
Citation: Kondratenko, J.; Boogaard,

F.C.; Rubulis, J.; Mal,inovskis, K.

Spatial and Temporal Variability in

Bioswale Infiltration Rate Observed

during Full-Scale Infiltration Tests:

Case Study in Riga Latvia. Water 2024,

16, 2219. https://doi.org/10.3390/

w16162219

Academic Editor: Zhenyao Shen

Received: 24 June 2024

Revised: 30 July 2024

Accepted: 31 July 2024

Published: 6 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Spatial and Temporal Variability in Bioswale Infiltration Rate
Observed during Full-Scale Infiltration Tests: Case Study in
Riga Latvia
Jurijs Kondratenko 1,* , Floris C. Boogaard 2,3,* , Jānis Rubulis 1 and Krišs Mal,inovskis 4
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Abstract: Urban nature-based solutions (NBSs) are widely implemented to collect, store, and infiltrate
stormwater. This study addressed infiltration rate as a measure of the performance of bioretention
solutions. Quick scan research was conducted, starting with mapping over 25 locations of imple-
mented green infrastructure in Riga, Latvia. Basic information, such as location, characteristics, as
well as photos and videos, has been uploaded to the open-source database ClimateScan. From this,
eight bioswales installed in the period 2017–2022 were selected for hydraulic testing, measuring the
infiltration capacity of bio-retention solutions. The results show a high temporal and spatial variation
of infiltration rate for the bioswales, even those developed with similar designs: 0.1 to 7.7 m/d, mean
2.0 m/d, coefficient of variation 1.0. The infiltration capacity decreased after saturation: a 30% to 58%
decrease in infiltration rate after refilling storage volume. The variation in infiltration rate as well
as infiltration rate decrease on saturation is similar to other full-scale studies done internationally.
The infiltration rate of most bioswales falls within the range specified by international guidelines,
all swales empty within 48 h. Most bioswales empty several times within one day, questioning the
effectiveness of water retention and water availability for dry periods. The results are of importance
for stakeholders involved in the implementation of NBS and will be used to set up Latvian guidelines
for design, construction, and maintenance.

Keywords: bioretention; bioswale; nature-based solutions; infiltration; full-scale test; water retention

1. Introduction

Climate change (with higher temperatures and high intensive rainfall) and urbanisa-
tion (with an increasing impervious land cover) affect the urban water balance, resulting
in flooding, heat stress, and droughts. According to the Intergovernmental Panel on Cli-
mate Change, the frequency and intensity of heavy precipitation have likely increased
globally and very likely increased in Europe since the 1950s. Both global and regional
(convection permitting) climate models project with high confidence an increase in extreme
precipitation, and, by direct association, pluvial flooding in the Northern and Central Euro-
pean regions, where Latvia belongs [1]. Apart from the extreme precipitation enhanced
by climate change, urban pluvial floods are attributed to urbanisation, increased sealing,
and decreased infiltration [2–5]. Alongside increased extreme precipitation and pluvial
flooding, there have been global increases in the intensity and duration of heat waves [1].
This, combined with a decrease in green areas because of urbanization, drives a more
frequent prevalence of heat stress and drought conditions in cities [1,6,7].

As a response to the multiple challenges presented by urbanisation and climate change,
nature-based solutions (NBSs), also called Sustainable Urban Drainage Systems (SuDSs),
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blue and green infrastructure (BGI), and sponge city approaches are being deployed actively
throughout the world [8–13]. Further in the article, we use the term ‘Nature-based solutions’
(NBSs), which is defined as “solutions that are inspired and supported by nature, which
are cost-effective, simultaneously provide environmental, social and economic benefits
and help build resilience” [14]. Examples of NBSs for urban stormwater management
include bioretention features like rain gardens or bioswales, permeable pavements, green
roofs and green walls, artificial wetlands, sedimentation ponds, and others [15]. These
techniques have multiple benefits in the broad categories of hydraulic control and flood
avoidance/reduction, water treatment, biodiversity enhancement, microclimate improve-
ment, amenity, and recreation, which are often conflicting and thus careful planning is
important considering the specific context [14,16,17].

Some of the most popular NBs, both globally and in Latvia, are bioretention features,
which are also known as rain gardens, swales, bioswales, and biofilters. Bioretention
systems are constructed techniques comprising surface depression for temporary storage
of runoff and constructed soil layers typically designed for quick infiltration as well as a
variety of plants. Depending on the site and design requirements, bioretention features may
contain an underdrain/overflow connected to a stormwater sewer as well as internal water
storage [18]. Bioretention features such as bioswales are designed to reduce the peak flow
rate and volume of runoff through water attenuation and infiltration and have been used
for decades globally to provide infrastructure conveyance and water quality treatment [19].

Bioretention systems ensure a significant reduction in peak runoff, delivering a
40–99% average reduction, as well as the total volume of runoff, averaging a 58% re-
duction. However, there is still a deficit of information on the performance of real-life
systems due to the difficulty in long-term monitoring of such systems [20]. Other research
needs include research on optimal media composition, the role and selection of plants for
optimal bioretention performance, the study of internal water storage and the outlet section,
and long-term research studies that provide calibration data for the models prepared to
predict long-term performance [18,21].

Infiltration capacity is an important factor influencing the performance of bioretention
systems [18,22]. Many international guidelines suggest an infiltration rate of 100–300 mm/h [23]
or an emptying time within 24–48 h [24,25]. Addressing the need to provide data on the
infiltration rate in real-life systems, several studies have undertaken full-scale infiltration
tests in bioretention features, establishing a high degree of spatial and temporal variability
in the infiltration rate [23,24,26].

