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Abstract: In the design of offshore engineering foundations, a critical consideration involves deter-

mining the peak shear strength of marine soft clay sediment. To enhance the accuracy of estimating 

this value, a database containing 729 direct shear tests on marine soft clay sediment was established. 

Employing a machine learning approach, the Particle Swarm Optimization algorithm (PSO) was 

integrated with the Adaptive Boosting Algorithm (ADA) and Back Propagation Artificial Neural 

Network (BPANN). This novel methodology represents the initial effort to employ such a model for 

predicting the peak shear strength of the soil. To validate the proposed approach, four conventional 

machine learning algorithms were also developed as references, including PSO-optimized BPANN, 

Support Vector Machine (SVM), BPANN, and ADA-BPANN. The study results show that the PSO-

BPANN model, which has undergone optimization via Particle Swarm Optimization (PSO), has 

prediction accuracy and efficiency in determining the peak shear performance of marine soft clay 

sediments that surpass that offered by traditional machine learning models. Additionally, a sensi-

tivity analysis conducted with this innovative model highlights the notable impact of factors such 

as normal stress, initial soil density, the number of drying–wetting cycles, and average soil particle 

size on the peak shear strength of this type of sediment, while the impact of initial soil moisture 

content and temperature is comparatively minor. Finally, an analytical formula derived from the 

novel algorithm allows for precise estimation of the peak shear strength of marine soft clay sedi-

ment, catering to individuals lacking a background in machine learning. 
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1. Introduction 

Marine soft clay sediment is a commonly employed foundation material in various 

offshore engineering projects, including embankments and breakwaters [1–4]. Conse-

quently, the mechanical properties of marine soft clay sediment, particularly its peak 

shear strength, play a pivotal role in ensuring the stability of ocean engineering structures 

[5–7]. The decline in the peak shear strength of marine soft clay sediment can lead to 
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instability and potential damage to foundations or even the entire offshore engineering appli-

cation [8–10]. This underscores the significance of accurately assessing the peak shear strength 

of marine soft clay sediment for the operational safety of engineering infrastructures [11–14].  

Throughout the operational phase, the marine soft clay sediment foundation is una-

voidably subjected to diverse environmental factors within the ocean, which can exert a 

substantial influence on its peak shear strength [15–17]. For instance, in offshore regions, 

the climate is changeful, such as alternating periods of rainfall and shine. These changes 

can induce drying–wetting cycles in the marine soft clay sediment, causing frequent ex-

pansion and shrinkage, which can reduce the clay peak shear strength [18–20]. Further-

more, the thermal reactions resulting from the climatic changes can cause temperature 

variations, which can either strengthen or weaken the mechanical properties of the soil [21–

23]. Additionally, inherent properties of the marine soft clay sediment, such as soil density, 

moisture content, and other factors, can also have an impact on its peak shear strength [10,24–

26]. Considering the prediction of the peak shear strength of marine soft clay sediment, the 

impact of both external and internal influencing factors cannot be overlooked [27–29].  

To precisely evaluate the peak shear strength of marine soft clay sediment, research-

ers have designed specialized testing equipment capable of simulating the unique service 

conditions within these environments [30–33]. Notably, Chao and Fowmes [33] intro-

duced a custom apparatus capable of quantifying the peak shear strength of soil or the 

soil-geosynthetics interface under varying temperature conditions during drying–wetting 

cycles. By utilizing these custom test devices, the peak shear resistance of marine soft clay 

sediment in practical offshore engineering environments can be assessed. However, there 

are several limitations associated with laboratory test approaches. Firstly, developing be-

spoke apparatuses can be costly and requires specialized mechanical and design 

knowledge, which may not be readily available to every environmental or construction 

engineering researcher. Secondly, operating the custom apparatuses typically requires the 

continuous involvement of a skilled practitioner, which can be labor intensive. Thirdly, 

the process of simulating the real offshore engineering environment, including reaching 

temperature equilibrium or conducting drying–wetting cycles, can be time consuming 

[34–36]. Developing precise predictive models that accurately estimate the peak shear 

strength of marine soft clay sediments under real-world conditions have the potential to 

significantly address the aforementioned challenges. 

