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Abstract: Understanding climate change and land use impacts is crucial for mitigating environmental
degradation. This study assesses the environmental vulnerability of the Doce River Basin for 2050,
considering future climate change and land use and land cover (LULC) scenarios. Factors including
slope, elevation, relief dissection, precipitation, temperature, pedology, geology, urban distance,
road distance, and LULC were evaluated using multicriteria analysis. Regional climate models
Eta-HadGEM2-ES and Eta-MIROC5 under RCP 4.5 and RCP 8.5 emission scenarios were employed.
The Land Change Modeler tool simulated 2050 LULC changes and hypothetical reforestation of
legal reserve (RL) areas. Combining two climate and two LULC scenarios resulted in four future
vulnerability scenarios. Projections indicate an over 300 mm reduction in average annual precipitation
and an up to 2 ◦C temperature increase from 2020 to 2050. Scenario 4 (RCP 8.5 and LULC for 2050
with reforested RLs) showed the greatest basin area in the lowest vulnerability classes, while scenario
3 (RCP 4.5 and LULC for 2050) exhibited more high-vulnerability areas. Despite the projected relative
improvement in environmental vulnerability by 2050 due to reduced rainfall, the complexity of
associated relationships must be considered. These results contribute to mitigating environmental
damage and adapting to future climatic conditions in the Doce River Basin.

Keywords: climate change; bias correction; prediction of land use; environmental degradation;
multicriteria analysis; future scenarios

1. Introduction

The intensification of anthropogenic activities without planning and consideration of
environmental susceptibility negatively impacts natural systems and can lead to irreversible
environmental changes that compromise their recovery capacity [1–3]. Environmental
vulnerability becomes a fundamental tool to understand the environmental conditions of a
location and contribute to its sustainable planning and management [4–6]. Vulnerability
is associated with the susceptibility of a system to suffering damage due to stressors [7].
However, it is a complex concept and can be understood in different ways depending
on the area of knowledge it is related to [8]. In this study, we define environmental
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vulnerability as the susceptibility of the system to environmental degradation [9]. This type
of assessment helps us to understand the effects of natural and anthropogenic activities and
provides information for implementing policies to mitigate damage in the most vulnerable
areas [1,10,11].

Several studies have been conducted to develop indices and descriptive approaches
for spatially analyzing the vulnerability of environments in areas of varying extents and
under various environmental and social pressures [1,10,12]. For example, ref. [5] assessed
the environmental vulnerability of a large-scale arid region in China; ref. [10] estimated
vulnerability in the Cerrado, an area impacted by agricultural expansion; ref. [13] developed
a model to assess environmental vulnerability related to flooding; ref. [14] conducted
vulnerability studies in Brazilian Amazon Indigenous Lands and assessed environmental
vulnerability at a global level. However, few authors consider different future climate
change scenarios, generally employ global climate models, and do not evaluate more than
one land use and cover projection scenario [6,15,16]. Assessments utilizing regional climate
models and considering land use and land cover scenarios are essential for anticipating
impacts and developing medium- and long-term adaptations and actions to reduce hazards.

Considering climate change, mainly changes in the meteorological parameters of
precipitation and temperature, is essential. According to the Sixth Assessment Report
of the Intergovernmental Panel on Climate Change (AR6), the temperature of the global
land surface will rise by at least 1.5 ◦C by the middle of this century in all scenarios [17].
Furthermore, there is evidence of changes in precipitation patterns, intensifying extreme
events such as drought, floods, and large forest fires. These alterations have the potential
to significantly impact environmental vulnerability, as climate change acts as a driving
factor [10].

Changes in temperature and precipitation parameters can also exacerbate soil degra-
dation through an interaction of several factors [18,19]. The increase in global temperature
increases the water retention capacity in the atmosphere, changing the hydrological cycle
through changes in precipitation including total precipitation, distribution, or frequency,
speeding the decomposition of organic matter, changing soil moisture, interfering with
agricultural practices and land use, and affecting surface runoff [18–21].

The analysis was performed in the Doce River basin, Brazil, which has historically
suffered from deforestation, degraded pastures, high rates of erosion, and water contami-
nation due to the discharge of effluents [9,22,23]. Furthermore, in 2015, the basin suffered
one of the main environmental disasters in Brazil with the collapse of the Fundão mining
tailings dam. The release of tailings caused the contamination of more than 660 km of water
bodies and the loss of 1469 hectares of land surface, in addition to other environmental and
socioeconomic damages [24]. Recently, [9] assessed the environmental vulnerability of the
Doce River watershed under current conditions and estimated that approximately 36% of
the basin’s lands are in the highest degrees of vulnerability. Thus, given the relevance of
the study area, it is also necessary to understand the future vulnerability conditions of the
basin. By predicting the behavior of natural and anthropogenic variables and simulating
future scenarios, actions can be anticipated and policies and resources can be implemented
more appropriately.

