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Abstract: Debris flow, driven by natural events like heavy rainfall and snowmelt, involves sediment,
rocks, and water, posing destructive threats to life and infrastructure. The accurate prediction of its
activity range is crucial for prevention and mitigation efforts. Cellular automata circumvent is the
cumbersome process of solving partial differential equations, thereby efficiently simulating complex
dynamic systems. Given the anisotropic characteristics of square cells in the simulation of dynamic
systems, this paper proposes a novel approach, utilizing a hexagonal cellular automaton for the
numerical simulation of debris flows, where the direction judgment efficiency increased by 25%.
Employing cubic interpolation, the model thereby determines the central elevation of each hexagonal
cell. By modifying the flow direction function and stopping conditions, it achieves more accurate
predictions of the debris flow run-out extent. This method was applied to the 2010 Yohutagawa
debris flow event and the flume test. To evaluate the simulation’s accuracy, the Ω value and Fβ

score were used. The Ω value is a comprehensive evaluation factor that takes into account missed or
misjudgment areas. On this basis, the Fβ score emphasizes that the missed identification of debris
flow areas will bring greater harm. Research indicates that the Ω value showed improvements of
6.47% and 3.96%, respectively, while the Fβ score improved by 3.10% and 4.61%.

Keywords: debris flow; numerical simulation; hexagonal cellular automaton model; Monte Carlo
iterative algorithm

1. Introduction

The onset of a debris flow requires large amounts of loose solid material and steep
terrain [1,2]. Rain or snowfall acts as a trigger, pushing water, sand, and stones forward [3].
Mountainous areas offer ideal conditions for debris flow formation [4]. Around 66% of
China’s landmass consists of mountainous landscapes, especially in the transition zone
between the second and third topographic levels [5,6]. Active geological processes sig-
nificantly contribute to the accumulation of loose materials, facilitating the formation of
debris flows [7]. Moreover, China’s predominantly monsoon climate, with heavy rainfall
in the wet season, fosters favorable conditions for debris flow initiation. Debris flows
cause severe damage to residences, agricultural land, and transportation infrastructure,
leading to casualties and extensive property damage. The urgency of enhancing debris
flow mitigation and reducing their impacts is increasingly prompting scholars to focus
on predicting their impact range [8,9]. Precisely predicting the path and scale of debris
flows allows for the rational design and planning of transportation infrastructure like roads
and railways, preventing the development of vital transport hubs in debris flow-prone
areas [10–12].

In the field of debris flow disaster mitigation, numerical technologies play a cru-
cial role in disaster prevention [13,14]. Many studies focus on numerically solving the
Navier–Stokes (N–S) equation. These studies encompass approaches such as the shal-
low water equations (SWEs) and the smoothed particle hydrodynamics (SPH) method.

Water 2024, 16, 1536. https://doi.org/10.3390/w16111536 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w16111536
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-2367-2454
https://doi.org/10.3390/w16111536
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w16111536?type=check_update&version=1


Water 2024, 16, 1536 2 of 18

The shallow water equations are implemented within a grid-based numerical framework
specifically designed to simulate hydrodynamic flows under the assumption of hydrostatic
pressure distribution. This methodology simplifies the Navier–Stokes equations by aver-
aging vertical field variables, thereby efficiently modeling the flow over complex terrain
with reduced computational demand [15–18]. On the other hand, the smoothed parti-
cle hydrodynamics method employs a particle-based Lagrangian framework, eschewing
traditional grid constraints for a more flexible representation of fluid dynamics [19–22].
Through the use of kernel interpolation and particle discretization, the smoothed parti-
cle hydrodynamics method possesses the capability to handle physical processes such
as large deformations and free-debris flow characteristics such as velocity, depth, and
spatial positioning. Nonetheless, they consistently require significant computational re-
sources [23,24]. Additionally, acquiring parameters related to rheological properties, such
as viscosity, presents notable costs [25]. The above issues make physical-based methods
still problematic for field-scale applications [26,27].

The cellular automaton (CA) model represents a numerical framework that parti-
tions the entire area into discrete units, known as cells, each characterized by specific
variables [28–30]. Since the 1980s, CA models have been widely used in the simulation
of a variety of natural disasters, including debris flows, landslides, avalanches, and rock-
slides [31,32]. These applications underscore the efficacy of the CA model in simulating
the dynamic processes of natural disasters and highlight its potential in disaster risk as-
sessment and management strategies [33–35]. Within the CA framework, the transition
function incorporated with the probabilistic iterative algorithm is the key to controlling
the dynamic evolution of the debris flow. Gamma [36] initially designed this framework,
which is based on the Monte Carlo iterations, to advance the integration of the flow path
through a topography-based model. Subsequently, other refinement mechanisms, includ-
ing friction models [37], bedload transfer [38,39], and stopping conditions [40,41], have
been continuously integrated into the paradigm to better constrain the flow dynamics of
the debris flow. Han [42] revised the persistence weight parameters based on the flume
experiments and quantified the inertial effect based on the persistence functions. Ma [43]
further introduced a roughness function to depict the impact of bed roughness on the flow
direction.