As previously mentioned, the peak shear strength of marine soft clay sediments is 

influenced by a diverse array of variables exhibiting intricate interaction mechanisms [37–

39]. The intricate nature of this problem poses significant challenges in establishing direct 

empirical equations through conventional statistical methods, thereby making it challeng-

ing to accurately replicate the nonlinear relationship between these influences [40,41]. This 

relationship is crucial for precise estimation of peak shear strength [42–44]. This under-

scores the pressing need for reliable approaches capable of providing accurate and effi-

cient estimation of the peak shear strength of marine soft clay sediment [45,46].  

The scientific community has shown significant interest in machine learning tech-

niques, leading to their widespread application in marine engineering. This widespread 

adoption is primarily attributed to the techniques’ remarkable capacity to precisely cap-

ture the intricate and non-linear relationships among various factors [47]. Notably, Cav-

alcante et al. [42] utilized machine learning approaches to estimate rock tensile strength, 

demonstrating the powerful predictive capacity of machine learning techniques in such 

applications. Likewise, in the domain of predicting soil peak shear strength, efforts have 

been made to leverage machine learning models for precise estimations. Khodkari et al. 

[47–51] utilized Genetic Algorithm (GA) optimized Artificial Neural Networks (ANNs) to 

evaluate soil shear strength based on the inherent characteristics of the soil. Meanwhile, 

Chao et al. [51] applied a hybrid Support Vector Machine (SVM) model to assess soil shear 

strength, and Xu et al. [52] developed a Particle Swarm Optimization (PSO) optimized 

Support Vector Machine (SVM) model for the same purpose. Despite these advancements, 

existing research on machine learning models for soil peak shear strength exhibits certain 
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deficiencies that necessitate further refinement [53,54]. Firstly, soil shear strength model-

ing often ignores the effects of environmental factors such as dry and wet cycles and tem-

perature, thus limiting its ability to assess the peak shear strength of marine soft clay sed-

iments under real-world conditions of use [55,56]. Secondly, prior studies predominantly 

relied on basic and overly simplified machine learning algorithms, ignoring the potential 

for greater advanced algorithms, including technology sets such as the ADA combined 

with BPANN, for precise estimation of peak shear strength in soil [57–59]. 

The predictive performance of machine learning algorithms is significantly influ-

enced by a subset of parameters referred to as hyperparameters [60–62]. Prior to model-

ing, the hyperparameters of the machine learning model must be optimized by employing 

appropriate optimization algorithms. This step is crucial as it can significantly improve 

the predictive performance of the models [63–65]. Extensive research in the literature sup-

ports this claim, with various academic researchers acknowledging the notable advance-

ments achieved through the employment of optimization algorithms [66–68]. In general, 

the machine learning models without combining optimization algorithms are inefficient, 

with slow convergence speed, overtraining, or are prone to converging to local optima, 

and often pose a convergence problem. More importantly, there is subjectivity in the arti-

ficially determining of initial model parameters, which causes low predictive accuracy. 

Hence, the optimized algorithms, such as Genetic Algorithm (GA) and Particle Swarm 

Optimization (PSO) have been applied by some researchers to optimize the initial param-

eters of machine learning models for evaluating the properties of geotechnical materials, 

and an increase in both predictive accuracy and convergence speed of the constructed 

machine learning models after combining optimization algorithms has been demon-

strated. For instance, Chao et al. [33] applied PSO and Genetic Algorithm (GA) to optimize 

the performance of BPANN and Support Vector Machine (SVM) algorithms when as-

sessing the peak shear strength for the soil-geosynthetics interface. Nevertheless, there is 

a lack of reports on how optimization algorithms can be used to improve the predictive 

performance of machine learning algorithms when estimating the peak shear strength of 

marine soft clay sediments. 

In this study, we introduced an innovative PSO-tuned ADABPANN algorithm to pre-

dict the peak shear strength of marine soft clay sediment using a database derived from 

729 laboratory tests. This marks the first application of the PSO-tuned ADABPANN algo-

rithm in forecasting soil peak shear strength. Simultaneously, five distinct traditional ma-

chine learning models, including PSO-tuned BPANN and SVM models, BPANN, and 

ADABPANN algorithms, were established to assess the applicability of the newly pro-

posed model. Utilizing the PSO-optimized ADABPANN model, susceptibility analysis 

was conducted, leading to the formulation of an analytical formula for precise predictions 

of the peak shear strength of marine soft clay sediment, catering to practitioners lacking ma-

chine learning expertise. The proposed PSO-tuned ADABPANN model demonstrates accu-

rate and efficient estimation of the peak shear strength for marine soft clay sediment, serving 

as a pivotal element in advancing the design and operational safety of foundations.  