In this study, we utilized GIS-MCDA (Multicriteria Decision Analysis and Geographic
Information Systems), employing various environmental information as input data, such
as climatic factors (precipitation and temperature), relief (slope, elevation, and relief dissec-
tion), pedology, geology, and anthropogenic factors (distance from roads, distance from
cities, and land use and land cover (LULC)), to evaluate the future environmental vulnera-
bility of the Doce River Basin. Additionally, we considered two future IPCC scenarios of
climate change (RCP 4.5 and RCP 8.5) and two scenarios of LULC (LULC projections for
2050 and hypothetical situations for reforesting preservation areas). The novelty of this
study lies in (1) evaluating the environmental vulnerability for future scenarios focused
on the susceptibility of this system to environmental degradation, as many studies only
analyze climatic vulnerability; (2) using regional models which are more representative



Water 2024, 16, 1459 3 of 21

of global climatic models; and (3) evaluating environmental vulnerability considering
the projection of LULC scenarios for 2050, taking into account the projections of changes
in LULC and reforesting the legal areas of vegetation according to the Brazilian Forest
Code [25].

Thus, this work aimed to evaluate the environmental vulnerability in the Doce River
basin, Brazil, for the year 2050, considering future scenarios of both climate change and
land use and land cover. The prediction of LULC for future situations can be an efficient
tool for creating management strategies for soil and water conservation. Also, integration
with climate projections can make environmental modeling even more realistic, given that
soil degradation by erosion is also affected by climate change.

2. Materials and Methods
2.1. Study Area

The Doce River Basin (Figure 1) is in the southeastern region of Brazil and covers part
of the states of Minas Gerais (86%) and Espírito Santo (14%) with a total drainage area of
approximately 86,715 km2 [26].

Figure 1. Location map of the study area (a) highlighting the Doce River Basin in Brazil and (b) the
Doce River Basin’s main river and elevation.

The original vegetation of the basin consisted of the Atlantic Forest biome (98%) and
the Cerrado biome. These biomes are under intense threat from agricultural activities [27],
with around 63% of the two biomes occupied by agriculture and livestock [28]. Currently,
the Atlantic Forest has only 12.4% of its original vegetation [29].

The Doce River Basin supplies water to an estimated population of 3.5 million inhabi-
tants in 228 municipalities [26]. In addition to its use for urban supply, it is used in mining,
agriculture, power generation, and industry. Despite its importance, the basin has suffered
impacts on its water quality and quantity as a result of widespread historical deforestation
and inappropriate land use [22]. The forest remnants are restricted mainly to the steep
regions of the basin. The pastures, overall, have some degree of degradation, rendering
them more susceptible to erosion [30]. There is also evidence of water degradation due to
urban areas releasing effluents [23].

In November 2015, the basin was the scene of one of the worst environmental disasters
in Brazil, the rupture of the Fundão tailings dam, in Mariana, which released an estimated
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volume of 43 million m3 of mining tailings [31,32]. This accident impacted several water
bodies and the environment, such as the destruction of native vegetation; damage to areas
intended for agriculture and pasture; silting up water bodies; damage to hydroelectric
plants; fish kills; and water contamination by ores, heavy metals, and toxic chemicals,
among others [30,33,34].

2.2. Gathering and Processing Data

The methodology used the interaction between natural factors (precipitation, tem-
perature, slope, elevation, relief dissection, pedology, and geology) and factors related to
anthropogenic activities (distance from cities and roads, and LULC) through the Multicri-
teria Decision Analysis and Geographic Information Systems (GIS-MCDA) to determine
scenarios of environmental vulnerability for the Doce River Basin for the year 2050. Figure 2
shows the methodology adopted in this study.

Figure 2. Methodology applied in this work. AHP: Hierarchical Process Analysis; EVI: environ-
mental vulnerability index; GIS: Geographic Information System; LCM: Land Change Modeler;
WLC: Weighted Linear Combination.

The factors used in this study were based on the literature [5,6,9,12,35], aspects of the
basin, and the availability of information. The modeling considered the variables of slope,
elevation, relief dissection, pedology, and geology as being intrinsic to the area since they
do not change over time. However, precipitation, temperature, and LULC data change
over the years. As a result, they were simulated for future conditions.

The DEM (Digital Elevation Model) was obtained from the Shuttle Radar Topography
Mission (SRTM) project with a spatial resolution of 30 m. The slope was generated from
the Hydrographically Conditioned Digital Elevation Model (HCDEM) with the aid of
ArcGIS 10.5/ArcMap® software. Mountainous regions with slopes greater than 45% were
considered more vulnerable to degradation by erosive processes, as utilized by [9].

Relief dissection was developed according to the assumptions of [36], using the DEM.
This factor assesses the morphometry of the terrain by the degree of notching of the valleys
and the average interfluvial dimension; the steeper and deeper the landscape, the greater
the vulnerability [36].

Pedology [37] and geology [38] vector information was extracted from the Brazilian
Institute of Geography and Statistics (IBGE) at 1:250:000 scale. Pedology enables the
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identification of soil groups that are more susceptible to physical processes, such as erosion,
based on properties like texture, structure, cohesion, and depth [39]. Geology identifies the
cohesion of minerals and their resistance to weathering and erosion [40].

The Euclidean distance of urban infrastructure areas was calculated based on the
future LULC mapping for the year 2050, as detailed below. And the road distance factor
was obtained from cartographic road data from the IBGE for the year 2021 [41], considering
the smallest variation in this factor until the year 2050. The removal of vegetation cover
for road construction and urban expansion reduces the soil’s water infiltration capacity,
increasing surface runoff and soil losses [42].

