8
Yibin 1746.0 644.2 1078.8 19.3 17.5 18.4

Ziyang 1203.3 633.3 918.3 18.6 17.0 17.8
Zigong 1223.2 605.2 970.4 19.3 17.8 18.6

Table 4. Identification of extreme high temperature events.

Time City γ Time City γ Time City γ

2021 Panzhihua 1.24

2015

Suining 1.47 2015 Yibin 1.30

2013

Zigong 1.54 Leshan 1.29
2016

Dazhou 1.40
Guangyuan 2.39 Nanchong 2.27 Bazhong 1.57

Neijiang 1.63 Meishan 1.39
2019

Panzhihua 2.11

Nanchong 2.27 Bazhong 1.38 Yi Autonomous
Prefecture of Liangshan 2.69

Yibin 1.46 Ziyang 1.70
2021

Aba Tibetan and Qiang
Autonomous Prefecture 1.83

2015 Mianyang 1.42 Dazhou 1.26 Yi Autonomous
Prefecture of Liangshan 1.38
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Table 5. Identification of extreme precipitation events.

Time City γ Time City γ Time City γ

2007 Dazhou 1.25 2016 Yibin 2.30

2020

Meishan 1.78
2010 Ya’an 1.45 2017

Tibetan Autonomous
Prefecture of Garzê 1.33 Leshan 1.32

2012
Yi Autonomous

Prefecture of Liangshan 1.53 Guang’an 1.62 Yibin 2.30
Neijiang 1.21

2018

Mianyang 2.10

2021

Mianyang 1.53

2013

Chengdu 1.75 Deyang 2.89 Guangyuan 2.38
Zigong 1.41 Chengdu 1.31 Dazhou 1.65
Luzhou 1.41 Ya’an 1.73 Guang’an 1.82
Suining 2.01 Meishan 1.89 Nanchong 1.33

2014
Dazhou 1.37 Ziyang 1.74 Ya’an 1.42

Yi Autonomous
Prefecture of Liangshan 1.79

2019

Aba Tibetan and Qiang
Autonomous

Prefecture
1.59 Neijiang 1.27

2015
Panzhihua 2.22 Bazhong 2.05 Zigong 1.51

Tibetan Autonomous
Prefecture of Garzê 1.31 Ziyang 1.65 Bazhong 2.00

2016 Panzhihua 1.48 2020

Aba Tibetan and Qiang
Autonomous

Prefecture
1.34 /

Luzhou 1.30 Chengdu 1.21

Table 6. Identification of extreme low temperature event.

Time City γ Time City γ Time City γ

2007
Panzhihua −1.34

2010
Suining −1.49 2012 Luzhou −2.20

Yi Autonomous Prefecture of Liangshan −1.21 Meishan −1.22 2013 Panzhihua −1.51

2008
Zigong −1.24

2011

Deyang −1.76
2014

Chengdu −1.28
Neijiang −1.29 Mianyang −1.60 Ziyang −1.78
Dazhou −1.35 Meishan −1.46

2019
Guangyuan −1.26

2010
Chengdu −1.28 Ya’an −1.34 Yibin −1.90
Zigong −1.59

2012
Chengdu −1.63 Bazhong −1.37

Mianyang −1.22 Luzhou −2.20 2021 Bazhong −1.20

Table 7. Identification of extreme drought events.

Time City γ Time City γ Time City γ

2007

Chengdu −1.46 2010 Luzhou −1.56

2016

Mianyang −1.69
Leshan −1.24 Deyang −1.51 Guangyuan −1.34

Meishan −1.48

2011

Zigong −2.18 Nanchong −1.47
Ziyang −1.74 Panzhihua −1.68 Bazhong −1.33

2008 Chengdu −1.46 Neijiang −1.83

2017

Leshan −1.52
Leshan −1.24 Leshan −1.84 Neijiang −1.71

2009
Meishan −1.48

2012
Chengdu −1.70 Ziyang −1.53

Ziyang −1.74 Guang’an −1.99 Suining −1.61
Chengdu −1.46 Guangyuan −1.31 2018 Dazhou −1.33

2010 Leshan −1.24 2015 Ya’an −1.36 /

3.1.2. Characteristics of the Spatial Distribution of Extreme Climate Events

From the extreme climate identification in Tables 4–7, it can be seen that Chengdu
and Panzhihua experienced eight extreme climate events; Dazhou, Neijiang and Zigong
experienced seven extreme climate events; Bazhong, Guangyuan, Meishan, Mianyang and
Ziyang experienced six extreme climate events; Leshan, Liangshan Yi Autonomous Pre-
fecture, Nanchong, Ya’an and Yibin experienced five extreme climate events; Aba Tibetan
and Qiang Autonomous Prefecture, Guang’an, Luzhou and Suining have experienced four
extreme climate events; and Tibetan Autonomous Prefecture of Garzê and Deyang have
experienced three extreme climate events.