2. Machine Learning Algorithms 

This paper employed three types of machine learning algorithms: BPANN, SVM, and 

Adaptive Boosting Algorithm-Back Propagation Artificial Neural Network (ADABPANN), 

alongside the optimization algorithm Particle Swarm Optimization (PSO). The basic explana-

tion and fundamental specifications of these algorithms are outlined below. 

2.1. BPANN 

The BPANN model, as a general structure, consists of input, hidden, and output lay-

ers [69–71]. The number of neurons in the input and output layers is directly correlated 

with the number of input and output variables, respectively. In this study, this amounts 

to 6 and 1. The determination of the number of hidden layer neurons (9) was achieved 

through an exhaustive enumeration method, as illustrated in Figure 1. Furthermore, the 
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BPANN model employs HTSTF as the activation function and the Levenberg–Marquardt 

Backpropagation Algorithm (LMBA) as the training algorithm for the network. 

 

Figure 1. The typical structure of BPANN. 

2.2. SVM 

SVM has the capability to perform regression operations with limited sample data 

[72–75]. Furthermore, SVM can utilize kernel functions to project specimens from a low-

dimensional space to a high-dimensional space, thus effectively transforming a nonlinear 

problem into a linear one [76]. 

2.3. ADA-BPANN 

ADA-BPANN is a resilient ensemble machine learning algorithm that utilizes 

BPANN models with identical structures. This integration is based on the principles of 

bootstrap aggregating theory, which enhances its overall performance and robustness 

[75,77]. In this study, the specifications of the BPANN models align with the previously 

mentioned BPANN model. The ADA-BPANN algorithm offers advantages such as 

straightforward operation, cost-effective computation, superior predictive accuracy, and 

generalization capability [78,79].  

The detailed configurations of the constructed models are illustrated in Table 1. 

Table 1. Configurations of the employed algorithms. 

Algorithm 
Input Layer Node 

Number 

Hidden Layer Node 

Number 

Output Layer Node 

Number 

Base Leaner Num-

ber  

BPANN 7 9 1 X 

ADABPANN 7 9 1 40 

2.4. PSO 

PSO is a heuristic optimization algorithm that simulates natural evolution principles 

to guide the optimization of a population [80]. Specifically, PSO is inspired by bird preda-

tion behavior, where particles within the population serve as potential solutions. Through 

the continuous adjustment of particle motion velocities, PSO strives to identify the optimal 

solution for the given problem [81,82].  
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3. Hyperparameters Optimization 

In the study, PSO was employed to optimize the hyperparameters the machine learn-

ing algorithms proposed, utilizing RMSE (Root-Mean-Square Error) as the fitness metric. 

(Equation (1)). Given the commonality of PSO optimization processes and the availability 

of detailed introductions by many researchers, this study does not provide an in-depth 

explanation of the optimization procedures. The specific optimizing procedure is pre-

sented in Figure 2. 

2

1

( )n
i i

i

y f
RMSE

n=

−
=   (1) 

where n denotes number of samples, denotes observed value, signifies the predicted value. 

 

Figure 2. The flow chart of PSO optimizing. 

The parameters that control PSO are summarized in Table 2, while Table 3 presents 

the optimization hyperparameter and the corresponding ranges for optimization. 

Table 2. The control variables for the optimization algorithm. 

Algorithm PSO 

Individual number 200 

Number of subgroups  

Number of the maximum iterations 100 

Cognitive constant/Social constant 2.05 

Inertia weight 0.98 

Var maximum 1 

Var minimum −1 

Maximum velocity 2 

Minimum velocity 0.01 

Selection method O 

Crossover O 

Mutation O 

Mutation rate O 

Selection pressure O 
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Table 3. The optimization hyperparameters. 