As a part of the solution to make Baltic States climate-adaptive, the first NBSs have
been implemented that enable rainfall infiltration and the evapotranspiration of stored
water to mitigate the effects of drought and heat stress, but also intensive rainfall events
causing floodings. Examples of green infrastructure implemented in recent years include
permeable pavements, artificial wetlands, green roofs and green walls, and most impor-
tantly, bioretention systems [27].

The methodology and regulation basis for implementing sustainable urban drainage
solutions is still developing in Latvia. There are local guidelines on the design of sustainable
urban drainage techniques by an NGO, Cleantech Latvia [28], which provide typical
sections of bioretention features; however, there are no guidelines on infiltration rates or
emptying times. Very often infiltration rates are not taken into account while designing at
all, considering only surface storage for dealing with the volume of surface runoff.

Therefore, the study aims to determine the infiltration rate in the recently created
bioretention solutions in the capital of Latvia, Riga, and compare it to similar studies
conducted internationally as well as design guidelines. The study both addresses the inter-
national need for research on implemented bioretention solutions as well as to build local
knowledge on water-balance-optimal bioswale design. To that end, full-scale infiltration
tests were performed in July and October 2023 in eight bioswales installed in the period
2017–2022 in Riga, Latvia.
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2. Materials and Methods
2.1. Study Site Selection

The study sites were selected using ClimateScan—an open-source, interactive web-
based map application for international knowledge exchange on ‘blue-green’ projects
around the globe [29,30]. The platform features more than 14,000 climate adaptation solu-
tions around the world including more than 6000 NBS locations. The database contains
basic information, such as location, characteristics, as well as photos and videos, and for
the featured projects—links to research performed on specific locations. It is the most com-
prehensive source of information about NBSs in Latvia, featuring over 70 locations related
to climate adaptation (e.g., green roofs, constructed wetlands, and floating structures) with
over 25 locations with biofiltration, such as bioswales, implemented in Riga (see Figure 1a).
The projects in Latvia have been mapped since 2018 through stakeholder involvement
events called climate cafes and individually by users and experts in the field [27]. Figure 1
shows location sites mapped in Riga in the platform as well as the locations of the study
sites.
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Figure 1. (a) Over 70 locations with climate adaptation-related projects in Riga [29]. (b) Chosen
locations of study sites in the context of north-eastern Europe and the city of Riga.

The three locations were selected for research based on the year of construction (not
older than 10 years), the presence of detailed design documentation and known rationale
for the design choices, as well as access to the sites for testing purposes.

2.2. Study Site Description

Sites 1 and 2 have been developed on former industrial properties, whereas Site 3 is
a greenfield site. Sites 1 and 2 are residential developments constructed in 2020–2021 by
the residential real estate developer Bonava. Site 3 is a parking lot of a shopping centre
SPICE Home with two symmetrical bioswales, developed in 2017. See Figure 2 for bioswale
locations within the study sites.

The bioswales in Sites 1 and 2 are implemented with the same design, with the only
exception being the presence of underdrains and overflow at Site 2. Such difference is due
to the fact that conditions on Site 1 (low groundwater level, well-draining surrounding soil
on the one hand, and the absence of connection to the municipal storm sewer, on the other
hand) have resulted in a completely decentralised stormwater management system, with
runoff leaving the site only through exfiltration and evapotranspiration. In Site 2, on the
other hand, a fully decentralised system was not possible due to high groundwater levels,
so a restricted connection to the municipal system is provided.
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Figure 2. Location of bioswales (BSs) within the study sites.

Bioswales 1–6 have a storage depth up to 30–50 cm with overflow at typically 15–30 cm
above the bottom of the swales. Bioswales 1–4 (Site 1) are implemented without underdrains
and thus lose water only through exfiltration and evapotranspiration; Bioswales 1–2 and
3–4 are connected through an overflow pipe. Bioswales 5–6 are equipped with underdrains
below the filter media, losing water additionally through drainage. In these swales, there is
also an overflow connection to the underdrain.

The design choices for Bioswales 7 and 8 at Site 3 are explained by the high groundwa-
ter level. The bioswales have a depth of up to 45 cm and overflow pipe 10 cm above the
bottom of the swales, connected to the municipal storm sewer.

All bioswales have perennial plants in the zone below overflow and trees and shrubs
in the zone above overflow, based on the study of plants suitable for similar systems
internationally as well as local guidelines [28]. The exception is Swale 6, which has grass
only, and the reason for this design choice is unknown.

The photos of the bioswales are shown in Figure 3.
Table 1 shows details of the bioswales.



Water 2024, 16, 2219 5 of 26

Water 2024, 16, x FOR PEER REVIEW 5 of 27 
 

 

Table 1 shows details of the bioswales. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 3. Photographs of bioswales. (a) Swale 1; (b) Swale 2; (c) Swale 3; (d) Swale 4; (e) Swale 5; (f) 
Swale 6; (g) Swale 7; and (h) Swale 8. Figure 3. Photographs of bioswales. (a) Swale 1; (b) Swale 2; (c) Swale 3; (d) Swale 4; (e) Swale 5;

(f) Swale 6; (g) Swale 7; and (h) Swale 8.



Water 2024, 16, 2219 6 of 26

Table 1. Bioswale details.

