
Citation: Nurakynov, S.; Merekeyev,

A.; Baygurin, Z.; Sydyk, N.; Akhmetov,

B. Application of Artificial Intelligence

in Glacier Studies: A State-of-the-Art

Review. Water 2024, 16, 2272. https://

doi.org/10.3390/w16162272

Academic Editors: Jueyi Sui and

Richard Smardon

Received: 17 June 2024

Revised: 26 July 2024

Accepted: 6 August 2024

Published: 12 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Review

Application of Artificial Intelligence in Glacier Studies:
A State-of-the-Art Review
Serik Nurakynov 1,2,* , Aibek Merekeyev 1, Zhaksybek Baygurin 2, Nurmakhambet Sydyk 1

and Bakytzhan Akhmetov 3

1 Institute of Ionosphere, Almaty 050000, Kazakhstan
2 Department of Surveying and Geodesy, Satbayev University, Almaty 050000, Kazakhstan
3 School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Ave,

Singapore 639798, Singapore
* Correspondence: snurakynov@ionos.kz

Abstract: Assessing glaciers using recent and historical data and predicting the future impacts on
them due to climate change are crucial for understanding global glacier mass balance, regional water
resources, and downstream hydrology. Computational methods are crucial for analyzing current
conditions and forecasting glacier changes using remote sensing and other data sources. Due to the
complexity and large data volumes, there is a strong demand for accelerated computing. AI-based
approaches are increasingly being adopted for their efficiency and accuracy in these tasks. Thus, in
the current state-of-the-art review work, available research results on the application of AI methods
for glacier studies are addressed. Using selected search terms, AI-based publications are collected
from research databases. They are further classified in terms of their geographical locations and
glacier-related research purposes. It was found that the majority of AI-based glacier studies focused
on inventorying and mapping glaciers worldwide. AI techniques like U-Net, Random forest, CNN,
and DeepLab are mostly utilized in glacier mapping, demonstrating their adaptability and scalability.
Other AI-based glacier studies such as glacier evolution, snow/ice differentiation, and ice dynamic
modeling are reviewed and classified, Overall, AI methods are predominantly based on supervised
learning and deep learning approaches, and these methods have been used almost evenly in glacier
publications over the years since the beginning of this research area. Thus, the integration of AI in
glacier research is advancing, promising to enhance our comprehension of glaciers amid climate
change and aiding environmental conservation and resource management.

Keywords: remote sensing; artificial intelligence; machine learning; glacier mapping; snow/ice
differentiation; ice dynamics modeling

1. Introduction

Glaciers worldwide are at serious risk due to climate change. For instance, the mass
loss of mountain glaciers between 2006 and 2016 resulted in a global sea-level contribution
of 335 ± 144 Gt per year [1]. Even though the rate of glacier loss is dependent on the region,
it is expected to have significant environmental and social impacts [2,3]. In fact, nearly 10%
of the world’s population residing in mountainous regions depends on glaciers as a crucial
water source, where they are utilized for agriculture, industry, hydropower generation,
and domestic use [4,5]. Moreover, meltwater from glaciers contributes to the sustenance of
rivers, lakes, and wetlands, supporting diverse aquatic life forms. Additionally, glaciers
play a crucial role in regulating local microclimates [6], influencing vegetation patterns and
providing a habitat for various species, thereby shaping the composition and dynamics
of terrestrial ecosystems [7]. Therefore, evaluating and estimating changes in glaciers
plays a crucial role in projecting future scenarios, particularly in regions where both the
environment and society depend on them.
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For a few decades, organizations and scientists have been developing inventories for
glaciers throughout the world. For instance, the World Glacier Inventory (WGI) contains
data for over 130,000 glaciers, providing information on parameters such as geographic
location, area, length, orientation, elevation, and classification, primarily derived from aerial
photographs and maps. However, the WGI inventory can provide a glacier distribution
in the second half of the 20th century [8]. Similarly, the Randolph Glacier Inventory (RGI)
serves as another valuable database for glaciers; however, its temporal coverage is limited
as most of the glaciers were mapped around the 2000s [9]. Therefore, these inventories
can only serve as baseline datasets, as they are unable to capture the latest changes in
glacier dynamics. However, in the last decade, there has been a proactive effort to generate
additional localized data using remote sensing methods, aimed at enhancing the temporal
accuracy in monitoring glacier changes [10].