Algorithm Hyperparameter Optimisation Range 

BPANN 
Original node weight −5–5 

Original node threshold −10–10 

SVM 
Penalty parameter c of SVM 2−6–26 

Penalty parameter g of kernel function 4−6–46 

ADA-BPANN 

Base leaner number  1–20 

Original node weight for the base learner −5–5 

Original node threshold for the base learner −10–10 

4. Methodology 

4.1. Laboratory Tests 

The physical experiments were conducted using a custom-designed temperature-con-

trolled direct shear apparatus, which consists of several main components, including a tem-

perature-controlled system, a drying–wetting cycles-controlled system, a normal pressure 

loading system, and a shear pressure loading system. The internal large interface shear system 

is placed inside the temperature chamber. The upper shear box has a square cross-sectional 

area of 300 mm by 300 mm and a thickness of 150 mm. The temperature-controlled system is 

capable of adjusting the temperature of the soil sample by utilizing a heating device located 

beneath the bottom shear box. The temperature can be adjusted within a range of 30 °C to 140 

°C, with a high level of precision, maintaining control within 0.2 °C. Additionally, the drying–

wetting cycles-controlled system can regulate the moisture status of the soil sample, allowing 

for controlled submersion in water or drying cycles. The normal pressure and shear pressure 

systems are capable of measuring the peak shear strength for soil in diverse normal pressure 

(0 kPa~400 kPa), with the maximum shear displacement being 100 mm. 

The standard testing protocol is as follows: (1) Gently place the marine soft clay sed-

iment sample into the upper and bottom shear boxes and compact it lightly. (2) Activate 

the temperature-controlled system to stabilize the soil sample temperature for the entire 

test duration. (3) Initiate the drying–wetting cycles-controlled system to subject the clay 

sample to cycles. Wetting cycles involve fully submerging the soil sample in water for 0.5 

h, constituting one wetting cycle. During drying cycles, maintain the soil sample in a dry-

state (soil samples were removed from water and dried using the ambient temperature 

chamber) for 0.5 h, constituting one drying cycle. One drying–wetting cycle comprises one 

wetting cycle and one drying cycle. (4) After a predetermined number of drying–wetting 

cycles, begin the undrained shearing procedure with a shear rate of 1 mm/minute and a 

maximum shearing displacement of 100 mm. (5) Derive the peak shear strength for marine 

soft clay sediment under specific temperatures during distinct drying–wetting cycles 

based on the test data. In the present study, the peak shear strength of marine soft clay 

sediment with varying mean soil particle sizes, initial density, and initial moisture content 

was measured under different temperatures, numbers of drying–wetting cycles, and nor-

mal pressure. The experimental condition involved unconsolidated undrained shearing. 

The properties of the marine soft clay sediment sample are listed in Table 4, and the test 

plan is detailed in Table 5. A total of 729 sets of tests were conducted. 

Table 4. The basic parameters of soil sample. 

Initial Density/g/cm3 Initial Moisture Content/% Mean Soil Particle Size/mm 

0.5, 2, 4 0, 24, 46 0.001, 0.02, 0.05 

Table 5. The test plan. 

Temperature/°C Number of Drying–Wetting Cycles Normal Pressure/kPa 

20, 40, 60 0, 6, 12 15, 30, 50 
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4.2. Database Creation and Data Processing 

Using the above test data, a database containing 729 datasets was created for machine 

learning modeling. Within these datasets, 583 groups (80%) were randomly chosen for 

training datasets for constructing the machine learning algorithm. Meanwhile, 146 groups 

(20%) were randomly chosen as test datasets to evaluate the predictive ability of the pro-

posed machine learning algorithm. Each data group consisted of six variables, namely 

initial soil density (D), initial soil moisture content (M), initial mean soil particle size (S), 

temperature (T), drying–wetting cycle number (C), and normal pressure (N), serving as 

input parameters. The output variable was determined as the peak shear strength of the 

marine soft clay sediment sample (H). Table 6 shows the statistics of the input and output 

variables in the database. Figure 3 shows the distribution of the input parameter data in 

the database, where the x-axis represents the count of data groups associated with the 

value of a particular input variable, and the y-axis represents the value of the input pa-

rameter. Also, the correlation between the input parameters was investigated, with the 

Pearson’s correlation matrix being illustrated in Figure 4. According to Figure 4, The cor-

relation coefficients between the input parameters (initial density, initial moisture content, 

mean soil particle size, temperature, number of drying–wetting cycles, and normal pres-

sure) are 0. This indicates that the input parameters are independent of each other and 

they do not have a correlation. 