Swale # Area,
m2

Catchment Area
(Excl. Swale), m2 Catchment Surfaces Outflow via Surrounding Soil Conditions

Groundwater
Depth below

Swale Bottom, m *
Plants

Swale 1 95 604 Building roof, parking
lot, sidewalks

Exfiltration, overflow to
Swale 2

Artificial soil: sand with
construction rubble and

organics

1.3

Perennial plants:
Eupatorium fistulosum,

Molinia arundincea,
Miscanthus sinensis,

Physostegia virginiana
Trees and shrubs:

Salix purpurea,
Salix fragilis,

Betula utilis var. jacquemontii

Swale 2 88 656 Parking lot, sidewalks Exfiltration, overflow to
Swale 1 1.7

Swale 3 140 798 Parking lot, sidewalks Exfiltration, overflow to
Swale 4

Downstream: Artificial soil:
sand with construction rubble
and organics, sandy peat with

construction rubble
Upstream: Artificial soil: sand
with construction rubble and
organics, degraded peat and

sandy peat

1.1

Swale 4 88 379 Parking lot, sidewalks Exfiltration, overflow to
Swale 3

Artificial soil: sand with
construction rubble and

organics, degraded peat and
sandy peat

1.3

Swale 5 175 1241 Parking lot, sidewalks,
playground

Exfiltration, underdrain,
overflow to underdrain,

located at the edge of the
swale

Artificial soil: sand with
construction rubble and

organics, coarse sand

0.7

Perennial plants:
Carex elata,

Eupatorium fistulosum,
Iris pseudacorus,

Iris sibirica,
Lysimachia punctata,
Miscanthus sinensis,
Molinia arundincea,

Nepeta mussinii
Trees and shrubs:

Salix fragilis
Betula utilis var. jacquemontii

Swale 6 53 600 Parking lot, sidewalks

Exfiltration, underdrain,
overflow to underdrain,

located for the entire length
of the swale
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Table 1. Cont.

Swale # Area,
m2

Catchment Area
(Excl. Swale), m2 Catchment Surfaces Outflow via Surrounding Soil Conditions

Groundwater
Depth below

Swale Bottom, m *
Plants

Swale 7 358 2355 Parking lot Exfiltration, overflow to
municipal sewer

Greenfield: sand, dusty, dense,
saturated with water, yellow

and pale yellow

0.6

Perennial plants:
Miscanthus sinensis,

Miscanthus purpurascens, Iris
sibirica

Trees and shrubs:
Coloneaster dammer,

Salix purpurea,
Salix repens,

Quercus robur,
Physocarpus opulifolius

Swale 8 352 2659 Parking lot Exfiltration, overflow to
municipal sewer

* Based on geology surveys during construction stage, except for Swales 5–6, which are based on groundwater level sensor in Swale 5.
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Figures 4 and 5 show the typical cross-section and filter media composition of Bioswales
1–6 and 7–8 respectively, as per the design documentation.
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2.3. Full-Scale Infiltration Testing

Full-scale infiltration testing has been introduced as a way to overcome high variability
in point infiltration capacity measurements. Full-scale infiltration tests have been success-
fully used in bioretention features like swales as well as permeable pavements [31,32].

In this study, the bioswales were filled up repeatedly up to the point of overflow
(overflow structures were closed off with plastic sheets and duct tape) through a firefighting
hose, connected to the street fire taps. Then, the drop in water level to the empty or nearly
empty level was registered with pressure sensor data loggers [33,34]. Wireless, self-logging
pressure transducer loggers were used in the study as the primary method of measuring
and recording the reduction in water levels over time. The loggers were individually
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factory-calibrated and tested to ensure that at least 68% of measurements during the
calibration check were within the stated typical accuracy. The transducers continuously
monitored the static water pressures in the bioswales, logging the data in internal memory.

Figure 6 illustrates the performance of the infiltration tests in Bioswale 2 and Bioswale 8.
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accessed on 20 June 2024) and Bioswale 8 (Site 3, https://www.climatescan.org/projects/2461/detail,
accessed on 20 June 2024).

To back up the data, measurements were performed with several sensors as well as
supplemented with visual observations using a ruler and time-lapse photography. An
infiltration test at one site was carried out for one full day, filling up the swales repeatedly
when they were empty or half empty. Data loggers were left in the swales for a certain
amount of time to register the emptying of the swales after the end of the day, where
possible. Infiltration tests were performed on 13 July 2023 in Bioswales 1–4, on 14 July
2023 in Bioswales 5–6, and then repeatedly on 16 October in Bioswales 1–4, as well as
additionally on 17 October in Bioswales 7–8.

Table 2 summarises the conditions of infiltration tests performed in different swales in
July and October 2023.

2.4. Data Processing

The raw data obtained during the tests comprised uncompensated pressure data in cm
H2O. Pressure sensor readings were compensated with the atmospheric pressure data to
calculate the water level above the sensor. Time series of specific emptying sequences (water
level drop) were extracted from subsequent tests and analysed using linear regression. The
resulting slope of the linear regression was used to calculate the infiltration rate in m/d.
The detailed data processing pipeline is shown in Figure 7.

Alternative data processing methods include calculating the infiltration rate based on
the difference in the full and empty level (absolute difference) divided by time or calculating
the infiltration rate as the effective storage volume of water in the system between 75%
and 25% effective storage depth divided by the product of the internal surface area of the
system up to 50% effective storage depth and including the base area and the time for
the water level to fall from 75% to 25% effective storage depth [35]. Although the latter
method may be more precise in calculating saturated hydraulic conductivity, the method
used in this study was chosen to facilitate comparing the results of the study with other
international studies conducted on full-scale infiltration testing.

https://www.climatescan.org/projects/11214/detail
https://www.climatescan.org/projects/2461/detail
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Table 2. Conditions before and during the infiltration tests.