Historically, research applications of the CA models have predominantly utilized
square cells. However, this architecture encounters challenges related to inconsistent
neighbor relationships and directional biases, ultimately leading to anisotropic issues [44].
Therefore, introducing a lattice structure that aligns more consistently and compatibly with
the motion of debris flows is imperative to accurately characterize the evolution of the
flow direction. Sousa [45] found that hexagonal digital elevation model data provide a
higher spatial resolution compared to a square-cell structure. To simulate the movement of
debris flows, Frisch [46] discrete the Navier–Stokes equation in the context of a hexagonal
lattice. Ambrosio [47] and Avolio [48] developed a hexagonal-based CA model named
SCIDDICA and applied it to real-world cases. Additionally, the hexagonal CA has fewer
neighbors than the square-cell structure, which includes only six neighbors and leads to a
25% efficiency improvement in efficiency when determining the flow direction [49].

This study integrates the persistence function, previously validated in square cellular
automaton (SCA) models, into the hexagonal cellular automaton (HCA) scheme. This
modification aims to refine the model’s ability to accurately simulate the flow state of debris
flows. The integration of the persistence function into this novel context is expected to
enhance both the robustness and simulation accuracy. Furthermore, the stopping conditions,
a cornerstone of this framework, primarily address the conditions under which debris
flows halt based on the maximal reach of debris accumulation. By accounting for both
the “sink-filling” [36] and “maximum path length” considerations, the proposed method
controls the dynamic evolution of the debris flow.

In general, this paper presents the HCA model for the numerical simulation of debris
flow, which involves dividing the terrain into a network resembling a hexagonal honey-
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comb. This approach focuses on investigating the dynamics of the debris flow direction
and the stopping conditions applicable to this cellular structure. Finally, the run-out extent
of the debris flow is determined through Monte Carlo iterations, integrating all flow paths
to effectively address the anisotropic challenges that SCA encounters in simulating debris
flow dynamics.

2. Methods
2.1. Model Introduction

A standard CA model comprises several core components as follows: cells, lattice,
neighborhoods, and transition functions.

• Cell and Lattice

The cell is the most fundamental unit of a CA model, serving as the system’s basic
building block. The lattice describes how cells are spatially arranged, including the type,
size, structure, and boundary conditions of the cellular network.

In past research, square cells were more popular due to their inherent advantages
in data representation. Initially, it is crucial to acknowledge that original terrain data
frequently take the form of digital elevation model (DEM) raster data. In the DEM, the map
is partitioned into a matrix of pixels, each pixel delineating a square shape and encoding
specific values to represent the features or attributes of the corresponding location on the
map. The alignment of the raster data’s square pixels with the square-cell data highlights
the inherent compatibility between DEM formats and the structure framework of CA
models, thereby facilitating straightforward data utilization without requiring extensive
processing. Horton [37] and Ma [43]’s research shows that the run-out extent of the debris
flow can be accurately simulated using a cell size of 2.5 m.

We adopted hexagonal cells as the lattice format, which requires additional processing
of the cells and lattices before discussing the transition functions. Firstly, there is the
selection of cell orientation, which can be either flat-topped or pointy-topped, as seen in
Figure 1a. Next, is the choice of the lattice offsetting method. For the flat-topped cells in
Figure 1c, the options include odd-column-down offsetting or odd-column-up offsetting.
(If using pointy-topped cells, one must choose between odd-row-left offsetting or odd-row-
right offsetting). The above processing flow will affect the matrix–coordinate mapping
relationship. It is important to note that the coordinate mapping relationship varies for
different cell and lattice forms. Equations (1) and (2) depict the scenario of “flat-topped
cells” and “odd-column-up offsetting”. The coordinates (x, y) of the lattice with index
(m, n) in a two-dimensional matrix are given by:

When n is an odd number, {
x = m − 1 × Sx
y = n − 1 × Sy

(1)

While n is an even number, {
x = (m − 1)× Sx
y = (n − 0.5)× Sy

(2)

In the formula, Sx and Sy refer to the distance in the x and y directions between the
centers of the hexagonal grid cells, respectively. The relationship between Sx, Sy and the cell
size of the neighboring unit center (DHex) is shown in Figure 1b and Equations (3) and (4):

Sx =

√
3

2
× DHex (3)