Changes in climate patterns can significantly impact the dynamics of the environment
and its vulnerability [10]. This can occur due to the interaction of various factors such as
changes in the hydrological cycle, influence on soil moisture, decomposition of organic
matter, agricultural practices, vegetation cover, surface runoff, and soil erosion.

To model the climate data, the variables of total monthly precipitation and air temper-
ature at 2 m above ground level were used as data from the regionalized climate models
Eta-HadGEM2-ES and Eta-MIROC5, made available for South America by the Projeta
platform (http://projeta.cptec.inpe.br/ (accessed on 25 June 2020)) of the National In-
stitute for Space Research-INPE, with an approximate spatial resolution of 20 km [43].
These products are derived from two global models: the British Hadley Center Global
Environmental Model 2-HadGEM2-ES [44] and the Japanese Model for Interdisciplinary
Research on Climate—MIROC5 [45]. The Eta downscaling procedure is described in [46,47]
based on [48].

For both models, the pessimistic scenario (RCP 8.5) and the intermediate scenario
(RCP 4.5) of concentration of greenhouse gasses were analyzed, according to the climate
change projections of the Intergovernmental Panel on Climate Change—IPCC [49]. The
first, RCP 8.5, assumes that additional radiative forcing reaches more than 8.5 Wm−2, with
CO2 concentrations of about 550 ppm in the year 2050; in RCP 4.5, the radiative forcings
are approximately 4.5 Wm−2, with CO2 concentrations around 480 ppm [50].

Monthly data on precipitation and temperature were acquired for the base period,
2020–2050, for the two scenarios considered. On the Projeta platform, historical control
data of the climate models were acquired for the years 1980 to 2005 to evaluate the data of
the simulated models with the data derived from observations. The latter were obtained
from the meteorological database developed by [51] available at http://careyking.com/
data-downloads/ (accessed on 2 September 2020). It is a set of interpolated data based on
observed data for all of Brazil from 1980 to 2013, with a spatial resolution of 0.25◦ by 0.25◦.
It has been widely used in several studies [52–54].

Due to the difference in the spatial resolutions between the climate models and the
observed database, the climate information was resampled to a common 0.2◦ grid using
the bilinear interpolation method, as employed in [55]. Then, in the development of the
environmental vulnerability index (EVI), all input data were standardized to the same
spatial resolution of 30 m.

In addition to the individual data of the models, the result of the Ensemble, which
consists of the average precipitation and temperature data of the two climate models
considered (Eta-HadGEM2-ES and Eta-MIROC5), was also assessed. According to [56],
this is important to avoid the particularities of a specific climate model, as it is also used to
integrate a quantity of analyzed data.

Finally, all climate data that were used in the study of environmental vulnerability were
aggregated on an annual basis, relative to the average for the period 2020–2050, considering
the average annual precipitation and the average annual temperature to incorporate the
influence of precipitation and temperature in modeling [10,12,57].

Modeling future scenarios of LULC required data from the past. Observed maps of
three years of LULC (2000, 2019, and 2020) obtained from the MapBiomas Project, collection
6.0 [28], were used. The images are available with a spatial resolution of 30m and were
extracted for the study area through the GEE platform [58] and reclassified (forest, non-
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forest natural formation, farming, non-vegetated area, urban area, rocky outcrop, mining
and water) as shown in the Supplementary Materials (Table S1).

To analyze future environmental vulnerability, all data had to be on the same scale [59,60].
Thus, all variables were standardized on a common scale from 0 to 255. For data considered
continuous, the fuzzy linear function was used to perform this conversion. The control
points of the fuzzy functions were adapted from [9] and can be verified in the Supplementary
Materials (Table S2).

The categorical variables were classified into classes ranging from very low vulnerabil-
ity to very high vulnerability (value 255), adapted from [9], available in the Supplementary
Materials (Table S3). The hierarchical levels for the pedology and geology factors were
determined according to the assumptions of [39,40]; relief dissection was based on [36]; and
the LULC was categorized based on the level of soil protection indicated by the vegetation
cover [12]. The vulnerability of the water body class was considered null [61].

2.3. Correction of Climate Model Bias

Bias correction of the regional climate models was performed with data on total
monthly precipitation and monthly average temperature for the simulated future period
from 2020 to 2050 and the model’s control period from 1980 to 2005 with monthly observed
data [51] referring to the same historical period. All climate data were processed using the
R coding language (version 4.1.1). The bias correction was developed with the aid of the
hyfo package [62].

Three methods to correct bias were used for precipitation and two methods for tem-
perature. Using the linear scaling method (LS), precipitation was corrected with a multi-
plicative correction factor, which consists of the ratio between the long-term average of
observed data and model control data. The temperature was corrected with an additive
factor, the difference between the observed long-term monthly average and the historical
control [63].

The empirical quantile mapping (EQM) method corrects the distribution of simulated
data so that they correspond to the same behavior of observed data, using empirical
cumulative distribution functions (CDFs) [64,65]. This technique was used to correct
precipitation and temperature bias. Gamma quantile mapping (GQM) is similar to EQM;
however, it uses the Gamma distribution to represent the cumulative distribution function.
GQM was only used to correct precipitation [66,67].