Swale and Date Number
of Tests Sensors Used Sensor

Accuracy
Logging

Frequency
Measurement
Verification Presence during the Test Environmental Conditions

before and during the Test

Swale 1—13 July
2023 2 2 TD-diver loggers ±0.5 cm H2O 5 s 2 sensors

Two people supervised the test for
the entire duration of test 1 and

halfway through test 2, sensors were
extracted in the evening

Abnormally dry months of
April–June 2023 in Riga:
cumulative precipitation
37.9 mm compared to the

climatic norm of 150.7 mm
over the three months, in the

first 10 days of July the
precipitation amount was

lower by 28% compared to the
norm, the average

temperature in April was
higher by 1.4 ◦C, in May by

0.2 ◦C, in June by 1.6 ◦C
compared to the climatic norm.
Last rainfall 7 days before the
test with a depth of 3.8 mm

Swale 2—13 July
2023 3

1 CTD-diver logger
for tests 1–3 and

1 TD-diver logger for
tests 1–2

±0.5 cm H2O 5 s 2 sensors,
time-lapse photos

Two people supervised the test for
the entire duration of tests 1 and 2

and 75% of test 3, sensors were
extracted in the evening

Swale 3—13 July
2023 1

CTD-diver logger in
the downstream part,

TD-diver logger in
the upstream part

CTD-diver:
±2.5 cm H2O

TD-diver:
±0.5 cm H2O

1 s in the
downstream part

0.5 s in the
upstream part

2 sensors
Two people supervised the test for

58% of the test duration, the sensors
were extracted in the evening

Swale 4—13–14
July 2023 1 TD-diver logger ±0.5 cm H2O 5 s Visual inspection

with a ruler

Two people supervised the test for
15% of the test duration, the site was

inspected in the evening, and the
sensor was extracted the next

morning

Swale 5—14 July
2023 2 2 TD-diver loggers ±0.5 cm H2O 5 s 2 sensors,

time-lapse photos

Two people supervised the test for
the entire duration of test 1 and 75%
of test 2, the sensors were extracted

the next morning

Same conditions as Swales 1–4.
Rainfall of 3 mm during test 2

Swale 6—14 July
2023 4 2 TD-diver loggers ±0.5 cm H2O 5 s 2 sensors Two people supervised the test for

the entire duration of all tests Same conditions as Swales 1–4
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Table 2. Cont.

Swale and Date Number
of Tests Sensors Used Sensor

Accuracy
Logging

Frequency
Measurement
Verification Presence during the Test Environmental Conditions

before and during the Test

Swale 1—16
October 2 TD-diver logger ±0.5 cm H2O 5 s Visual inspection

with a ruler

Two people supervised the test for
the entire duration of test 1 and
halfway through test 2, sensors

extracted in the evening

Abnormally wet months of
July and August: 264.6 mm of
rainfall compared to the norm
of 158.2 mm. Abnormally dry
September: 36.2 mm of rainfall

compared to the norm of
66 mm. In the first 10 days of

October, the precipitation
amount exceeded the norm by

100% and in the second
10 days by 50%. Last rainfall:

5.8 mm the previous day.
Rainfall of 1.2 mm during the

test day

Swale 2—16
October 3 TD-diver logger ±0.5 cm H2O 5 s Time-lapse photos

Two people supervised the test for
the entire duration of test 1 and 2

and 75% of test 3, the sensor
extracted in the evening

Swale 3—16
October 1 TD-diver logger ±0.5 cm H2O 5 s Visual inspection

with a ruler

Two people supervised the test for
75% of the test duration, the sensor

was extracted in the evening

Swale 4—16–18
October 1 TD-diver logger ±0.5 cm H2O 5 s Visual inspection

with a ruler

Two people supervised the test for
25% of the test duration, the sensor

was extracted in the evening
Swale 7—17–18

October 2 TD-diver logger ±0.5 cm H2O 5 s Visual inspection
with a ruler

Two people supervised the test for
the first 2 h, the site was inspected
in the evening, and on October 18,

the sensor was extracted in the
morning of October 19

Same conditions as Swales 1–4.
Rainfall of 13.2 mm between

the tests
Swale 8—17–18

October 2 2 TD-diver loggers ±0.5 cm H2O 5 s 2 sensors
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3. Results
3.1. Results of Individual Infiltration Tests

Figure 8 shows the infiltration rate calculation for Bioswales 1–4, placed in the same
location (Site 1), for infiltration tests on July 13–14 (panels a, c, e, g) and 16–17 October
(panels b, d, f, h). The panels of the figure show the water level changes in respective
swales as well as linear regression trendlines derived to calculate the infiltration rate, with
coefficient a (slope) denoting infiltration rate in cm per hour.

The figures show the variability in infiltration rate between the two testing dates,
between the consecutive infiltration tests of the same swale as a variation in infiltration rate
between the swales, constructed with the same design.