Methods relying on optical, synthetic aperture radar (SAR), and multisource datasets
are well known in glacier mapping. Optical imagery (OI) is considered as the primary tech-
nique utilized for glacier extraction, leveraging the significant contrast between the minimal
spectral reflectance of ice and snow in the shortwave infrared and their high reflectance
within the visible spectrum [11,12]. However, its efficacy is constrained by weather vari-
ability and the difficulty in distinguishing glaciers, especially those covered with debris
from surrounding rocks of mountains, due to their comparable spectral characteristics [13].
To address these challenges, SAR data are utilized in glacier extraction, leveraging two
main principles. One principle focuses on the lower coherence observed in glaciers, both
clean and debris-covered, compared to the higher coherence of surrounding bedrock, with
commonly used data sources including Sentinel-1 and ALOS PALSAR [14,15]. However,
the processing of SAR coherence is complex and limited by the presence of non-steady
deformation processes. Additionally, SAR imaging can be hindered by factors such as
layover and shadow effects in steep terrain, which may obscure certain glacier features
and impede accurate mapping [16]. Furthermore, combining different data sources (i.e.,
multisource approach) from SAR, OI, and digital elevation models (DEMs) provides valu-
able insights into glacier dynamics and changes [17]. However, the multi-source method
involves various drawbacks related to data integration complexity, temporal and spatial
mismatch, cost and accessibility, data consistency and quality, as well as interpretation and
validation challenges. Addressing these disadvantages requires careful consideration of
data processing techniques, quality assessment measures, and validation procedures to
ensure robust and accurate glacier mapping results [18].

Transitioning from traditional methods to artificial intelligence (AI) techniques marks
a significant advancement in glacier mapping and monitoring. Indeed, studies have shown
that AI methodologies demonstrate notable efficacy in classifying remote sensing (RS)
data through feature extraction and selection, particularly in hyperspectral images [19,20].
These AI techniques have yielded promising outcomes across various RS applications,
including tree delineation [21], land cover classification [22], building detection [23,24],
fault diagnosis [25], and fault-tolerant control [26]. Moreover, within the realm of glacier
studies, AI methods have also found applications in mapping large glaciers from RS data.

Recently, various advanced methods have been actively employed for evaluating
changes in glacier-covered regions and ice formations during specific periods. Among
these methods, segmentation techniques that rely on visual interpretation and RS are the
most frequently used [27–29]. Moreover, these evaluations have begun to be studied using
decision-tree, supervised, and unsupervised methods [30]. In the same way, band ratios
and manual on-screen digitalization are utilized to classify debris-covered glaciers [31].
Furthermore, a number of researchers have suggested semi-automatic methods for classifi-
cation purposes, and more recently, unmanned aerial vehicles (UAVs) have been employed
to map glaciers with increased precision [32].

These AI algorithms offer powerful tools for glacier mapping applications, enabling
researchers to analyze large-scale glacier datasets more efficiently and accurately than
traditional manual methods. By leveraging the capabilities of AI, scientists can gain deeper
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insights into glacier dynamics, contribute to climate change research, and support informed
decision making in environmental management [33]. Therefore, reviewing the latest works
in this new area is necessary to understand the research trends in terms of AI methods
applied for glacier studies.

In this study, we conduct a state-of-the-art review of the most recent research papers
that have applied artificial intelligence (AI) methods in glacier studies. According to our
observations, the application of AI methods for glacier studies has been active since 2019.
The main reasons may be the increased access and availability of open-source AI tools such
as Pytorch [34], Tensorflow [35], and Keras [36] for the general audience and continuous
improvements in image-based AI techniques, which have significantly accelerated in the
last few years [37]. This makes the recent works particularly relevant and of interest given
the latest advancements.