With the approval of the Sichuan government, administrative districts of some towns
in Sichuan Province were adjusted in 2015. Therefore, when studying the spatial distri-
bution characteristics of extreme climate events, the research interval was adjusted to
2015–2021. The boundary data of administrative divisions of Sichuan Province during
2015–2021 came from the Resources and Environmental Science Data Registration and
Publication system [65]. The spatial characteristics of extreme climate events in the past
seven years are analyzed below, and the specific distribution is shown in Figure 3.
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As can be seen from Figure 3, extreme precipitation events basically occur in the whole
region of Sichuan Province without obvious spatial distribution characteristics. Extreme
drought events mostly occur in the northern and central regions of Sichuan Province,
extreme high temperature events mostly occur in the western, central, and eastern regions
of Sichuan province, and extreme low temperature events occur at a low frequency, only in
Guangyuan, Bazhong and Suining. In the past seven years, three comprehensive extreme
climate events have occurred, all of which occurred in Bazhong, namely, the comprehensive
extreme climate of high temperature and drought in 2016, the comprehensive extreme
climate of low temperature and precipitation in 2019 and 2021. The average annual temper-
ature of Bazhong City in 2016 was 17.9 ◦C, 5% higher than the annual average temperature.
The annual rainfall is 863.1 mm, 28% lower than the annual average rainfall, and the rainfall
in 2019 and 2021 is 1728.7 mm and 1716.6 mm, respectively, 44% and 43% higher than the
annual average rainfall.

3.2. Distributional Characteristics of Extreme Climate Events

According to the calculation method of coupling coordination degree mentioned above,
the coupling coordination degree of the water resource–climate system in 21 districts of
Sichuan Province from 2015 to 2021 was calculated, and the calculation results are shown
in Figure 4.
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In recent 7 years, the coupling coordination degree of Sichuan Province fluctuated
between serious imbalance and good coordination, and the fluctuation range was large, but
most of the coupling coordination levels were between mild imbalance and intermediate
coordination. In 2016, the coupling coordination degree of Yibin was 0.13, which was
in a serious imbalance state. The coupling coordination degree values of Leshan (2017),
Neijiang (2017), Ziyang (2018) and Dazhou (2019) are 0.26, the coupling coordination degree
values of Ya’an (2017) and Yibin (2019) are 0.27, the coupling coordination degree values
of Aba Tibetan and Qiang Autonomous Prefecture (2019), Guangyuan (2019) and Ya’an
(2021) are 0.21, 0.25 and 0.29, respectively, and the above 9 regions are in the moderate
imbalance level. The coupling coordination degree values of Guang’an (2019), Ya’an (2020)
and Nanchong (2017) are 0.81, 0.81, and 0.82, respectively, and these three cities are in good
coordination level.
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Province, 2015–2021.

Combined with Figure 3, it is found that the coupling coordination levels of the
regions where extreme climate events occur are all low, and most of the evaluation levels
are between a moderate imbalance and barely coordinated. Among them, 13% of the
regions fall under moderate imbalance, 34% under mild imbalance, 25% under imminent
imbalance, and 15% under barely coordinated. Only Yibin had a serious imbalance level
in 2016. Extreme precipitation weather occurred in this year. The γ of rainfall in this
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year was 2.3, which was a very extreme precipitation year, so the coupling coordination
degree was at the lowest value. The evaluation levels of 11% of the regions are in primary
coordination and intermediate coordination, among which Bazhong City in 2021 has a
comprehensive extreme climate of precipitation and low temperature, the γ of rainfall
in this year is 2.0, and the γ of temperature is −1.2. In the case that the two factors
are not in line with the values of normal years, the coupling degree of the two extreme
data is relatively high, thus it had a high evaluation grade. Therefore, when there are
multiple attributes or multiple dimensional factors in an evaluation system, the evaluation
of coupling coordination degree should be comprehensively considered. It is not that the
higher the value of coupling coordination degree, the better the level of comprehensive
development of a region.