Moreover, the results obtained for Swale 3 indicate infiltration rate differences in the
same swale (Figure 9). The sensor placed in the downstream part of the swale (Figure 9a)
showed not only a higher infiltration rate for the entire test compared to the sensor placed
in the upstream part of the swale (Figure 9b), but also a higher infiltration rate in the second
half of the emptying time, compared to the first half. This can be explained by the fact that
the swale is the longest in the site, having a non-uniform slope and micro-pools, and when
the water level in the upstream part of the swale dropped below 10 cm (approximately 3.5 h
into the infiltration test), the downstream part of the swale became hydrologically isolated
from the upstream part. Figure 9a shows the depth measured by the sensor downstream of
the swale, whereas the sensor placed upstream of the swale (closer to swale 4, which had
the lowest infiltration rate) showed a lower infiltration rate, as seen in Figure 9b.
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Similar variability is seen in Bioswales 5–6, placed in different locations but delivered
with a similar design, the only difference being an underdrain below constructive layers of
the swale. See Figure 10 for the results of the infiltration tests, which were performed once
in July 2023.

At Site 3, infiltration tests were carried out on October 17–19. The results of the full-
scale infiltration testing are shown in Figure 11. The gap between the test 1 and test 2 time
series in the charts is a rain event that happened during the infiltration test; thus, a slight
increase in water level can be seen in the charts.

3.2. Summary of the Results

The results of all infiltration tests are summarized in Table 3. The infiltration rate in
meters per day is shown, calculated from the linear regression trendline slope coefficient of
the water depth time series. For the swales where two sensors were installed (Swales 1, 2,
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3, 5, and 6 in July 2023 and Swale 8 in October 2023), the average result of the two sensors
is shown in the table.
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Table 3. Infiltration test results summary—infiltration rate in meters per day.

13–14 July 2023

Test # Swale1 Swale2 Swale3 Swale4 Swale5 Swale6

Test 1 1.28 5.48 1.33 0.29 3.26 7.65
Test 2 0.92 2.55 1.84 5.20
Test 3 1.78 4.66
Test 4 4.20

16–19 October 2023

Test # Swale1 Swale2 Swale3 Swale4 Swale7 Swale8

Test 1 1.03 2.54 0.67 0.14 0.16 0.18
Test 2 0.69 1.35 0.09 0.11
Test 3 0.99

Figure 12 visualises the results of the infiltration tests.
Table 4 provides a statistical summary of the infiltration test results, whereas Figure 13

visualises the results in a box and whisker plot.
The results show great variability in the infiltration rate in the bioswales, with the

coefficient of variation (CV, which is calculated as the standard deviation divided by the
mean) being 1.00 for all of the tests performed both in July and October 2023. The variation
decreases with consecutive tests.
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Table 4. Infiltration test results summary—infiltration rate in meters per day.

Parameter All Swales
and All Tests

All swales,
Test 1 Only

July 2023 October 2023
All Swales,

All Tests
All Swales,
Test 1 Only

Swales 1–4,
All Tests

Swales 1–4,
Test 1 Only

All Swales,
All Tests

All Swales,
Test 1 Only

Swales 1–4,
All Tests

Swales 1–4,
Test 1 Only

n 24 12 13 6 7 4 11 6 7 4
Minimum (m/d) 0.09 0.14 0.29 0.29 0.29 0.29 0.09 0.14 0.14 0.14
Maximum (m/d) 7.65 7.65 7.65 7.65 5.48 5.48 2.54 2.54 2.54 2.54
Mean (m/d) 2.02 2.00 3.12 3.22 1.95 2.10 0.72 0.78 1.06 1.09
Median (m/d) 1.31 1.16 2.55 2.29 1.33 1.31 0.67 0.43 0.99 0.85
Standard deviation (m/d) 2.02 2.29 2.10 2.60 1.58 2.00 0.71 0.85 0.70 0.89
Coefficient of variation 1.00 1.14 0.67 0.81 0.81 0.95 0.99 1.08 0.66 0.82
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Figure 13. Full-scale infiltration test results summary—infiltration rate in meters per day.

3.3. Result Interpretation

Swales 1–4, located at the same site and designed for infiltration, showed a more than
10-fold variability in the first test in July 2023, when the filter media was least saturated.
The infiltration rates are highest in Swale 2, near which the groundwater table was lower
compared to the other swales, as per the geology survey performed before the construc-
tion. Considering the proximity of the swales, such differences in groundwater level can
be explained by the high heterogeneity of surrounding soil conditions due to previous
development at the site.
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Another factor possibly explaining the much higher infiltration rate in Swale 2, com-
pared to other swales in Site 1, is the observed preferential flow in the upper soil layer, see
Figure 14a.
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14 July 2023.

Notable is the presence of degraded peat and sandy peat in geology study samples
near Swales 3 and 4, which had lower infiltration rates. In the upstream of Swale 3, where
the infiltration rate was lower, compared to the downstream part, the geology survey
indicated the presence of a continuous degraded peat layer, compared to the downstream
of the swale, where peat is just one of the components of artificial soil layer. Degraded
peat is known to have low hydraulic conductivity and the ability to create waterlogged
areas [36].

At Site 2, a more than two-fold difference is observed in infiltration rate in Swales 5
and 6, placed at the same location and built with nearly the same design. The differences
between the swales are the absence of perennial plants in Swale 6, compared to Swale 5,
as well as the underdrain, which is located on the edge of Swale 5 but runs for the entire
length of Swale 6. Like in Swale 2 at Site 1, preferential flow was observed in Swale 6
(Figure 14b). Interestingly, Swale 2 at Site 1, not equipped with an underdrain, showed
a comparable infiltration rate to the swales at Site 2, equipped with an underdrain. This
probably can be explained by the preferential flow in Swale 2, discussed above.