Sy = DHex (4)

After completing the coordinate mapping, obtaining the elevation of the cells became
an urgent issue. Considering both interpolation accuracy and efficiency, we opted for cubic
interpolation. This aspect will be further elaborated in Section 4.
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• Neighborhood:

The concept of neighborhood refers to the range of cells in which the center of a cell
is affected by surrounding cells, usually defined by its radius. Figure 2 illustrates the cell
arrangement and neighborhood relationship of the SCA models and HCA models in (a)
and (b), respectively. In Figure 2a, the distance between the adjacent edge grids is DSquare,
while the distance between the adjacent corner grids is

√
2 × DSquare.
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• Transition Functions:

The CA model cell states transition to another state through transition functions, which
serve to employ rule-based simulation processes rather than traditional mathematical
functions for simulation. The CA method derives the development of complex phenomena
with simple transition functions and a massive iteration. Instead of solving the complex
PDEs, this approach employs interaction relations among neighboring cells [36,42,43].
These transition functions are not only simpler and more straightforward to express and
compute than the physical solutions required in dynamic models, but they also facilitate
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a more accessible understanding of the system’s processes. Refer to Sections 2.2–2.4 for
detailed information.

2.2. Flow Direction Function
2.2.1. Terrain Probability

In the dynamics of debris flow, there is a strong tendency for the flow to follow the path
of maximum slope descent. In SCA models, the D8 algorithm [50] is a common method
for determining the flow direction. It primarily identifies and utilizes the steepest slope
direction of each unit flow path as the debris flow direction. However, the D8 algorithm,
with its single flow direction approach, does not adequately handle the divergent nature of
the debris flows observed in real-world scenarios, especially in areas with gentle slopes
where divergence is pronounced, resulting in significant inaccuracies.

To overcome these limitations, our terrain function calculates slopes in all directions
within a hexagonal honeycomb network, considering the divergence phenomenon inherent
to debris flows. We propose that cells with a positive slope gradient have a probability of
directing the flow. Since a debris flow is unlikely in directions with a negative longitudinal
slope, these cells are assigned a flow direction probability of zero.

The probability of the flow direction, denoted as Pt f
i, is calculated using Equation (5).

Pt f
i =

tanβi

∑6
j=1 tanβ j

(5)

As shown in Figure 3c, βi and β j represent the longitudinal slope descent in directions
i and j, respectively. They are set to zero when the longitudinal slope in those directions is
negative. At a positive slope, the Equation (6) calculation formula is as follows:

tanβi =
∆Hi
DHex

(6)

∆Hi represents the vertical slope in the i direction relative to the central cell.
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2.2.2. Persistence Probability

When debris flows on flat terrain, the movement is mainly forward, aligned with the
velocity direction. However, as the average flow velocity decreases, the debris flow not only
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continues to advance but also begins to spread. To describe this behavior, we introduce the
concept of “persistence probability,” which captures this phenomenon.

In Section 2.2.1, our analysis of the flow direction function predominantly focuses on
the static properties of the terrain. Moving forward, this section delves into the dynamic
attributes of debris flow. By integrating these dynamic aspects, we aim to enhance the
precision of our debris flow modeling. In Figure 4a, the debris flow enters the central cell
along a trajectory shown by a red arrow. The persistence probability suggests that in the
next time step, the debris flow could transition into the cell pointed by a black arrow. We
assign persistence weights to each neighboring cell, reflecting the dynamic characteristics
and momentum of the debris flow.
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The concept of persistence weight, denoted as Pd f
i, plays a crucial role in the debris

flow simulations by considering the position of the inflow cell. For a given incoming cell,
we derive the forward and oblique direction numbers from Table 1 and then obtain their
persistence probability from Equation (7). Specifically, persistence probabilities such as
w0 and w60 represent the likelihood of the debris flow continuing in the forward direction
(0◦) and in an oblique direction (60◦) relative to the inflow trajectory, respectively. This
framework provides a nuanced understanding of how the debris flow momentum affects
its trajectory. Furthermore, persistence probabilities at angles of 120◦ and 180◦ from the
inflow direction (w120 and w180) are practically assigned a persistence probability of zero.
This decision is based on the observation that debris flows are unlikely to disperse in the
reverse speed direction due to the momentum and physical characteristics of the flow.

Table 1. Forward and oblique directions under different incoming cells.

Incoming Cell Forward Direction Oblique Direction

1 4 3, 5
2 5 4, 6
3 6 5, 1
4 1 6, 2
5 2 1, 3
6 3 2, 4

Figure 4b,c depict scenarios where the inflow cells of a SCA model are edge neighbors
and corner neighbors, respectively. In our previous research on SCA models [42], we
suggested the values ω0 = 0.42, ω45 = 0.29, and ω90 = 0, which yielded optimal results in
the inversion scenario. Building on this successful value scheme, we computed the unit
angle weight for each region and implemented it in the HCA models. This resulted in a
persistence weight scheme applicable to HCA models, which is ω0 = 0.52, ω60 = 0.24.