To evaluate the methods, the monthly observed and simulated control data were
divided into two samples: a calibration period and a validation period, as used by [55].
Using the Biascorrect function from the R hyfo package, the set of data related to the
observations and control of the models was inserted, both for the same calibration period
(1980–2000), being used to adjust the validation period (2001–2005). The data relating to
the climate models used for the development of future environmental vulnerability had
their bias corrected using the complete data series (1980–2005).

The performance was evaluated using the R software, version 4.1.1, through the
hydroGOF package [68]. The used metrics were Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), Percentage of Bias (PBIAS), the Nash–Sutcliffe coefficient (NSE), the
Willmot agreement index (d), correlation coefficient (r), determination coefficient (R2), and
the Kling–Gupta coefficient (KGE). Graphically, the performance of the climate models was
presented by the Taylor diagram [69], which shows the RMSE, standard deviation (SD),
and correlation coefficient (r).

2.4. Land Change Modeler (LCM)

To simulate the LULC for future conditions, the Land Change Modeler (LCM) module
integrated with the TerrSet software version 19.0.2 was used [70]. The LCM constitutes a
set of tools based on historical data, maps of transition potentials, and the Markov chain
that allows projections of the LULC for the future to be made [71].
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A Multi-Layer Perceptron (MLP) neural network was used to develop transition
potential maps, given its good performance when modeling complex and non-linear
relationships of changes in land use and land cover [72]. The MLP was generated with
the help of the explanatory variables (elevation, slope, Euclidean distance from cities,
agricultural areas, roads, and hydrography) as well as the LULC change map between 2000
and 2019. These variables have been frequently used in the literature for modeling land
use and land cover [73–76].

Later, the Markov chain was applied to determine the amount of change (probability
of change) that will occur on a given specific date and generate the predicted land use [70].
Thus, based on the LULC modifications observed for the years 2000 and 2019, modeling
was carried out for the year 2020, validating it with the map provided by MapBiomas for
this same year by the Kappa index, available in the CrossTab function of TerrSet2000. Based
on the projection of changes, the LULC map was developed for the year 2050.

To assess the most critical situation, mainly due to the possible future degradation of
the LULC of the Doce River Basin, the land use transitions that resulted in the deterioration
of the conservation status of the previously occupied class were modeled, assuming the
intensification of use. Thus, for instance, the expansion of agricultural areas into forest
areas was included in the LCM sub-model as transformations from agricultural areas
to non-vegetated or urban areas and transitions from forests to non-vegetated areas or
non-forest formations.

The current Brazilian Forest Code, introduced by Law 12.651/2012 [25], establishes that
every rural property must maintain a percentage of its area covered by native vegetation,
declared as a Legal Reserve (RL). Thus, RL areas were included in our future land use
scenarios, considering (1) evaluating the behavior of the RL areas, assuming that the
legislation will not be effectively complied with by 2050, and (2) evaluating a hypothetical
future situation, in which it was considered that by the year 2050, there will be full respect
for the legal reserve areas established by law. Therefore, the reforestation of the RLs in
the Doce River Basin was simulated, verifying how this could impact the modeling of the
area’s future environmental vulnerability. Vector data of the RLs declared for the study
area were obtained from the National Rural Environmental Registry System—SICAR [77].

2.5. Current Scenario

The current scenario refers to the current situation of the vulnerability of the basin and
was simulated to serve as a baseline for the proposed future scenarios. For its development,
the same variables described above were used; however, it differed by adopting the LULC
for the year 2020, obtained from the MapBiomas Project, collection 6.0 [28]; using the
distance from urban centers for the year 2020; and considering the series of average annual
data on precipitation and temperature from 1990 to 2020, acquired from [78].

2.6. Environmental Vulnerability Index

To develop the EVI, a paired comparison was carried out between the variables using
the Hierarchical Analysis Processes (AHPs), developed by [79], which facilitates ranking
and attributing weight to the variables. It is widely used in environmental studies [35,80,81].

The AHP was conducted using the Saaty scale [82] based on the opinions of ten experts.
Furthermore, the consistency (CR—Consistency Ratio) generated in the paired comparison
was determined. Values of CR ≤ 0.1 indicate good consistency and values of CR > 0.1
indicate that the judgments made in the paired comparison should be revised [82].

The individual weights were combined using the geometric mean. This method has
been frequently used in the literature as it enables more adequate results in aggregating
collective preferences [83–85]. Afterward, the weights were standardized to ensure that the
total sum of the criteria’s final weights equaled 1.

To create the environmental vulnerability map, the Weighted Linear Combination
(WLC) was used. It is a technique that made it possible to combine the factors used with
their corresponding scores employing a weighted average [86].
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Thus, considering the combination of two scenarios for the variables, precipitation
and temperature (intermediate RCP 4.5 and pessimistic RCP 8.5), and the two future LULC
mappings (the year 2050 and year 2050 with reforested RLs), four future EVI scenarios
were simulated: scenario 1 (RCP 8.5 for precipitation and temperature; LULC for the
year 2050), scenario 2 (RCP 4.5 for precipitation and temperature; LULC for the year 2050
with reforested RLs), scenario 3 (RCP 4.5 for precipitation and temperature; LULC for
the year 2050), and scenario 4 (RCP 8.5 for precipitation and temperature; LULC for the
year 2050 with reforested RLs).