Table 6. The statistics. 

 Parameters Kinds Minimum Maximum Average Standard Deviation 

Input 

Initial soil density/g/cm3 

Numeric 

0.5 4 2.17 0.36 

Initial soil moisture content/% 0 46 39.33 3.30 

Mean soil particle size/mm 0.001 0.05 0.024 0.03 

Temperature/°C 20 60 40 4.5 

Number of drying–wetting cycles 0 12 6 1.24 

Normal stress/kPa 15 50 31.66 4.29 

Output Peak shear strength/kPa Numeric 9 41 24 3.36 
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Figure 3. Data distributions for the database. (a) Initial soil density; (b) initial moisture content; 

(c) mean soil particle size; (d) number of drying–wetting cycles; (e) normal stress; (f) 

temperature. 

 

Figure 4. Pearson correlation coefficients graph. 



Water 2024, 16, 1664 11 of 28 
 

 

In this study, a machine learning model was constructed using Matlab. Before start-

ing the machine learning modeling, the dimensions of the input and output variables were 

normalized to improve the predictive accuracy and effectiveness of the machine learning 

algorithm. The normalization formula is as follows (2). 

min

max min

2( )
1Normalised

x x
x

x x

−
= −

−
 (2) 

where Normalisedx
  and x   represent normalized and initial data, respectively, minx

and maxx
 denote the minimum and maximum data, respectively.  

4.3. Approaches for Evaluating Performance 

The predictive accuracy of the constructed machine learning algorithm is evaluated 

by three parameters: 

(i) RMSE: The definition of RMSE is expressed in Equation (1), representing the stand-

ard error between the estimated and measured values. A lower RMSE value indicates 

higher accuracy in the model.  

(ii) Correlation coefficient (R2): The definition of R2 is expressed in Equation (3), which is 

the associated degree between the change of forecasted and observed value. R2 value 

is in the range of [−1, 1], with −1 and 1 representing the absolutely negative and pos-

itive correlations, respectively [82,83]. 

   

cov( , )
( , )

var var

i i

i i

i i

f y
R f y

f y
=

 

(3) 

where 
cov(, )

 means covariances, 
 var

 means variances. 

(iii) Mean absolute percentage error (MAPE): MAPE is defined in Equation (4) as a di-

mensionless parameter. A smaller MAPE value indicates a more accurate model, 

with a value of 0 indicating a perfect prediction.  

1

100% n
i i

i i

y f
MAPE

n y=

−
= 

 

(4) 

5. Predicting Performance 

5.1. Results for Hyperparameter Optimization 

The process of optimizing hyperparameters for ADABPANN, BPANN, and SVM 

models using PSO approach is depicted in Figure 5. 
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Figure 5. Optimization processes by PSO. (a) BPANN; (b) SVM; (c) ADABPANN. 

As depicted in Figure 5, for ADABPANN, BPANN, and SVM, the RMSE value grad-

ually decreases with the increase in the iteration number during the PSO process. Com-

paring the optimized RMSE value to the value before optimization reveals a relatively signif-

icant decrease. Specifically, after optimization using PSO, the RMSE of ADABPANN, BPANN, 

and SVM decreases from 14.5 to 3.1, 16.9 to 5, and 14.7 to 6.9, respectively. This indicates the 

pronounced improvement effect of PSO on predictive accuracy.  

5.2. Predicting Performance 

The predictive performance of the machine learning models developed for evaluat-

ing the drilling and measuring datasets is illustrated in Figures 6–8. 
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Figure 6. The R value for the algorithms in training datasets. (a) BPANN; (b) SVM; (c) PSO−BPANN; 

(d) PSO−SVM; (e) PSO−ADABPANN. 
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Figure 8. The MAPE values of the models. 

When evaluated with the training datasets, as depicted in Figures 6–8, the PSO-tuned 

ADABPANN model exhibits superior predictive performance compared to the other four 

algorithms. It is noteworthy that the model has the highest predictive accuracy with the 

lowest RMSE value of 2.7, the smallest MAPE value of 5.41%, and the highest R2 value of 

0.99. The PSO-tuned SVM model follows closely in performance. In contrast, the predic-

tive capabilities of the PSO-tuned BPANN model, SVM model, and BPANN model appear 

relatively inferior.  