Pd f
i =


w0 , i = f orward direction
w60 , i = oblique direction

0, i = other direction
(7)
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2.2.3. Probability Combination

In Sections 2.2.1 and 2.2.2, this study introduced terrain probability and persistence
probability into the HCA model to further determine the flow direction function of the
debris flow. There are two mainstream coupling methods, which are the multiplication
method [37] in Equation (8) and the addition method [42] in Equation (9).

Pi
× =

Pd f
i × Pt f

i

∑6
i=1 Pd f

i × Pt f
i

(8)

Using the multiplication method of Equation (8), when the terrain and flow inertia
are combined probabilistically—when any factor produces a probability of 0—the compre-
hensive flow probability of the cell unit will also be zero. Under the complex interaction of
speed and topography, reverse slope flow and reverse velocity flow will occur in debris
flows under realistic physical systems. However, this probabilistic combination method
considers it impossible to flow in these directions, resulting in the excessive concentration
of flow directions and deviating from the behavioral characteristics of a real-world debris
flow.

Pi
+ =

Pd f
i + Pt f

i

∑6
i=1

(
Pd f

i + Pt f
i )

(9)

The addition method of Equation (9) overcomes the above problems. Han [42] dis-
cussed the impact of different combination methods on model accuracy, and the experi-
mental results showed that the additive method is better than the multiplicative method in
model accuracy.

2.3. The Sink-Filling Approach

The sink-filling approach, utilized to simulate the traversal of troughs or dams, was
first introduced by Gamma [36] and later refined by Wichmann [51]. It aims to tackle
the challenge posed by negative slopes that inherently impede debris flow movement.
Primarily employed in geographic information systems (GIS) and terrain analysis, the
sink-filling approach improves the simulation accuracy of debris flow characteristics. In
natural settings, the debris flow typically flows towards the lowest points in the terrain.
However, encountering a groove characterized by surrounding cells at elevations higher
than that of the current cell creates a negative slope scenario that impedes debris flow
movement. The sink-filling models are designed to overcome these barriers by “filling”
grooves.

When the debris flow reaches a particular cell, and all neighboring cells are found to
have negative slopes, the sink-filling model is activated. Debris flows cease movement
and deposit sediment here, altering the elevation of the cell. The sedimentation-filling
effect within the “groove” enables it to overcome the obstacle after numerous Monte Carlo
iterations. This approach is primarily viewed as a computational estimate, employed in
scene modeling and aiding further model iterations, thereby facilitating the debris flow
to enact the over-dam accumulation process ahead of the sediment dam and enabling the
exploration of debris flow pathways.

2.4. Maximum Length Function

As the debris flow transitions from steep slopes to gentle alluvial flats, its velocity
progressively diminishes. Upon the velocity reaching zero, the movement of the debris
flow ceases. The maximum length of debris flow accumulation is an important parameter
for predicting the range of debris flow. Wang [52]’s debris flow accumulation experiment
showed that when the debris flow concentration (CVt) and the downstream flow path slope
(β) remain unchanged, the maximum length of the debris flow (L) is related to the impact
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of the debris flow. It is proportional to the total runoff (V), and the empirical formula form
of the maximum length of debris flow is given, as shown in Equation (10).

log L = λ log V tan β + µ (10)

where λ and µ are the parameters related to the concentration of the debris flow. The
recommended values for the regression results of the debris flow experiments are λ = 0.42
and µ = 0.935.

L =
V

1.3 × 10−4

[
27.90C−1.65

Vt + 5.92C0.08
Vt × β

]
(11)

When the debris flow concentration changes, this formula does not describe the
maximum length accurately enough. For this purpose, he conducted a series of flume
tests. For different debris flow concentrations CVt and the debris flow outflow volume V,
the maximum length formula considering the concentration factor is obtained through
Equation (11). When the debris flow concentration is known, it is recommended to use
Equation (11), otherwise, Equation (10) can be used.