3.3. Calculation of Coupling Coordination Degree of the Water Resource System

Without considering the influence of climate on the water resource system, the cou-
pling coordination degree of a single water resource system is calculated, and the results
are shown in Figure 5.
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As seen in Figure 5, in recent 7 years, 7 cities were at a good coordination level, 41 cities
were at an intermediate coordination level, 52 cities were at a primary coordination level,
31 cities were at a barely coordinated level, 9 cities were at an imminent imbalance level,
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3 cities were at a mild imbalance level, and 4 cities were at a moderate imbalance level.
There were no cities at the extreme imbalance, serious imbalance, and quality coordination
levels. Compared with the water resource–climate system, the number of cities in good
coordination level increased by 4, the number of cities in intermediate coordination level
increased by 24, the number of cities in primary coordination level increased by 35, the
number of cities in barely coordination level decreased by 12, the number of cities in
imminent imbalance level decreased by 24, and the number of cities in mild imbalance
level decreased by 21. The number of cities in the moderate imbalance level is reduced by 5,
the number in the serious imbalance level is reduced by 1, the coupling coordination level
was greatly improved, and the level distribution was more concentrated.

3.4. Impact of Climatic Factors on the Water Resource System

According to the above analysis, it has been known that the coupling coordination
degree of the water resource system shows an overall upward trend without considering
the influence of climate factors. Therefore, this paper only selects data with a positive
difference value for analysis, that is, the coupling coordination degree of a single water
resource system is greater than that of the water resource–climate system. The impact
degree of climate factors on water resources was characterized by the difference of the
coupling coordination degree of the two systems, and the difference was denoted as ∆D.
In other words, the larger the ∆D, the greater the degree of climate influence on water
resource system; The smaller the ∆D, the less the degree of climate influence on the water
resource system.

3.4.1. Impact of Precipitation on the Water Resource System

When analyzing the influence of rainfall on water resource system, we found that the
variation range of rainfall was large, so the logarithmic processing of rainfall was carried
out to make the data series more stable. The calculation formula is as follows:

Y = ln x, (18)

In the above formula, Y is the amount of rainfall after logarithmic transformation, and
x is the amount of rainfall during extreme precipitation or extreme drought events.

We fit Y and ∆D. When R2 > 0.8 of the curve is fitted, we believe that the curve
can represent the relationship between Y and ∆D. The specific results are shown in
Figures 6 and 7.

Effects of Extreme Precipitation Events on the Water Resource Systems

As shown in Figure 6, when extreme precipitation events occur, Y and ∆D present a
cubic polynomial relationship (R2 = 0.848).

When the rainfall ranges from 789.7 to 916.0 mm, ∆D shows a downward trend with
the increase in rainfall; that is, the greater the rainfall, the smaller the impact on the water
resource system. The impact effect is that the rainfall increases by 1000 mm and the coupling
coordination degree of the water resource system decreases by 0.48. When the rainfall
ranges from 916.0 to 1958.6 mm, the ∆D shows an upward trend with the increase in
rainfall; that is, the greater the rainfall, the greater the impact on the water resource system.
The impact effect is that the rainfall increases by 1000 mm and the coupling coordination
degree of the water resource system decreases by 0.11, which is consistent with the views of
Srinivasan et al. [66]. They believe that increased rainfall will lead to a negative impact on
agricultural production, resulting in increased pressure on agricultural water use. When the
rainfall ranges from 1958.6 to 2161.3 mm, ∆D shows a downward trend with the increase in
rainfall; that is, the greater the rainfall, the smaller the impact on the water resource system.
The impact effect is to increase the rainfall by 1000 mm, and the coupling coordination
degree of the water resource system decreases by 0.10.
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Effects of Extreme Drought Events on the Water Resource Systems

As shown in Figure 7, when extreme drought events occurred, Y and ∆D presented a
quadratic polynomial relationship (R2 = 0.847).
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Figure 7. The influence curve of rainfall of extreme drought events on the water resource system.

When the rainfall is between 668.9 and 972.6 mm, ∆D shows an upward trend with
the decrease in rainfall; that is, the smaller the rainfall, the greater the impact on the water
resource system. The impact effect is that the rainfall decreases by 1000 mm and the cou-
pling coordination degree of the water resource system decreases by 0.96. When the rainfall
ranges from 972.6 to 1394.1 mm, ∆D shows a downward trend with the decrease in rainfall;
that is, the smaller the rainfall, the smaller the impact on the water resource system. The
impact effect is that every 1000 mm decrease in rainfall, the coupling coordination degree
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of the water resource system decreases by 0.55, which is consistent with the conclusion of
Aparicio et al. [67].