Thus, the objective of the current state-of-the-art review is to understand the trend of
AI-based method applications in glacier studies, as well as the types and classification of
AI methods, and to evaluate the size and variety of glacier datasets used for training and
validation in addition to the accuracy and efficiency of the selected AI methods in studying
glaciers. Moreover, the reviewed works are classified based on the type of glacier studies,
providing the reader with clear guidance on the AI methods applied for the relevant
studies. For each type of glacier study that uses AI, the research works are reviewed and
discussed in chronological order, offering valuable insights into how this research field
is evolving over time. Additionally, comparative analyses are carried out for each type
of AI-based glacier study. Hence, in the next section, the readers may learn about the
approach to finding the research works among AI-based glacier studies, understanding the
reviewed works in a general manner, and gaining knowledge from classification charts and
illustrations. Furthermore, in the subsequent sections, the classified works are discussed in
more detail, followed by a discussion section. Finally, conclusive remarks, including future
works, are presented in the conclusion section.

2. Review Approach and Overview of the Collected Works

To find research works that apply AI methods and techniques to glacier studies,
we used search terms and expressions such as “Glacier Deep Learning”, “Glacier Ma-
chine Learning”, “Artificial Intelligence in glacier studies”, “Glacier studies with Neural
Networks”, and “Neural Network-based glacier studies” in various databases (Figure 1).
Specifically, we conducted searches in databases such as Elsevier, Wiley, Springer, Taylor
& Francis, IEEE, Copernicus Group, and MDPI. According to the Scimago Journal Rank
(www.scimagojr.com), these publishers, under the category of Earth-Surface Processes, host
the leading journals that publish environmental science, geology, and glaciology research
works. Additionally, we used these terms and expressions in the Google search engine to
find similar works in other databases to ensure comprehensive coverage. As shown in the
flowchart, the research articles found are firstly classified in chronological order.

Furthermore, according to the inventory data of RGI [38], there are 19 glacier regions
in the world, as shown in Figure 2. Once all the works are collected in chronological
order, the second step in classification involves dividing them based on these regions. Such
classification can be considered reasonable since the accuracy of AI models usually depends
on the geological location of the training datasets, and they are often less accurate when
tested on another dataset from a different location [39]. Thus, among the glacier regions
studied using AI methods, the most prominent are those in South West and South East Asia,
designated as Region 14 and 15, respectively, followed by Central Europe and other regions.
This is clearly can be noticed in the second column of the Sankey Diagram illustrated in
Figure 3. Furthermore, considering the main classification of the reviewed works, we focus
on the purpose of AI applications in glacier studies (Figure 3), which are mainly divided
into (i) inventory and mapping, (ii) glacier evolution, (iii) snow/ice differentiation, and
(iv) ice dynamics modeling. Therefore, the main part of the current work, Section 3, is
divided into subsections based on these classifications of glacier studies.

www.scimagojr.com
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Inventory development and mapping of glaciers represent one of the most extensively
studied areas within the field of AI-based glacier studies, and this is clearly shown in the
Sankey diagram (Figure 3). Among the collected and reviewed works, XX papers dealt with
the application of AI methods for inventory and mapping of glaciers. Thus, researchers and
scientists have increasingly utilized AI methods such as machine learning (ML) techniques
and deep learning (DL) techniques to automate the process of mapping glaciers, creating
detailed inventories, and monitoring changes in glacier extent over time.

On the other hand, monitoring glacier evolution becomes crucial for understanding
environmental changes, especially as glaciers worldwide are affected by the consequences
of climate change. Therefore, in the latest works, applications of AI in this area can be
found since AI offers powerful tools for continuously tracking glacier dynamics, enabling
researchers to gain insights into changes in glacier extent, volume, and behavior over time.

There are certain unique applications of AI in snow/ice differentiation and ice dy-
namics modeling that allow us to distinguish glaciers from snow layers and simulate ice
volume changes, mass balance, and their coupling to assess the development of icefields
and ice sheets. Therefore, they are considered as separate areas of glacier studies in the
current review work.

As shown in the flowchart (Figure 1), while reviewing each research work, the main
findings—such as the location and type of the glacier, its classification/type based on
GLIMS (Global Land Ice Measurements from Space) if applicable, the selected AI model,
the input parameters, the datasets and dataset sizes, the accuracy of the model, and the
software used to develop and run the AI model—are summarized in Table 1. Such a
tabulated summary is highly suitable for a quick comparison of AI-based works, and it
contains all the main findings in the form of organized data for readers to evaluate the past
works and plan their future research.
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Table 1. Summary of the review.