In the realm of HCA models, the stopping of debris flows emerges from a nuanced
interplay between static terrain factors and dynamic momentum indicators. The terrain
aspect scrutinizes each potential flow direction for the presence of a ‘sink-filling’ scenario,
which triggers the stopping conditions and subsequent deposition of debris flows. Dynam-
ically, the focus shifts to the length of the debris flow’s path, particularly whether it has
reached its predefined maximum. Achieving this milestone prompts the halt of the debris
flow. The number of iterations of the debris flow direction function, which is denoted as
stepmax, is determined by the maximum length. Based on the maximal length L of the
debris flow, the maximum number of iterations of the debris flow direction function for the
CA models is determined according to Equation (12).

stepmax =
ξL
D

(12)

The coefficient ξ serves as a crucial correction factor for the maximum length L, as
delineated in Equations (10) and (11), compensating for the empirical derivation of L. Our
findings suggest that the integration of ξ, particularly set at 1.2, significantly enhances
the simulation’s accuracy. Additionally, Cellsize denotes the dimension of each hexagonal
cell in the model. The simulation of the debris flow path is designed to cease once the
iteration count reaches or exceeds the predefined maximum number of steps, stepmax,
thereby delineating a comprehensive and plausible debris flow trajectory.

2.5. Path Simulation Function Based on Monte Carlo Iterative

The Monte Carlo iteration method stands as a pivotal computational technique that
leverages random sampling to approximate solutions for intricate problems. At its core,
this method employs a random number generator to produce an extensive series of random
samples. These samples serve as a basis for inferring the potential outcomes of complex
phenomena. Following the generation of a substantial dataset of random numbers, the
derived potential outcomes are subjected to rigorous statistical analysis.

Using the flow direction function, we determined the probability of the debris flow
to each neighboring cell through Equation (13), along with the random range P(j) of the
neighbor cell through Equation (14):

S(j) =
j

∑
i=1

Pi
+, j = 1, 2, . . . , 6 (13)

P(j) ϵ ( S(j − 1) , S(j) ) (14)

where S(j) denotes the maximum probability of the flow direction for the neighboring
cell j, P(j) represents the interval of the flow direction probabilities for the neighboring
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cell j. When Pi
+ = 0, it follows that S(j) = S(j − 1); under these conditions, P(j) for the

neighboring cell j becomes an empty set, indicating that the debris flow will not enter this
cell. Utilizing the Monte Carlo iterative algorithm principle, a random number n ϵ (0 , 1] is
generated. Should n lie within P(i) ’s interval, the subsequent flow direction of the debris
is designated to neighbor cell i.

Figure 3b illustrates the debris flow moving from cell No. 1 into the central cell.
Known cell elevations enable the determination of the slope and terrain probability Pt f

i
for each neighboring cell via the terrain probability function. The inflow is identified as
originating from cell No. 1. The persistence probability function reveals that Pd f

4 = w0,
Pd f

3 = Pd f
5 = w60. Subsequently, the aggregate flow direction probability for each cell is

calculated through the additive method.
During the simulation, Figure 3b demonstrates the calculation of the comprehensive

flow probabilities for each neighboring cell of the central cell as follows: P1
+ = P2

+ =
P6

+ = 0, P3
+ = 0.43, P4

+ = 0.45, P5
+ = 0.12. Applying the random range method,

the probability intervals are determined as P(1) = P(2) = P(6) = ∅, P(3) ϵ (0 , 0.43],
P(4) ϵ (0.43 , 0.88], P(5) ϵ (0.88 , 1]. The magnitude of the random number n dictates the
subsequent direction of the debris flow. Integrating the debris flow stopping conditions in
Sections 2.3 and 2.4 to ascertain the termination point of the debris flow, a complete path of
the debris flow was delineated. Figure 3a describes the start, generation, and end process of
such a path. Based on the Monte Carlo iterative algorithm, all possible paths of the debris
flow are obtained, and the spatial set of all paths is the flow range of the debris flow.

3. Case Study
3.1. Yohutagawa Debris Flow

Yohutagawa is located on Amami Oshima in the southern part of Kyushu Island, Japan,
at the coordinates 28◦24′ N, 129◦32′ E. It covers an area of approximately 0.24 km2, with
elevations ranging from 20 to 250 m. The region is predominantly forested. On 20 October
2010, the area was struck by a torrential rainstorm, reaching a peak rainfall intensity of
131 mm/h. The heavy rainfall triggered a rockslide at the highest point of the area, with a
volume of 5843 m3. A notable characteristic of this debris flow was the relatively narrow
flow channel compared to the initial collapse area, with a clear demarcation between the
erosion and deposition zones. The average slope of the incised river channel in Yohutagawa
is about 16◦. The total length of the debris flow was approximately 750 m. Figure 5
illustrates the different zones of the debris flow in Yohutagawa.