As depicted in Figures 7–9, the PSO-tuned ADABPANN model consistently outper-

forms the other four machine learning models in terms of prediction performance when 

assessed with the test dataset. Notably, the PSO-tuned ADABPANN model shows the best 

prediction accuracy with the lowest RMSE value of 3.11, the smallest MAPE value of 

6.33%, and the highest R2 value of 0.99. Among the rest of the machine learning models, 

the PSO-tuned SVM model performs relatively well. In summary, the PSO-tuned 
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ADABPANN model demonstrates superior performance in evaluating both training and 

testing datasets compared to the PSO-tuned SVM model and BPANN model. Specifically, 

the PSO-tuned ADABPANN model excels in forecasting the peak shear strength for ma-

rine soft clay sediment with higher precision and efficiency. Notably, within the same ma-

chine learning algorithm, the models combined using the PSO algorithm outperform in-

dividual machine learning models, exhibiting higher predictive accuracy. 
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Figure 9. The R2 value for the algorithms in testing datasets. (a) BPANN; (b) SVM; (c) PSO-BPANN; 

(d) PSO-SVM; (e) PSO-ADABPANN. 

5.3. Sensitivity Analysis 

In this comprehensive section, the meticulously crafted PSO-tuned ADABPANN 

model is utilized to conduct a rigorous sensitivity analysis. The purpose of this analysis is 

to scrutinize the relative importance of various input parameters in predicting the peak 

shear strength of marine soft clay sediments. By doing so, we aim to gain a deeper under-

standing of how these parameters influence the overall prediction accuracy and to identify 

any potential areas of improvement for future model iterations. The ADABPANN algo-

rithm, composed of multiple BPANN models will be discussed. The relative importance 

of the input variables is assessed using the Garson’s algorithm as defined in Equation (5). 

Determining the relative importance of input variables in the BPANN algorithm using the 

Gasson algorithm serves as a surrogate measure for assessing the significance of these 

parameters in the ADABPANN model. As shown in Figure 10, this surrogate metric al-

lows us to gain insight into the impact of various input factors on the overall predictive 

performance of the ADABPANN model. By analyzing these findings, we can identify po-

tential areas for optimization and refinement, further enhancing the accuracy and reliabil-

ity of the model [84,85]. 
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(5) 

where ikR
  signifies the relative significance for input variables, and 

ijW
 , 

jkW
  repre-

sents the connectivity weight for the hidden-input and hidden-output layers (N, M repre-

sents the input and output variable numbers, respectively). 
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Figure 10. Relative significance for the input variables. 

As illustrated in Figure 10, normal stress is identified as having the highest impact 

on the peak shear resistance of marine soft clay sediment, with a relative significance of 

27.17%. It is closely followed by initial soil density, the drying–wetting cycle number, and 

mean soil particle size, accounting for 20.33%, 19.24%, and 17.36%, respectively. Con-

versely, the influence of initial soil moisture content and temperature on peak shear 

strength is relatively small, contributing 9.6% and 6.3%, respectively. For a detailed un-

derstanding of the mechanism, please refer to the “Discussion” section. 

6. Establishment of an Analytical Formula 

The above analysis suggests that the constructed PSO-tuned ADABPANN model can 

offer accurate estimations of the peak shear strength for marine soft clay sediment. How-

ever, due to the intricacies of machine learning modeling, applying these models might 

pose a challenge for individuals without a background in machine learning. To address 

this limitation, this section proposes an analytical formula for forecasting the peak shear 

strength of marine soft clay sediment by utilizing the built PSO-tuned ADABPANN 

model. As previously mentioned, the ADABPANN model consists of a set of BPANN 

models, and the output values of the BPANN models can be calculated from the connec-

tion weights and biases of the nodes in the model using Equation (6). Therefore, the esti-

mation of the PSO-ADABPANN model can be obtained from Equation (6) by using the 

average connection weights and biases calculated for the BPANN models that make up 

the ADABPANN algorithm, as detailed in Table 7 [86–90]. 