Finally, the maps of the obtained future scenarios, as well as the current scenario,
were reclassified into five classes at defined intervals to enable the evaluation between the
generated scenarios.

3. Results and Discussion

Due to the existence of bias between regional climate models and observed data, bias
correction was carried out with the application of the EQM, GQM, and LS methods. Some
of the performance metrics can be observed by the Taylor diagram (Figure 3) [69]. All
performance metrics are presented in detail for the precipitation variable (Table S4) and
average air temperature (Table S5) in the Supplementary Materials.

Figure 3. Taylor diagram for (a) mean monthly precipitation and (b) mean monthly temperature,
observed with and without bias correction in the calibration period of the climate models Eta
HadGEM2-ES, Eta Miroc5, and Ensemble for the Doce River Basin.
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Overall, all evaluated correction methods improved the performance of the models
compared to the uncorrected (raw) data, as also observed in [55]. Notably, the average
Ensemble model performed better than the individual models. Despite the small differ-
ence in performance between the correction methods, Ensemble EQM and Ensemble LS
were selected for determining the best metrics for correcting the bias of the variables of
precipitation and temperature (r = 0.77 and r = 0.92, respectively).

A similar result was obtained in [55] when evaluating different bias correction methods
for monthly precipitation in Costa Rica. The authors highlighted the EQM method as one
of those that performed the best. For the Ensemble model, in most regions of the study
area, they obtained r values between 0.7 and 0.85; however, for the Caribbean area, much
lower values were verified, between 0.6 and 0.7, or even below 0.5. The authors justified
this behavior as a result of the particularities of the area, such as the precipitation pattern
that is not well described by climate models.

Also, climate models simulate the temperature variable better than precipitation, as
evidenced by the better performance of temperature even for the uncorrected data. Several
studies in the literature have addressed the lower ability of models to predict precipitation
compared to temperature [87–91].

According to [92], due to the complex interactions of atmospheric processes, it is more
difficult to predict changes in precipitation patterns than most consistent projections for the
increase in atmospheric CO2 and temperature. Precipitation is controlled by temperature
(thermodynamic processes) and atmospheric circulation (dynamic processes); thus, it is
more difficult to understand the associated complex physical mechanisms, as well as the
small scale on which they occur, which impacts the variability of simulation responses
and the reliability of precipitation forecasts [93,94]. Although regionalized models are
more reliable than global climate models for representing geographic characteristics for
the projections of precipitation patterns, such as orography, related to more refined spatial
resolutions (12.5 to 50 km), these are still subject to considerable errors [55,95].

For the precipitation parameter, the greatest differences between the RCP 4.5 and RCP
8.5 scenarios are verified in October, November, December, and January, which are months
of the rainy season. The Eta-HadGEM2-ES model was the one that most underestimated
the data for the historical period observed (Supplementary Material Figure S1). As for the
temperature, in the most pessimistic scenario (RCP 8.5), there is a considerable increase
in the average monthly temperature during the winter, mainly in June and July, and the
Eta-HadGEM2-ES model simulated the highest monthly temperatures (Figure S2).

According to [46], in the south-central region of Brazil, during September, October,
and November, there is a tendency for the Eta-HadGEM2-ES model to simulate reductions
in precipitation, reflected in the annual values. The Eta-Miroc5 model, on the other hand,
may increase precipitation during the rainy season, compared to the current climate.

Likewise, a study using the Eta-HadGEM2-ES model in three metropolitan cities in
southeastern Brazil—Rio de Janeiro, São Paulo, and Santos—from 2006 to 2100 found
a tendency for precipitation to decrease by about 3 to 6 mm day−1 in the rainy season,
referring to December, January, and February, with the largest reductions in mountain
regions [96]. The authors emphasize that as most of the annual precipitation comes from
these months, the projected annual precipitation total will also be reduced.

As for temperature, the Eta-HadGEM2-ES model is more sensitive to the increase in
greenhouse gasses, estimating a warming of around 4 ◦C by 2040, while in Eta-Miroc5, the
increase is around 1.5 to 2 ◦C [46]. However, regardless of the regional climate model or
the evaluated scenario, in the central and southeastern regions of Brazil, there is a warming
trend due to the high population density and economic activity [97].

Thus, the results obtained in the present study for the Doce River Basin corroborate
the projections for the southeast region. And, as expected, the reduction in precipitation
and the temperature rise were more intense in the pessimistic scenario (RCP 8.5), as can
be seen for the annual projections of the Ensemble model for precipitation (Figure 4) and
temperature (Figure 5).
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Figure 4. Average annual precipitation (2020–2050) for (a) RCP 4.5 and (b) RCP 8.5; the difference
between the future period (2020–2050) and the observed historical period (1980–2005), in mm, for
(c) RCP 4.5 and (d) RCP 8.5; percent change between the future period (2020–2050) and observed
historical period (1980–2005) for (e) RCP 4.5 and (f) RCP 8.5. Acronym: SD: standard deviation.