The CA model is based on the DEM data of the debris flow watershed, the location
of the material source points, and the total amount of debris flow collapse. It rapidly
predicts the potential covered area of the debris flow. The size of the cells in a SCA
model is determined by the side length DSquare in the x and y directions, whereas for a
hexagonal cell automaton, the cell size is defined by the center-to-center distance DHex
between adjacent units. In this study, DSquare is set at 2.5 m based on the recommended
values [37,43]. Additionally, this paper uses DHex = 2.5 m to conduct a comparative
analysis between the HCA and SCA models. Based on the DEM data of the Yohutagawa
event (1425 m × 1138 m), this paper performed interpolation processing on the terrain data
of 455 rows and 570 columns under the square grid to obtain the hexagonal grid terrain
data of 455 rows and 658 columns.

The simulation validation of the Yohutagawa debris flow extent was conducted using
both the HCA and SCA models. The parameters for these models are shown in Table 2.
The predicted extents of the debris flow from both models are illustrated in Figures 6 and 7.
Both models performed well in simulating the upper and middle reaches of the channel,
with the primary differences observed in the downstream deposition area.
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Table 2. The parameters for CA models.

Parameters SCA Model HCA Model

Cell size 2.5 m 2.5 m
Unit depth 0.25 m 0.25 m

Collapse amount 5843 m3 5843 m3

Iterations number 3740 4320
Step correction 1 1.3
Maximum step 300 403
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3.2. Flume Test

The objective of the debris flow flume test is to explore the initiation, flow dynamics,
and erosion-deposition processes related to debris flows. By simulating variables such as
diverse terrain configurations, soil-water mixture ratios, and flow velocities, we can gain
insights into the dynamic behavior and impacts of debris flows, providing a scientific basis
for predicting, mitigating, and managing them. Figure 8a represent the test equipment used
by Liu et al. [53]. And Figure 8b depicts the simulation result of debris flow. A detailed
analysis will be provided in the following section.

3.3. Result Analysis

Precision (Pr) is defined as the ratio of the true-positive samples to the total number
of samples identified as positive by the model by the model as Equation (15). Recall (Re)
is quantified as the ratio of the true-positive samples to the entire set of samples that are
genuinely positive as Equation (16).

Pr =
TP

TP + FP
(15)

Re =
TP

TP + FN
(16)

TP (true positives): The regions that are accurately identified as being subject to debris
flows are termed ‘overlap areas’. FP (false positives): Areas erroneously predicted as debris
flow zones are designated as ‘misjudgment areas’. FN (false negatives): Areas inaccurately
classified as non-debris flow zones are referred to as ‘missed judgment areas. Table 3 details
the calculation results of the TP, FP, and FN ranges for the two cases.

Table 3. Areas of each area in the Yohutagawa debris flow and flume test.

Event Total Area
HCA Model SCA Model

TP FN FP TP FN FP

Yohutagawa Debris
Flow

(
m2 ) 6155 5439.79 715.21 1251.93 5006.25 1148.75 518.75

Flume Test (dm2) 120.344 102.485 17.859 19.869 96.733 23.611 12.407
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An evaluation factor, represented by Ω in Equation (17), was employed to compre-
hensively evaluate the model’s performance, taking into account both misjudgment and
missed judgment [43].

Ω = α − β − γ (17)

The evaluation metric Ω systematically integrates the overlapping area, misjudgment
area, and missed judgment area within the debris flow range prediction, providing a well-
structured quantification approach. However, this metric assumes a linear influence of
the three parameters α, β, and γ on the assessment of predictive accuracy for debris flow
ranges, thereby neglecting the differing impacts of misjudgments and missed judgments
on the detrimental outcomes associated with debris flow range predictions.

F1 = 2·Pr × Re
Pr + Re

(18)
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Fβ =
(

1 + β2
)
· Pr × Re
(β2·Pr) + Re

(19)

Zhang [54] employs the F1 score, as depicted in Equation (18), to evaluate model
simulation accuracy, defined as the harmonic mean of precision and recall. To account
for the heightened adverse impact of the missed judgments over misjudgments, this
study adopts the F-beta score. The F-beta score, presented in Equation (19), serves as a
performance evaluation metric that reflects the model’s precision and recall rates. It adjusts
the recall rate via a parameter β, thus modulating the significance of recall relative to
precision. For debris flows, β = 2 is selected to emphasize the importance of recall. Table 4
shows the run-out extent evaluation index in the Yohutagawa debris flow and flume test.

Table 4. Evaluation index in the Yohutagawa debris flow and flume test.