The technical design for Swales 1–6 specified an infiltration rate of 2–3 m/d for the
upper soil layer, which was achieved in Swales 2, 5, and 6 and not achieved in Swales 1, 3,
and 4. This most probably can be attributed to the surrounding soil conditions, as in the
full-scale test water fills the available pore space of the filter media relatively quickly and
the surrounding soil becomes the limiting factor.

Table 5 shows a calculated decrease in infiltration rate in subsequent tests.

Table 5. Decrease in infiltration rate in the subsequent tests.

13–14 July 2023

Test # Swale1 Swale2 Swale3 Swale4

Test 2 −29% −53% −44% −32%
Test 3 −30% −8%
Test 4 −12%

16–19 October 2023

Test # Swale1 Swale2 Swale7 Swale8

Test 2 −33% −47% −44% −39%
Test 3 −27%
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It should be noted that the differences between the infiltration rate decreases between
the tests are much smaller compared to the differences between the infiltration rates in the
different swales. For example, for Swales 1, 2, 5, and 6, built with a similar design and for
which several infiltration tests were carried out on 13–14 July, the coefficient of variation
(the ratio of the standard deviation to the mean) of the infiltration rate during the first
infiltration test is 0.62, whereas the coefficient of variation of the decrease in infiltration rate
in subsequent tests is 0.29.

At Site 1 (Swales 1–4), where infiltration tests were performed both in July, after a long
dry period, and in October, after a long period of rainfall, a decrease in infiltration rate of
more than 50% was observed—see Table 6 for comparison.

Table 6. Decrease in infiltration rate measured in Site 1 between July and October 23.

Test # Swale1 Swale2 Swale3 Swale4

Test 1 −19% −55% −58% −53%
Test 2 −25% −46%
Test 3 −45%

In all swales but Swale 1, the infiltration rate decreased by more than half, which can
be explained by soil saturation due to a long rain period before infiltration tests. Volumetric
soil moisture content, measured in Swale 1 with soil moisture sensors 15, 30 and 45 cm
below the bottom of the swale, was, respectively, 0.31, 0.14, and 0.28 cm3 cm−3 before the
test on July 13 and 0.37, 0.36, and 0.38 cm3 cm−3 before the test on 16 October, showing full
saturation after a long rainfall in the autumn.

Notable is the smaller decrease in infiltration rate for Swale 1, which needs to be further
investigated. A possible reason could be preferential flow to the underground cavities
formed by construction rubble below the swale constructive layers through groundwater
and surface water level observation borehole in the swale. This is indirectly corroborated
by the soil moisture data and water depth data in the borehole during infiltration tests and
rain events, not covered by this paper.

The bioswales at Site 3, where infiltration testing was performed on 17–19 October, are
different in design from Sites 1 and 2 in that they are not mainly designed for infiltration
but rather for water attenuation and limited discharge into the storm sewer, although
infiltration is allowed through a non-lined bottom. The lower infiltration rate in these
swales could be explained by the high groundwater table as well as soil saturation before
the test after the long rainfall. Another possible reason could be the longer time in operation
and resulting clogging of the bioretention system.

3.4. Comparison with Other Full-Scale Test Studies

The obtained results on the high temporal and spatial variability in bioswales are com-
parable with other full-scale infiltration test studies carried out internationally [23,24,26,37].
In these studies, the number of repeated tests performed in the bioretention features differ
greatly; for example, in the study carried out in Dalfsen, the Netherlands [24], the swales
were filled up and emptied up to five times, whereas the swales studied in Bergen, Nor-
way [23] were emptied only once and filled only once. Therefore, in the case that several
subsequent infiltration tests were performed in a study, like Swales 1, 2, 5, and 6 in July
2023 and Swales 1, 2, 7, and 8 in October 2023 in this study, only the results of the first
infiltration tests are used in the analysis. The infiltration test comparison results are shown
in Table 7 and Figure 15.

The infiltration rates varied widely in the 38 tests analysed in this international com-
parison: median 4.02 m/d, mean 10.84 m/d, with a coefficient of variation of 3.85, which is
nearly four-fold greater compared to the CV in full-scale infiltration rates measured in the
present study.
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Table 7. Full-scale infiltration test results compared to other international studies of full-scale
infiltration tests in bioretention features (bioswales, rain gardens, etc.).

Study n Minimum
(m/d)

Maximum
(m/d)

Mean
(m/d)

Median
(m/d)

Standard
Deviation

(m/d)

Coefficient
of Variation

Present study—July (dry period) 6 0.29 7.65 3.22 2.29 2.60 0.81
Present study—October (wet period) * 6 0.14 2.54 0.78 0.43 0.85 1.08

Dalfsen, NL—drought [24] 3 3.10 8.20 5.17 4.20 2.19 0.42
Dalfsen, NL—normal conditions [24] 3 1.70 12.00 5.90 4.00 4.41 0.75

Bergen, NO [23] 2 12.24 38.40 25.32 25.32 13.08 0.52
Gdansk, PL [26] 4 0.42 0.71 0.52 0.48 0.12 0.22

New Orleans, USA [37] 14 3.31 70.81 21.58 14.37 19.70 0.91
All studies (test 1 only) 38 0.14 70.81 10.84 4.10 15.79 3.85

* Note: different swales were tested in July and October 2023.
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At the same time, if the infiltration rate decreases between the first and second consec-
utive infiltration tests are compared, the variation is much smaller, as shown in Table 8.

Table 8. Decreases in infiltration rates between first and second infiltration tests.