From the projections of the Ensemble model in the simulated future period, the central
regions of the basin, close to the city of Governador Valadares, tend to present the lowest
precipitation volumes. The worsening of the situation is more noticeable in the RCP
8.5 scenario. Furthermore, the reduction in total annual precipitation exceeds 400 mm
compared to the historical period observed, with the average reduction for RCP 8.5 being
395 mm in the study area (Figure 4). Regarding the temperature, it is noted that the
difference in temperature between the RCP 4.5 and 8.5 scenarios was, on average, 0.4 ◦C
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for the basin area. However, considering the historical period, a temperature increase of up
to 2 ◦C is projected in the pessimistic scenario (Figure 5).

Figure 5. Average annual temperature (2020–2050) for (a) RCP 4.5 and (b) RCP 8.5; the difference
between the future period (2020–2050) and observed historical period (1980–2005), in ◦C, for (c) RCP
4.5 and (d) RCP 8.5; percent change between the future period (2020–2050) and observed historical
period (1980–2005) for (e) RCP 4.5 and (f) RCP 8.5. Acronym: SD: standard deviation.

As for land use and land cover, the biggest changes, between 2000 and 2019, happened
between the forest and agriculture classes (Figure 6a). The resulting balance indicated that
the forest areas increased by 3231.8 km2, an increase of 1.92%, while the agricultural areas
reduced by 3558.6 km2, corresponding to −2.12%.
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Figure 6. Gains and losses between land use and land cover between 2000 and 2019 (a) by area for
each land use and land cover for the years 2000 and 2019 (b), considering the predicted scenarios for
2050 with and without reforested legal reserves (RLs).

Considering the projection for future scenarios in Figure 6b, assuming LULC inten-
sification for the year 2050, agriculture and livestock would represent 68.7% of the basin
area (59,606 km2), while forests would be 26.5% (23,013 km2). On the other hand, if, by
the year 2050, the RL areas were to be fully respected and these areas were kept with
native forest vegetation, the areas with agriculture and livestock would correspond to
63.8% of the Doce River Basin (55,418 km2), with forests at 31.7% (27,502 km2). Also,
the expansion of urban areas is projected to be around 26.5% from 2019 to 2050, with an
increase in non-vegetated areas from 19.3 to 30.7% for the same period, depending on the
RL conditions.

It should be noted that when validating the accuracy of the predicted map for 2020
with the MapBiomas map, the Kappa index value of 0.94 was obtained, indicating excellent
representativeness [98], also for the future condition. The Supplementary Materials (Figure S3)
show the LULC maps for 2000 and 2019, and the maps projected for the year 2050, according
to simulated conditions.

By observing the dynamics of LULC, it is noted that between the years 2000 and 2019,
improvements in the recovery of the basin were mainly due to forest recomposition. After
the biggest environmental disaster in Brazil, the rupture of the Samarco tailings dam, in
November 2015, there was an articulation of several bodies to mitigate and compensate
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for the impacts, such as the agreement that intends to implement the forest restoration of
40,000 hectares of the river basin of the Doce River, established in the Term of Transaction
and Adjustment of Conduct (TTAC) signed in 2016 [27,99].

Other initiatives aligned with worldwide goals can be mentioned, such as the Bonn
Challenge, which aimed to restore 150 million hectares by 2020; the 20 × 20 Initiative,
with a target of 20 million hectares by 2020; and the Paris Agreement, in which Brazil is
committed to restoring 12 million hectares of native vegetation by 2030 [100]. In addition,
there are national efforts, such as the Pact for the Restoration of the Atlantic Forest, which
has already shown positive results with the restoration of more than 700,000 hectares of
native forests of the Atlantic Forest biome in different states of Brazil between 2011 and
2015 [101].

In the future projections of LULC for the year 2050, considering the most critical future
condition, which is the intensification of land use, an advance of agriculture and livestock
was predicted, especially in the northwest region of the basin, where large forest areas are
concentrated and many are not protected by the law, as well as in small forest areas in the
central and southwest regions.

When considering the implementation of policies that encourage restoration in RL
areas, mitigation of the environmental susceptibility to damage is expected, such as miti-
gating the impacts of anthropic actions in the Doce River Basin. In this way, for instance,
one can minimize the damage caused by the advance of agriculture in important areas for
the preservation of environmental and water resources, such as Permanent Preservation
Areas (APPs) and Water Recharge Zones (tops of hills).

The relevance of forest vegetation cover in improving soil quality and, consequently,
reducing its vulnerability to erosion [102]; its influence on the hydrological response of
basins [103]; and the ability to maintain water quality [104], among other functions, are
already well known. Therefore, the implementation of policies that encourage forest
restoration in RL areas can favor the environmental conservation of the basin and mitigate
its vulnerability.

After projecting climate and LULC information to simulate future conditions, all input
variables used to develop the environmental vulnerability index were standardized on an
adequacy scale from 0 to 255. The standardized mappings of natural and anthropic factors
used are shown in the Supplementary Materials, respectively, in Figures S4 and S5. The
standardized climatic factors, as well as the current scenario, are in Figure S6.

The spatial pattern of climatic factors is similar for both scenarios, RCP 4.5 and
RCP 8.5, mainly for the temperature factor, where the areas of the lower Doce River are
most vulnerable. As for precipitation, the most vulnerable areas are in the southwest region
of the study area, characterized by greater precipitation volume, while the least vulnerable
are in the central region. However, it should be noted that in this basin, in the RCP 8.5
scenario, there is a projection of lower rainfall volumes than in RCP 4.5, and since the fuzzy
standardization performed is expressed by an increasing linear function, which means that
the higher the precipitation, the greater vulnerability, the RCP 8.5 scenario tends to have
more areas included in lower vulnerability levels.