0
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Table 7. Connected weights and biases for the constructed PSO-ADABPANN algorithm. 

Hidden Layer 

Nodes Number  

Weight Bias 

Input Parameter Output Parameter Hidden 

Layer 

Output 

Layer  D M S T C N H 

1 0.24 0.92 0.45 1.26 0.92 0.63 0.92 0.14 

0.95 

2 −0.93 0.41 1.33 2.33 1.36 1.22 1.22 0.11 

3 −1.29 0.06 −2.72 3.26 −2.39 2.34 0.36 −1.29 

4 1.24 −0.36 −2.14 1.29 4.36 3.26 1.90 0.79 

5 1.36 −0.99 3.09 0.45 0.60 1.92 −0.06 0.17 

6 0.72 −1.22 3.63 2.92 −0.25 0.24 0.30 4.36 

7 0.79 2.34 0.63 3.02 1.45 2.46 −0.27 1.33 

8 2.27 2.63 0.29 −0.72 0.42 −0.1 0.94 −0.90 

9 −3.36 3.06 2.67 −2.90 4.60 0.46 −4.19 −0.07 

Utilizing Equation (6), the analytical formula for estimating the peak shear strength 

for marine soft clay sediment is derived and presented in Equation (7). 

max min min0.5( 1)( )nY Y Y Y = + − +
 

(7) 

where maxY
 and minY

 denote the highest and lowest data for the peak shear strength 

in the database, respectively, max 9Y kPa=
 and min 41Y kPa=

. 

Among Equation (8): 
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where ig
 denotes the connection weights between the i-th hidden layer junction and 

the output layer junction of the constructed PSO-ADABPANN algorithm, as detailed in 

Table 7.  

In Equation (10): 

9

1

i i j j

j

A h p N
=

= + 
 

(10) 

where ih
 denotes the biases for the j-th hidden layer node; jp

 denotes the connected 

weight between the j-th input layer junction and the i-th hidden layer junction; jN
 de-

notes the i-th uni-formalized input variable. 

7. Validation of the Predicting Performance with the Physical Tests 

In order to assess the feasibility of the suggested analytical formulation and machine 

learning model, we compared the peak shear strengths of marine soft clay sediments pre-

dicted using the analytical formulation with the peak shear strengths acquired from phys-

ical tests. The overall process is outlined as follows: (1) Conduct large direct shear exper-

iments on marine soft clay sediment with varying properties under different test condi-

tions using the bespoke apparatus. The basic parameters of the marine soft clay sediment 
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sample and the test plan are listed in Tables 8 and 9, respectively, totaling 32 sets of tests. 

(2) Estimate the peak shear strength of marine soft clay sediment based on the soil sample 

properties and test conditions using Equation (7). (3) Compare the peak shear strength 

obtained from the analytical equation and machine learning model, with the results illus-

trated in Figure 11 [91–95]. 

Table 8. The fundamental parameters of the validation soil sample. 

Initial Density/g/cm3 Initial Moisture Content/% Mean Soil Particle Size/mm 

1.4, 3.6 15, 42 0.01, 0.30 

Table 9. The validation test plan. 

Temperature/°C Number of Drying–Wetting Cycles Normal Pressure/kPa 

30, 45 4, 9 40 
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Figure 11. The validation results. (a) The MAPE and RMSE; (b) the R2 values; (c) the predicted and 

measured value. 

As shown in Figure 11, the peak shear strengths of marine soft clay sediments pre-

dicted using the analytical equations are very close to the peak shear strengths obtained 

from laboratory tests [96–98]. Specifically, the RMSE, MAPE, and R2 values are 4.92, 4.36%, 

and 0.99, respectively. These results indicate that the prediction accuracy of the con-

structed analytical equations and machine learning model is satisfactory. 