Study n Minimum
(%)

Maximum
(%)

Mean
(%)

Median
(%)

Standard
Deviation

(%)

Coefficient
of Variation

Present study—July (dry period) 4 −53% −29% −40% −38% 11% 0.28
Present study—October (wet period) 4 −47% −33% −41% −42% 6% 0.15

Dalfsen, NL—drought [24] 3 −65% −11% −34% −27% 28% 0.80
Dalfsen, NL—normal conditions [24] 3 −71% −50% −58% −54% 11% 0.19

New Orleans, USA [37] 4 −46% −21% −31% −28% 10% 0.33
All studies 18 −71% −11% −42% −44% 15% 0.36



Water 2024, 16, 2219 21 of 26

For multiple bioretention features in Dalfsen [24], like in the present study, even more
tests were conducted, with a corresponding decrease in infiltration rate, which stabilised
during the third consecutive test in one swale and during the fourth test in another one.
Table 9 shows the decrease in infiltration rates between the first and the last infiltration
tests performed in all swales at a specific location.

Table 9. Decreases in infiltration rates between first and second infiltration tests.

Study n Minimum
(%)

Maximum
(%)

Mean
(%)

Median
(%)

Standard
Deviation

(%)

Coefficient
of

Variation

Present study—July 2023 (dry period) 4 −67% −29% −46% −44% 16% 0.35
Present study—October 2023 (wet period) 4 −61% −33% −43% −39% 12% 0.29

Dalfsen, NL—drought [24] 3 −77% −52% −69% −76% 14% 0.21
Dalfsen, NL—normal conditions [24] 3 −76% −70% −74% −75% 3% 0.05

New Orleans, USA [37] 4 −46% −21% −31% −28% 10% 0.33
All studies 18 −77% −21% −50% −45% 19% 0.39

Figure 16 illustrates the decreases in infiltration rates between the infiltration tests.
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Given the high variability in infiltration rates obtained in the full-scale tests both in
the present study and internationally, there are important considerations for the research
and design of bioretention features.

4. Discussion

The results obtained in this study, taken together with the results of other studies
carried out on full-scale infiltration tests in bioretention systems, merit a discussion on the
sources of variability in infiltration rates, compliance with international recommendations,
implications for the research, and the design of bioretention systems.

4.1. Variability in Infiltration Rates and Factors Contributing to It

The study established a high spatial and temporal variability in infiltration rate in
bioretention solutions: the median infiltration rate of all tests was 1.31 m/d (55 mm/h), the
mean 2.0 m/d (83 mm/h), and the coefficient of variation 1.0. The infiltration rate decreased
by 40–46% with the consecutive tests, showing the impact of saturation. The coefficient
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of variation is highest in the unsaturated infiltration rates (CV 1.14) and decreases with
saturation.

Full-scale infiltration tests performed in bioretention features internationally showed
comparably high variation in infiltration rates in bioretention systems. The median infiltra-
tion rate of 38 full-scale infiltration tests (first filling—emptying only) performed in five
studies, including the present one, is 4.10 m/d (171 mm/h), with the mean rate being 10.8
m/d (450 mm/h) and the coefficient of variation 3.85, heavily influenced by outlier results
in Bergen, Norway [23] and New Orleans, United States [37]. In all the studies where
consecutive infiltration tests were performed (18 bioretention features in total), there was
a decrease in infiltration rate on saturation, on average 42% between the first and second
test, and 50% between the first and the last test. The variation in the rates of infiltration rate
decay (CV 0.39) was much smaller compared to the variation in infiltration rates during
the first infiltration test (CV 1.7).

The observed factors during this study that could contribute to high variability in
infiltration rates include differences in antecedent soil moisture in filter media (likely to
decrease infiltration rate), also observed in Dalfsen [24] and Gdansk [26]. Increased soil
moisture content and a lower infiltration rate in the comparable soils may be due not only
to antecedent rainfall but also due to shallower groundwater. Bioretention features with an
underdrain are likely to have a higher infiltration rate, as observed in this study as well as
in the study conducted in Bergen [23]. Preferential flow in soil macropores and cavities due
to biological processes as well as dry periods, observed in Riga as well as Dalfsen [24], may
greatly increase the infiltration rate. Finally, but most importantly, this study observed a
lower saturated infiltration rate in locations with less permeable surrounding soil.

The wider literature studying the factors impacting infiltration in bioretention systems
has concluded that the infiltration rate depends on preceding rainfall and initial soil
moisture conditions [38–41], underlying soil conditions, and differences in soil texture
of the upper soil layer [38,40–44], plant diversity [38,42,43,45], biological activity in the
soil including mesofauna [42,44] and microbiota [46], ground compaction through snow
piling [41,44], and the presence of an underdrain [47–49].

To verify and establish the relative impact of the factors described above on the
variation in infiltration rate at the specific sites, more systematic data collection, preferably
continuous monitoring data on infiltration rate, soil moisture, and environmental and
maintenance conditions is needed, to provide more data points for analysis as well as
computer modelling.

4.2. Recommended Infiltration Rates and Emptying Times

Considering the novelty of the bioretention solutions in Latvia, there are no local stan-
dards or guidelines regulating the infiltration rates or the emptying times of bioretention
systems. Therefore, guidelines from other countries have been considered.