3.4.2. The Effect of Temperature on the Water Resource System

In the process of analyzing the influence of temperature on water resource system,
we found that the change of temperature was relatively stable, and the temperature when
extreme high temperature climate event or extreme low temperature climate event occurs
is denoted as T. We fit T and ∆D. When R2 > 0.8 of the curve is fitted, we believe that the
curve can represent the relationship between T and D. The specific results are shown in
Figures 8 and 9.

Impacts of Extreme High Temperature Events on the Water Resource Systems

As shown in Figure 8, when extreme high temperature events occur, the relationship
between T and ∆D is quadratic polynomial (R2 = 0.929).
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Figure 8. The influence curve of temperature on the water resource system under extreme high
temperature events.

When the temperature is between 17.80 ◦C and 18.65 ◦C, ∆D shows a downward
trend with the increase in temperature; that is, the higher the temperature, the smaller the
impact on the water resource system. The impact effect is that the temperature increases
by 1 ◦C, and the coupling coordination degree of the water resource system decreases by
0.14. When the temperature is between 18.65 ◦C and 19.18 ◦C, ∆D shows an upward trend
with the increase in temperature; that is, the higher the temperature, the greater the impact
on the water resource system. The impact effect is that the temperature rises by 1 ◦C, and
the coupling coordination degree of the water resource system decreases by 0.072, which
is consistent with the conclusion of Zhu et al. [68], who believe that under the condition
of global warming. The water shortage situation in China’s nine water-scarce cities will
further worsen.

Effects of Extreme Low Temperature Events on the Water Resource Systems

As shown in Figure 9, when extreme low temperature events occur, the relationship
between T and ∆D presents a quadratic polynomial (R2 = 0.869).
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Figure 9. The influence curve of temperature on the water resource system under extreme low
temperature events.

When the temperature is between 17.33 ◦C and 17.48 ◦C, ∆D shows an upward trend
with the decrease in temperature; that is, the lower the temperature, the greater the impact
on the water resource system. The impact effect is that the temperature decreases by 1 ◦C
and the coupling coordination degree of the water resource system decreases by 0.45. When
the temperature is between 17.48 ◦C and 17.70 ◦C, ∆D shows a downward trend with the
decrease in temperature; that is, the lower the temperature, the smaller the impact on the
water resource system. The impact effect is that the temperature decreases by 1 ◦C and the
coupling coordination degree of the water resource system decreases by 0.22.

3.4.3. Comprehensive Effects of Precipitation and Temperature on the Water Resource System

In extreme precipitation (high temperature) events, the end with large rainfall (temper-
ature) is named as the extreme climate end, and the end with small rainfall (temperature) is
named as the mild climate end. In extreme drought (low temperature) events, the end with
small rainfall (temperature) is named as the extreme climate end, and the end with large
rainfall (temperature) is named as the moderate climate end. In the analysis of the impact
of precipitation on water resource system, it is found as follows: the extreme climate end
of the fitted curve (Figures 6 and 7) has a greater impact on water resources than the mild
climate end. The effect of temperature on water resource system is analyzed as follows:
the extreme climate end of the fitted curve (Figures 8 and 9) has less impact on the water
resource system than the mild climate end.

Based on the above two findings, we can draw the following conclusion; that is, when
comprehensive extreme climate events occur in a certain region, one climatic factor is at the
extreme climate end and the other is at the mild climate end, the coupling coordination
level of the city may be high, which is consistent with the conclusion of Zhang et al. [69].
This explains the reason why the coupling coordination degree is still high in Bazhong City
in 2021 when the comprehensive extreme climate of extreme precipitation and extreme low
temperature occurs, and also shows once again that the process of evaluating the coupling
coordination degree of a certain region should be viewed from a comprehensive perspective.

3.5. Study Limitations

For the analysis of the impact of the above climate factors on the water resource system,
this paper has the following two limitations:
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(1) This paper considers only the case where ∆D is positive. By comparing the coupling
coordination degree levels of the two systems, it is found that ∆D is negative in only
a few areas. Through the analysis of these negative data, the main reason for this
occurrence is caused by human activities and urbanization, so this part of data is not
included in the analysis.