Event
HCA Model SCA Model

Ω F1 Fβ Ω F1 Fβ

Yohutagawa
Debris Flow 0.5642 0.8469 0.8687 0.5424 0.8572 0.8304

Flume Test 0.5381 0.8445 0.8488 0.5045 0.8430 0.8191

Compared to the SCA model, the evaluation factors Ω and Fβ of the HCA model have
improved. In the Yohutagawa debris flow, Ω and Fβ increased from 0.5424 and 0.8304 to
0.5642 and 0.8687, respectively, resulting in an increase in the simulation accuracy by 4.02%
and 4.61%. In the flume test, Ω and Fβ increased from 0.5054 and 0.8191 to 0.5381 and 0.8488,
respectively, leading to a simulation accuracy improvement of 6.47% and 3.63%. However,
it is noteworthy that the evaluation factor F1 has not shown significant improvement, and
in some cases, the effect in the Yohutagawa debris flow was not as favorable as the original
SCA model. The reason for this occurrence lies in the inherent conservative nature of the
HCA model. To minimize missed judgments, it tends to prioritize overestimating the debris
flow extent, which inadvertently results in an increase in misjudgments.

4. Discussion
4.1. Interpolation Accuracy

In executing the slope computations within the flow direction function delineated in
Section 2.2, acquiring elevation data for each cell is imperative. This study employs DEM
raster data to discretely depict the Earth’s topography, furnishing elevation data for a finite
set of known points. Within the HCA framework of the network, the position information
of all cells is ascertainable via the lattice division method; however, the elevation for these
cells remains undetermined. To deduce the elevation values of these indeterminate points,
selecting a suitable interpolation method becomes essential.

Based on the first law of geography, widely employed terrain interpolation techniques
encompass inverse distance weighting (IDW), bilinear interpolation, and cubic interpo-
lation. This study evaluates the interpolation accuracy of the aforementioned terrain
interpolation methods, with the objective of identifying the most appropriate technique for
mountainous terrain for future research and application.

The “peaks” function in MATLAB exemplifies a tool for mountain terrain simula-
tions, generating landscapes with notable peaks and valleys. By adjusting the parameters,
researchers can customize the terrain features to align with their study’s topographic cri-
teria, obtaining DEM raster data, which includes elevation values at the grid points. We
compared terrain generated by the bilinear, cubic, and IDW interpolation methods. The
bilinear and cubic interpolations produced smoother terrains, whereas IDW appeared to
have jagged features. DEM accuracy is assessed using the root mean squared error (RMSE).
The calculation method of RMSE is shown in Equation (20).
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RMSE =

√
∑n

i=1 ε2
i

n
(20)

where Z is the true value of the terrain, z is the observed value or calculated value, ε = z− Z
is the error, and n is the number of errors.

Better smoothness can be obtained by interpolating the terrain using the bilinear
interpolation method or the cubic interpolation method. When mainly considering the
interpolation accuracy, it is recommended to use the cubic interpolation method. This
conclusion is based on a MATLAB terrain interpolation experiment, which compared
the computational efficiency and accuracy of different interpolation methods. The cubic
interpolation method proved superior to the bilinear interpolation method in terms of
interpolation accuracy, as reflected in Table 5. The RMSE in the cubic interpolation was an
order of magnitude lower, but the results of both methods were within acceptable limits.
The inverse distance weighting interpolation method was excluded first due to its low
accuracy. The bilinear interpolation method has an efficiency advantage over the cubic
interpolation method, especially when high accuracy in terrain interpolation is required.
The efficiency analysis of the interpolation methods in this paper is based on the terrain
conditions of the Yohutagawa debris flow event, which covered a small area. Even with
high-precision interpolation, the increase in computation time was only about two minutes.
This is acceptable for an order of magnitude improvement in RMSE precision, so the cubic
interpolation method was chosen.

Table 5. RMSE of different interpolation methods.

Interpolation Ratio Bilinear IDW Cubic

0.3 0.0100 0.0933 0.00042
0.5 0.0093 0.0603 0.00021
0.7 0.0100 0.0931 0.00042
0.9 0.0099 0.0941 0.00042
1.1 0.0092 0.0900 0.00036
1.3 0.0099 0.0928 0.00042
1.5 0.0092 0.0650 0.00020
1.7 0.0098 0.0922 0.00042

4.2. Interpolation Efficiency

Interpolation calculations were conducted on the Yohutagawa DEM data, with the
calculation durations for each of the two interpolation methods recorded. A comparative
analysis revealed that across varying lattice sizes, the bilinear interpolation method con-
sistently necessitates less time than the cubic interpolation method. Specifically, with a
cell size of 3 m, the efficiency of bilinear interpolation significantly surpasses that of cubic
interpolation. The interpolation duration decreased from 345.85 s to 245.69 s, marking a
reduction of 100.16 s and an enhancement in computational efficiency by 28.96%. However,
at a cell size of 5 m, the computational efficiency advantage of the bilinear interpolation
method diminishes, with the reduction in interpolation time amounting to merely about
10 s. For cell sizes of 7 m and 10 m, the time savings achieved through interpolation are
even more marginal, amounting to only 1–2 s. In scenarios with fine interpolation grids and
extensive computational demands, the bilinear interpolation method markedly enhances
the calculation speed. Consequently, the bilinear interpolation method is advisable. Nev-
ertheless, considering the relatively short overall interpolation duration and the minimal
time differences between commonly utilized lattice sizes (5 m, 10 m), cubic interpolation,
which offers superior accuracy, is recommended. This approach is also employed in the
method presented in this study for interpolating cell elevations.
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4.3. Dam-Crossing Test