By individual judgments of the experts obtained by the AHP method, it was pos-
sible to determine the weight for each factor of the environmental vulnerability study
(Supplementary Materials Table S6). The CR values resulting from the paired comparison
of the experts were below 0.1, which indicates consistency in their assessments [79].

The LULC (0.2433), precipitation (0.1501), and slope (0.1343) factors received the
greatest scores in the analysis, while temperature (0.0297) was the least important one (Table
S6). The LULC is also considered one of the most important factors in other multicriteria
environmental studies, obtaining the highest scores [12,81,105].

Thus, based on the scores obtained and the standardized factors, the modeling of
environmental vulnerability was developed considering future scenarios of climate change
and LULC. Figure 7 shows the spatial distribution of the environmental vulnerability of
the Doce River Basin for the four simulated future scenarios and the current scenario.
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Figure 7. Spatial distribution of environmental vulnerability in the Doce River Basin for (a) future
scenario 1; (b) future scenario 2; (c) future scenario 3; (d) future scenario 4; (e) current scenario.

Overall, the maps for the different scenarios have a similar spatial pattern (Figure 7).
In general, the areas with the lowest vulnerability are located in the northwest region of the
study area; in conservation areas, such as the Rio Doce State Park; and places close to the
basin’s outlet. This is mainly associated with LULC, since the higher vegetation cover, such
as in natural forests, corresponds to lower vulnerability. Also, the topographical factors of
slope, elevation, and relief dissection contribute to the lower vulnerability observed close
to the Atlantic Ocean. The most environmentally vulnerable areas are in higher regions of
the basin, close to the basin’s borders, and points with steep relief without vegetation cover,
as well as in places with high rainfall at the west of the basin and areas intensely affected
by anthropic land use in the central region.

By evaluating the area in each environmental vulnerability class in the different
scenarios considered (Figure 8), it is verified that future scenario 4 (RCP 8.5 and LULC
in 2050 with reforested RLs) has a higher percentage of area in the low and very low
environmental vulnerability classes with 30,845.6 km2 (35.5%). On the other hand, future
scenario 3 (RCP 4.5 and LULC in 2050) determines a larger area of the basin in the high
and very high vulnerability classes, 30,412.2 km2 (35.0%). This can be explained by the fact
that the RCP 8.5 climate scenario reduces precipitation more than the RCP 4.5 scenario, and
since the precipitation factor received the second highest score in the multicriteria analysis
and is expressed by an increasing linear function, it resulted in a situation in which the most
pessimistic climate scenario (RCP 8.5) simulated fewer environmentally vulnerable areas.
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Figure 8. Area of each environmental vulnerability class of the Doce River Basin in the different
evaluated scenarios.

Regarding the current scenario, it is clear that environmental vulnerability for future
scenarios tends to have smaller areas in the very high vulnerability class. This may also be
associated with a reduction of more than 300 mm in the average annual precipitation for
the period 2020–2050, both in RCP 4.5 and RCP 8.5.

In a study that evaluated the average annual rainfall erosivity (R factor) until the
year 2099, for all of South America, considering regional ETA models in a scenario of high
emissions (RCP 8.5), a reduction in the R factor was estimated in the southeast region
of Brazil [106]. This reduction is attributed to the substantial decrease in average annual
precipitation. A similar result was observed in [107], the authors of which predicted a
decrease in the R factor for both the RCP 4.5 and RCP 8.5 scenarios for the Tocantins–
Araguaia basin in central Brazil.

Likewise, in an investigation of the influence of climate change on erosion in the
Vranjska Valley, Serbia, the authors identified a tendency to reduce total precipitation by
19% in the region with a consequent decrease in the predicted rainfall erosivity by around
17.19% in 2100 compared to 2015 [85]. Also, the projections reduced average soil loss by
41.84% in 2100, compared to 2015, emphasizing that the decrease in precipitation is linked
to the decrease in surface runoff and erosion [85,108].

Furthermore, ref. [107] also showed that the projection of reduced rainfall erosivity
occurs due to the decrease in the amount of precipitation in the region; however, it is
emphasized that extreme events may still occur intensely. The authors argue that although
the reduction in rainfall is a positive aspect of the issue of soil erosion, it can negatively
impact agriculture, and therefore, adaptation measures to the effects of climate change
must be adopted.

Several actions can be considered to mitigate damage and adapt to future climatic
conditions, such as the use of more resistant crops (plant genetic improvement) [109];
improving the efficiency of irrigation systems and evaluating sowing dates to mitigate
water stress in agriculture [110]; water monitoring, such as inspecting water withdrawals;
controlling water loss in water distribution and supply systems and encouraging the
reuse of wastewater and rainwater harvesting [111]; and developing fire detection and
monitoring programs [112].

Although all simulated future scenarios project a relative reduction in environmental
vulnerability compared to the current scenario, it should be kept in mind that environmental
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systems have complex relationships, and the reduction in precipitation and the rise in
temperature for the study area can imply changes in soil vegetation cover conditions and
encourage the occurrence of erosion processes.