(2) Due to the limited data acquisition, the conclusions obtained in this paper are suitable
for short-term analysis, and it is not suitable to apply the conclusions to long-term
future prediction.

4. Discussion

The results show that the water resource system of Sichuan Province is affected by
extreme climate factors, and the coupling coordination degree of the water resource system
is low when extreme climate events occur, which means that extreme climate factors will
reduce the stability of the water resource system. This conclusion is consistent with the
research results of Wubneh et al. [70], Sharan et al. [71] and Rankoana [72]. However, these
scholars have described qualitatively the impact of extreme climate on water resource
system, while this paper describes quantitatively the impact of extreme climate on water
resource system. When calculating the coupling coordination degree, IFAHP and the
improved CRITIC are used to determine the index weight, which increases the rationality
and scientificity of system weighting compared with the original AHP [73] and CRITIC [74].

In the process of analyzing the coupling coordination degree, we find that when
one factor is in the extreme climate and the other is in the mild climate, we may get
a high coupling coordination level, which may be caused by the mutual influence of
extreme climate factors. In previous studies [14–16], some scholars have suggested that
extreme precipitation and high temperature waves are mutually promoting, and extreme
precipitation generally occurs after high temperature heat wave events. Whether the
interaction between extreme climate is the cause of the occurrence of comprehensive
extreme climate events, and whether the effect of comprehensive extreme weather on the
water resource system is stronger than that of a single extreme climate on the water resource
system are questions that we should study and solve in the future.

In the selection of climate subsystem indicators, this paper mainly considers rain-
fall and temperature, and lacks the selection of other meteorological indicators (such as
pressure, wind speed, wind direction, sunshine duration, solar radiation, etc.). Due to the
limitation of data acquisition, the research period of this paper is short, and the identifica-
tion of extreme climate events is not rich enough. In the future research will continue to
improve the above deficiencies.

5. Conclusions

Extreme climate events occur more and more frequently around the world, so it is very
necessary to study the impact mechanism of extreme climate on the water resource system.
This paper identified the extreme climate events in Sichuan Province from 2007 to 2021,
and studied the coupling coordination degree of the water resource–climate system and
water resource system in Sichuan Province from 2015 to 2021. Based on the difference of
the coupling coordination degree of the two systems, the effects of rainfall and temperature
on the water resource system were investigated. The conclusions are as follows:

(1) The five types of extreme events in Sichuan Province are listed in the order of frequency
from large to small: extreme precipitation events > extreme drought events > extreme
high temperature events = extreme low temperature events > comprehensive extreme
climate events, and the extreme climate types of Sichuan Province in recent years have
gradually transited from extreme drought to extreme precipitation, and from extreme
low temperature to extreme high temperature.

(2) In the past 15 years, Chengdu and Meishan are the cities with the most extreme
climate events, while Deyang City and Tibetan Autonomous Prefecture of Garzê
are the cities with the least extreme climate events. From 2015 to 2021, extreme
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precipitation events basically spread throughout Sichuan Province, extreme drought
events mostly occurred in the northern and central parts of Sichuan Province, extreme
high temperature events mostly occurred in the western, central and eastern parts of
Sichuan Province, and extreme low temperature events only occurred in Guangyuan,
Bazhong and Suining.

(3) In recent 7 years, the coupling coordination degree of Sichuan Province was between
serious imbalance and good coordination, among which the lowest coordination level
occurred in Yibin City in 2016, and the highest coordination level occurred in Nan-
chong City in 2017, but most of the coupling coordination levels were between mild
imbalance and intermediate coordination. The coupling coordination levels of the
regions where extreme climate events occurred were all low, the lowest coordination
level occurred in Yibin in 2016, where extreme precipitation events occurred, and
the highest coordination level occurred in Bazhong in 2021, where the combined
extreme climate events of extreme low temperature and extreme precipitation oc-
curred, and most of the evaluation levels were between moderate imbalance and
barely coordination.

(4) The climatic factors of extreme drought, extreme high temperature and extreme low
temperature are all related to ∆D quadratic polynomial, and only the rainfall of
extreme precipitation events is related to ∆D cubic polynomial. When one climate
factor is at the extreme end of the climate and the other is at the moderate end of the
climate, a high coupling coordination level may be obtained, which explains the high
coupling coordination level of Bazhong City where comprehensive extreme climate
occurs in the previous conclusion.
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