In Sections 2.3 and 2.4, we introduced the sink-filling model and the maximum length
function, respectively. This section conducts a series of model tests to verify the performance
of these two models in the HCA, including their advantages and necessity. The tests
simulate debris flows of various sizes in the Yohutagawa terrain, originating from the
collapse point and flowing downstream to the dam. Figure 9a displays the results when
the simulated flushing volume is 1000 m3. At this point, the debris flow fails to cross the
dam. In Figure 9b, with an overflow volume of 2000 m3, the debris flow begins to cross the
dam body, posing risks to human habitation areas. Figure 9c depicts the scenario where
the flushing volume is set at 3000 m3. The simulation results show that the debris flow
successfully traverses the dam body. As the outflow reaches 5000 m3, shown in Figure 9d,
more debris accumulates on the alluvial fan.
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Figure 9. Model results for debris flows of different scales: (a) Sedimentation in front of the dam,
(b) debris flow over the dam, (c) a large number of debris flows rushed out and reached their
maximum length, and (d) more outbursts strengthen the lateral expansion of debris flows.

This experiment corresponds to the stopping conditions following debris flows of
varying scales. When the debris flow scale falls within the dam’s capacity, it is entirely
obstructed, posing no threat to the human habitation facilities downstream. In our HCA
model, such scenarios trigger a sink-filling model, where all debris flow sediments ac-
cumulate at the site, raising the terrain elevation to facilitate the potential overtopping
of the dam by subsequent debris flows. Once the debris flow scale surpasses the dam’s
threshold capacity, in the HCA, this is depicted as a breach volume adequate for complete
“dam-front filling”, with the surplus flow overflowing the “leveled” dam. Subsequently,
the maximum length function determines the debris flow’s deposition pattern and extent
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of the flow. At this juncture, as the debris flow scale increases, so does its maximum length
(Equation (10)), signifying its impact on more distant areas. However, a notable aspect is the
triggered lateral expansion. With the escalation in breach volume, compared to Figure 9c,
Figure 9d exhibits an elongation in breach length, and the debris flow’s “width” becomes
more pronounced.

The experimental findings illustrate that the HCA model offers an appropriate depic-
tion of this phenomenon and even conservatively predicts it to some degree.

5. Conclusions

This study presents a HCA numerical model specifically designed for simulating
debris flows. In this framework, digital elevation model data are used to divide the
terrain into hexagonal cell spaces and perform elevation interpolation. After debris flow
simulations, the case inversion analysis confirms the model’s suitability.

1. The hexagonal honeycomb network configuration closely resembles a circular shape
compared to quadrilateral grid structures and demonstrates isotropy, guaranteeing
uniform properties in all directions. This feature is beneficial for maintaining the
model’s geometric and physical coherence during the simulation of complex terrain
and flow dynamics.

2. We compared the accuracy and efficiency of the IDW, bilinear, and cubic interpolation
methods. The results show that cubic interpolation has the highest interpolation
accuracy, and IDW interpolation accuracy is poor. When the lattice is finely divided,
bilinear interpolation has obvious efficiency advantages over cubic interpolation.
We recommend using bilinear or cubic interpolation methods as appropriate in the
specific case.

3. Building upon cellular automaton theory, transition rules define the process of debris
flow. These transition rules focus on interactions among neighboring cells, avoiding
the necessity of solving complex partial differential equations. The model utilizes
the flow direction function, the sink-filling approach, the maximum length function,
and the Monte Carlo iterative method to simulate the debris flow run-out extent,
highlighting the model’s usefulness.

4. The model has been applied to both simulate a water tank and replicate the Yohuta-
gawa debris flow incident. In the Ω-based evaluation framework, the Ω values for
the flume test simulation and the Yohutagawa debris flow incident are 0.5381 and
0.5642, respectively. These values represent improvements over the previous CA
model’s values of 0.5054 and 0.5424. The Fβ score evaluation framework considers
the varying impacts of missed judgments and misclassifications. The Fβ scores for the
HCA model, 0.8488 and 0.8687, respectively, surpass those of the SCA model (0.8191
and 0. 8304) by 3.63% and 4.41%, respectively.
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