For instance, if, on the one hand, the increase in CO2 concentrations in the atmosphere
and the consequent increase in temperature increases the evapotranspiration rates, reduces
soil moisture, and increases the water infiltration rate, influencing the reduction of surface
runoff and erosion [21,113], on the other hand, the increase in temperature can result in
less water availability for plants, known as water stress, which reduces plant development
and increases the erosion rate [114], since unprotected soils will be more vulnerable to soil
loss during rainfall events [97]. Therefore, besides the complexity of the aforementioned
interactions, which can be affected by multiple factors, there are uncertainties associated
with climate projections that are still considerable, even in regional climate models.

Finally, it was also verified that when the reforestation of RL areas is simulated, the
environmental vulnerability in these areas is mitigated. In future scenarios 2 and 4, in
which this condition is evaluated, the RLs had an average EVI of 1.97 and 1.91, respectively.
The EVI values observed in these areas, in the other scenarios analyzed, were 2.53 for
scenario 1, 2.57 for scenario 3, and 2.55 for the current scenario. Therefore, these results
corroborate the requirement of the Brazilian legislation, Federal Law No. 12,651 of 2012,
which determines that rural landowners maintain a proportion of land protected as areas
of native vegetation (PPAs and RLs) [25]. Furthermore, economic stimulus programs,
such as Payment for Environmental Services (PES), should also be encouraged to promote
environmental restoration.

As a limitation of this work, we considered that despite using a regional climate
model and bias correction, errors might arise due to the larger scale of the data and the
resampling required to make it compatible with other input data. Additionally, we utilized
precipitation on an annual basis, whereas other patterns of precipitation, such as the
intensity of extreme events and their potential modification of environmental vulnerability,
could be incorporated.

4. Conclusions

By analyzing the results obtained, the following can be concluded:

• Reductions in the basin’s average annual rainfall of more than 300 mm and an increase
in the average annual temperature of up to 2 ◦C are predicted for the period 2020–2050.

• Future scenario 4, with RCP 8.5 and land use and land cover for 2050 with reforested
legal reserves, had the highest percentage of area in the low and very low environ-
mental vulnerability classes, while future scenario 3, with RCP 4.5 and land use and
land cover for 2050, simulated the largest area of the basin in the high and very high
vulnerability classes.

• For all simulated future scenarios, a relative improvement in environmental vulnera-
bility was predicted for 2050 compared to the current scenario due to the precipitation
reduction. However, it is important to consider their complex relationships.

• The results obtained in this study may serve as a subsidy for the adoption of measures
to mitigate environmental damage and adapt to future climatic conditions in the Doce
River Basin.

• Future investigations can be implemented to develop models for early warning sys-
tems and disaster response plans, which can contribute to better preparation of the
region for extreme weather events.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/w16101459/s1: Table S1: Reclassification of MapBiomas land
use and land cover classes adopted in the present study; Table S2: Description of fuzzy functions;
Table S3: Reclassification of categorical variables; Table S4: Performance metrics of bias correction
compared to the observed data of the monthly total precipitation variable for the Eta HadGEM2-ES,
Eta Miroc5, and Ensemble climate models, corrected by the EQM, GQM, and LS methods, and raw
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data; Table S5: Performance metrics of bias correction compared to the observed data of the monthly
average temperature variable for the climate models Eta HadGEM2-ES, Eta Miroc5, and Ensemble,
corrected by the EQM, and LS methods, and raw data; Table S6: Scores of the factors used in the
present study; Figure S1: Mean monthly precipitation (2020–2050) for Ensemble, Eta-HadGEM2-ES,
and Eta-Miroc5 climate models and historical observed data (1980–2005): (a) RCP 4.5 and (b) RCP
8.5; Figure S2: Mean monthly temperature (2020–2050) for Ensemble, Eta-HadGEM2-ES, and Eta-
Miroc5 climate models and historical observed data (1980–2005): (a) RCP 4.5 and (b) RCP 8.5; Figure
S3: Land use and land cover (LULC) for the Doce River Basin for (a) year 2000; (b) year 2019; (c)
predicted for the year 2050; and d) predicted for the year 2050 considering the reforestation of the
legal reserves (RLs); Figure S4: Standardized natural factors used in the present study: (a) slope; (b)
elevation; (c) relief dissection; (d) pedology; and (e) geology; Figure S5: Standard anthropogenic
factors used in the present study: (a) land use and land cover (LULC) according to projections for
the year 2050 and (b) LULC for the year 2050 with reforested RLs; (c) distance from urban areas for
the year 2020; (d) distance from urban areas for the year 2050; (e) distance from roads; Figure S6:
Standardized climatic factors used in the present study: (a) mean annual precipitation (2020–2050) in
RCP 4.5 and (b) RCP 8.5; (c) mean annual temperature (2020–2050) in RCP 4.5 and, (d) RCP 8.5; (e)
historical mean annual precipitation (1990–2020); (f) historical mean annual temperature (1990–2020);
Reference: [9] Campos, J.A.; da Silva, D.D.; Fernandes Filho, E.I.; Pires, G.F.; Amorim, R.S.S.; de
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