Author Location Glacier Location
Name

Studied Glacier
Types

Classification by
GLIMS Manual AI Model Parameters Dataset Size Accuracy Software

Glacier inventory and mapping

2019 Zhang et al. [40] Parlung Zangbo
Basin, China

Tibetian Plateau
glacier

• Non/partially
debris-
covered
glaciers

• Fully debris-
covered
glaciers

N/A Random forest (RF)

• Landsat-8
images

• Normalized
difference
vegetation
index (NDVI)

• Normalized
Difference
Water Index
(NDWI)

• Normalized
Difference
Snow Index
(NDSI)

• GF-1 PMS
imagery

• Digital
Elevation
Model (DEM)

• 11 topographic
parameters

2755 RF-98.6% (ovearall) EnMAP-Box + DLL

2019 Mohajerani
et al. [41] Greenland

Jakobshavn,
Sverdrup,

Kangerlussuaq,
Helheim

• Tidewater
glaciers N/A U-Net

• Landsat
images

Training data:
images from
Jakobshavn,

Sverdrup and
Kangerlussuaq.

Test data: images
from Helheim glacier

Mean deviation of
96.3 m from the true

calving fonts
Python

2019 Baumhoer
et al. [42] Antarctica

• Sulzberg ice
shelfSkackle-
ton ice shelf

• Wilkes Land
• Victoria Land
• Getz ice shelf
• Ekstromisen
• Wordie ice

shelf
• Oats land
• Marie Byrd

land

• Ice shelves,
dynamic
glaciers

N/A Modified U-Net

• Sentintel-1,
• TanDEM-X

digital
elevation
model

38 pre-processed
Sentinel-1 scenes
90m resolution

TanDEM-X

Average f1-score =
90% N/A
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Table 1. Cont.

Author Location Glacier Location
Name

Studied Glacier
Types

Classification by
GLIMS Manual AI Model Parameters Dataset Size Accuracy Software

2020 Khan et al. [43] Hunza Basin,
Pakistan Batura glacier

• Glaciers
• Debris-

covered
glaciers

• Non-glaciated
areas

N/A

• Support vector
machine
(SVM)

• Artificial
neural
network
(ANN)

• RF

• NDVI
• NDSI
• NDWI
• New band

ratio (NBR)
• Mean
• Variance
• Homogeneity
• Contrast
• Dissimilarity
• Entropy
• Energy
• Correlation
• Angular

second
momentum

• Slope
• Aspect
• Evaluation

Land surface
temperature

2,688,723 pixels

Training: 70%
Testing: 30%

Kappa:
SVM = 0.89
ANN = 0.92

RF = 0.95

f-measure:
SVM = 91.86%
ANN = 92.05%

RF = 95.06%

N/A

2021 Zhang et al. [44] Greenland
Jakobshavn Isbræ,

Kangerlussuaq,
Helheim glaciers

Tidewater outlet
glaciers

Tidewater outlet
glacier

• U-Net
• DeepLabv3+

with ResNet
• DRN
• MobiNet

Optical:

• Landsat-8
• Sentinel-2

Synthetic aperture
radar images:

• Envisat
• ALOS-1
• TerraSAR-X
• Sentinel-1
• ALOS-2

Training:
110 Landsat-8,

13 ALOS-1,
76 TSX,

140 Sentinel-1

Testing:
74 Landsat-8,
52 Sentinel-2,

48 Envisat,
17 TSX,

90 Sentinel-1,
14 ALOS-2

Test-error studies:
DRN-DeepLabv3+ is

the lowest

Refer to Table 3 from
[44] for full test

results

Python

Open-source in
GitHub:

https://github.com/
enzezhang/

FrontDL3 (accessed
on 7 July 2024)

https://github.com/enzezhang/FrontDL3
https://github.com/enzezhang/FrontDL3
https://github.com/enzezhang/FrontDL3
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Table 1. Cont.