According to international guidelines, there is a wide range of recommended in-
filtration rates/emptying times for bioretention systems. British guidelines specify an
emptying time of 24–48 h for bioretention systems and half-emptying in 24 h for swales
and underground infiltration systems [25], which for a maximum storage depth of 300 mm
corresponds to 6.25–12.4 mm/h or 0.15–0.3 m/d. At the same time, the guidelines specify
that the filter media’s recommended permeability is 100–300 mm/h, or 2.4–7.2 m/d, which
is 16–24 times more than the infiltration rate derived from the emptying time. The infil-
tration rate for most swales in this study fell within the range between the minimum and
recommended infiltration rates, and for all swales, it was above the minimum threshold.
Two swales, however, had higher-than-recommended infiltration rates.

Dutch guidelines for bioswales (wadis) [50] recommend an infiltration rate of at
least 0.6 m/d (25 mm/h) and an emptying time of 24 h, which for a 30 cm deep swale
corresponds to at least 0.3 m/d or 12.5 mm/h. The upper limit for infiltration rate is not
specified in the guidelines. Five out of eight swales covered by this study complied with
the Dutch recommendations.
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Australian guidelines for biofiltration systems specify the recommended infiltration
rate for filter media to be 100–300 mm/h (2.4–7.2 m/d) and recommend a sand-based filter
media [51]. Most bioswales in this study showed a lower infiltration rate.

The Minnesota Stormwater Manual [52] specifies the acceptable range of infiltration
rates to be between 25.4 and 203.2 mm/h, or 0.6 and 4.9 m/d, with recommendations given
for the infiltration rate based on targeted pollutants. For suspended solids, pathogens,
and metals, an infiltration rate range of 50.8 to 152.4 mm/h (1.2–3.7 m/d) is specified, and
for nutrients 25.4 to 50.8 mm/h (0.6–1.2 m/d). The manual also specifies the maximum
emptying time as being 24 h. Only half of the swales in this study were in line with the
recommendations, with one infiltrating stormwater too fast and three too slowly.

Interestingly, many full-scale tests conducted internationally have shown infiltration
rates that are higher than expected by stakeholders or recommended by guidelines, raising
concerns about water quality and downstream hydrological impacts [23,24,37]. Considering
that the unsaturated infiltration rate is higher than the saturated infiltration rate, the
infiltration rate during small rain events, comprising most of the annual runoff, maybe
even higher.

4.3. Implications for the Design of Bioretention Systems

The high variability in the infiltration rates observed in bioretention systems world-
wide, and, indeed, the high variability in recommended infiltration rates in different
countries, underscores the importance of local context in optimising bioretention features
and the specific functions/benefits the system is expected to deliver.

A high infiltration rate may be preferable if groundwater recharge is important or the
bioretention feature receives runoff from a large catchment area, like in Bergen [23]. In
Latvian practice, most bioswales are dimensioned not for frequent rain but a rain with a
return period of at least 1 year, and a lower infiltration rate could be acceptable.

It can be argued that the observed infiltration rates, as well as, indeed, the recom-
mended infiltration rates ensuring an emptying time within 24–48 h of rainfall, are op-
timal for peak runoff reduction, but not optimal for other functions of bioretention, like
evapotranspiration and plant health, a risk confirmed in other studies [18,53]. Moreover,
considering the generally high return period in bioswale design, it can be argued that
bioswales designed with high infiltration rates are over-dimensioned, especially when
evapotranspiration is ignored [22]. More research is needed into the interplay between
bioretention composition factors like layering, soil type, plant selection, the presence of in-
ternal water storage, the catchment area ratio, and other factors and optimal water balance,
ensuring both protection against flooding as well as water availability for plant growth,
evapotranspiration, and urban cooling.

The high variation in infiltration rates of the bioretention structures raises questions
on how to decrease or insure against such performance uncertainties in technical design
and on possible ways of retrofitting the structures when they do not perform as expected.
Possible options could be internal water storage or smart outlets and engaging or switching
of outflow through an underdrain.

Finally, considering that the saturated infiltration rate may be highly correlated with
surrounding soil permeability, infiltration testing in the potential locations for bioretention
systems is crucial to inform the design and make changes in the location or dimensions of
the solutions.

4.4. Suggestions for Future Full-Scale Tests and Monitoring

Full-scale infiltration testing is a powerful method to provide data on the performance
of real-life bioretention systems. To make full-scale studies more informative and com-
parable across different sites, it is useful to have repeated filling and emptying of the
bioretention features, to obtain data on saturated conductivity. This is especially practical
in situations where the first tests show a high infiltration rate or short emptying time. Such
an approach requires careful planning, as sufficient human and water resources are needed.
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It is also important to gather and record as much information as possible on the design and
as-built delivery of the systems, and site-specific conditions like terrain, surrounding soils,
groundwater levels, and environmental and maintenance conditions of the bioretention
features.

It is also very useful to collect continuous data on rainfall, soil moisture, infiltration,
and outflow from the system, to be able to model continuously the water balance of the
system and develop solutions to optimise the system.

5. Conclusions

The full-scale infiltration tests showed the variability in performance of bioretention
systems of even similar designs and should be repeated in the study sites to see how system
performances change with time. On top of that, continuous monitoring data on infiltration,
soil moisture, evapotranspiration, and other parameters of the systems, can improve
understanding of the dynamics of the system and sources of performance variability. Based
on the monitoring data, simulation models representing interactions between soil, plants,
and water can be created, and different combinations of system components can be tried
out, to optimise the balance between infiltration and water retention. Such an approach can
thus inform the optimisation and retrofitting of bioretention systems in the existing sites
and the design of water-balance-optimal bioretention systems with safeguards regarding
performance variability.
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