8. Discussion 

The sensitivity analysis indicates a substantial impact of the drying–wetting cycle 

number on the peak shear strength of marine soft clay sediment used as foundations, with 
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a notable relative significance of 19.24%. This influence is attributed to the expansion and 

shrinkage properties of marine soft clay sediment during the absorption and expulsion of 

water, respectively. The frequent alternation of soil expansion and shrinkage during dry-

ing–wetting cycles leads to volume variations, inducing the generation of cracks within 

the marine soft clay sediment. This damage to the structure consequently decreases the 

peak shear strength. Moreover, a larger drying–wetting cycle number is observed to cause 

more significant damage to the soil structure, resulting in a larger decreasing magnitude 

in the peak shear strength compared to a smaller number of cycles. Therefore, the drying–

wetting cycle number exhibits a relatively high importance in determining the peak shear 

strength of marine soft clay sediment. It is essential to note that in this study, the relative 

significance of the initial soil moisture content for the peak shear strength is relatively 

small, at 9.6%. This is attributed to the requirement that marine soft clay sediment samples 

undergo drying–wetting cycles before conducting large direct shear tests. Consequently, 

the moisture content of the soil samples tends to converge to a similar level after the dry-

ing–wetting cycles, diminishing the impact of initial moisture content on the peak shear 

strength. Furthermore, the low relative significance of temperature, at 6.3%, can be explained 

by the moderate temperature range (20–60 °C) adopted in this research. This temperature 

range is not extreme enough to induce freezing or melting of the soil, which would signifi-

cantly alter the soil structure and result in a large variation in peak shear strength.  

Two critical aspects of this research warrant further improvement. (1) In actual off-

shore engineering sites, the environment of marine soft clay sediment is intricate, and the 

environmental factors affecting marine soft clay sediment extend beyond just drying–wet-

ting cycles and temperature. Therefore, future research should strive to determine the 

peak shear resistance of marine soft clay sediment under the influence of various environ-

mental loadings, including leachate erosion, to augment the current database. These en-

hancements will establish a robust foundation for the advancement of machine learning 

models, enabling more precise assessments of the peak shear strength of marine soft clay 

sediments in real-world offshore engineering applications. (2) In practical offshore engi-

neering, the stress environment experienced by marine soft clay sediment is complex, in-

volving factors such as triaxial shear stress, among others. Therefore, conducting tests to 

measure the peak shear strength of marine soft clay sediment under various stress condi-

tions, including triaxial shearing and axial shearing, would be valuable. Based on these 

test results, existing databases can be extended to create more accurate machine learning 

models capable of predicting the peak shear performance of marine soft clay sediments in 

real stress environments. 

9. Conclusions 

This study has established a comprehensive database comprising 729 large-scale di-

rect shear tests, providing a robust foundation for developing a novel PSO-tuned 

ADABPANN model aimed at predicting the peak shear strength of marine soft clay sedi-

ment. The constructed model takes into account essential input parameters, including in-

itial soil density, initial soil moisture content, mean soil particle size, number of drying–

wetting cycles, temperature, and normal pressure. It is noteworthy that this marks the first 

application of the PSO-tuned ADABPANN model for estimating soil peak shear re-

sistance. In order to authenticate and contrast the predictive performance of the proposed 

innovative algorithms, traditional machine learning models such as PSO-optimized 

BPANN and SVM were also developed. In addition, a sensitivity analysis based on the 

PSO-optimized ADABPANN algorithm was conducted to evaluate the relative im-

portance of the input parameters on the peak shear strength of marine soft clay sediments. 

In addition, an analytical expression was devised to facilitate precise evaluation of peak 

shear strengths for organizations lacking expertise in machine learning techniques.  

The current study confirms the efficacy of the proposed PSO-optimized ADABPANN 

algorithm in efficiently and accurately evaluating the peak shear performance of marine 

soft clay sediments, which outperforms conventional machine learning algorithms. 
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Notably, this study observed superior optimization and efficiency when PSO was em-

ployed. Sensitivity analyses showed that normal stress, initial soil density, average soil 

grain size and number of wet and dry cycles had a significant effect on the peak shear 

strength of marine soft clay sediments, whereas the initial soil moisture content and tem-

perature had relatively minor effects.  

In conclusion, accurately estimating the peak shear strength of marine soft clay sedi-

ments poses significant challenges due to the presence of numerous influencing factors 

and intricate interaction mechanisms. Nevertheless, the introduction of the novel PSO-

adjusted ADABPANN model successfully addresses these challenges, providing a reliable 

method for accurate and efficient prediction of peak shear strength. The model provides 

a solid foundation for future developments in foundation design, thereby improving the 

overall performance and effectiveness of offshore infrastructure.  
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