Author Location Glacier Location
Name

Studied Glacier
Types

Classification by
GLIMS Manual AI Model Parameters Dataset Size Accuracy Software

2020 H. Alifu
et al. [45]

Karakoram—
Pakistan

Shaksgam Valley,
China

North-western
Karakoram region

and Shaksgam Valley
glaciers

Debris-covered
glaciers

Valley, Mountain
glaciers

Machine learning
classifiers (MLC):

- K-nearest
neighbors
(KNN)

- Support
vector
machine
(SVM)

- Decision tree
(DT),

- Gradient
boosting (GB)

- Random
forest (RF)

- Multi-layer
perceptron
(MLP)

• Sentinel-2A
• Landsat-8
• Sentinel-1A
• ALOS DEM
•

Geomorphometric
parameters

• Thermal
Infrared
images

• GAMDAM
dataset

Area 1: 2000 to
20,000 points.

Area 2: 20,000 points
RF-97% Python

2020 Robson
et al. [46]

Chilean Andes, Chile

Central Himalaya

La Laguna catchment

Poilu catchment
Rock glaciers Mountain glaciers CNN with OBIA

• Sentinel-2:
Blue, Green,
Red,
Near-Infrared,
and shortwave
Infrared bands

• SAR coherence
data

Not clear

• User’s
accuracy:
65.9%

• Producer
accuracy:
71.4%

Google
Tensorflow

2021 Lu et al. [47] China High Mountain Asia Debris-covered
glaciers Mountain glacier RF

CNN

• Landsat 8
• NDVI
• NDWI
• NDSI
• Elevation
• Slope
• Aspect
• Shaded relief

Eastern Pamir: 7499
samples

Nyainqêntanglha:
3099 samples

Eastern Pamir and
Nyainqentanglha

User’s accuracy:

• RF = 91.59%,
92.53%

• CNN =
87.96%, 78.75%

• RF-CNN =
97.90%, 90.60%

Producer’s accuracy:

• RF = 97.17%,
98.86%

• CNN =
98.69%, 97.53%

• RF-CNN =
98.33%, 74.54%

Python
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Table 1. Cont.

Author Location Glacier Location
Name

Studied Glacier
Types

Classification by
GLIMS Manual AI Model Parameters Dataset Size Accuracy Software

2021 Xie et al. [48]
Kashmir Region.

Nepal region

Karakoram glaciers

Nepal glaciers
DCG Mountain,

Valley glaciers

• GlacierNet
• Mobile-Unet
• Res-UNet
• FCDenseNet
• R2UNet
• DeepLabV3+

• Landsat 8
• ALOS DEM
• Slope–

azimuth
divergence
index

• Slope angle
• Tangential

curvature
• profile

curvature
• Unsphericity

curvature

N/A

IOU:

• DeepLabV3+ =
0.8623

• GlacierNet =
0.8599

• Mobile-UNet
= 0.8531

• ResUNet =
0.8399

• FCDenseNet =
0.8265

• R2UNet =
0.8204

• Accuracy:
• DeepLabV3+ =

0.9684
• GlacierNet =

0.9677
• Mobile-UNet

= 0.9660
• ResUNet =

0.9636
• FCDenseNet =

0.9597
• R2UNet =

0.9582

N/A

2022 Xie et al. [49] Northern Pakistan Central Karakoram DCG Mountain,
Valley glaciers CNN

• 11 bands of
Landslide 8

• DEM
• Unsphericity
• Profile

curvature
• Tangential

curvature
• Slope angle
• Slope azimuth

divergence
index

Accucary:

• GlacierNet:
0.9677

• DeepLabV3+:
0.9684

• GlacierNet &
DeepLabV3+:
0.9685

• GlacierNet2:
0.9735

2022 Erharter [50] Austria Apls
Vienna, Burgenland,

Lower Austria,
Upper Austria

RG Mountain glaciers ANN with U-net
• DEM
• Orthophotos

5769 RGs:

• 3722 training
• 800 validation

• Ranged values
using
probability
map

Python, Keras
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Table 1. Cont.

Author Location Glacier Location
Name

Studied Glacier
Types

Classification by
GLIMS Manual AI Model Parameters Dataset Size Accuracy Software

2022 Kaushik
et al. [17]

12 sites across
Himalaya Himalayan glaciers Glacier lake N/A

GLNet—Deep
convolutional neural

network

• Sentinel-2: B,
G, R, NIR, and
SWIR)

• Landsat 8
• Elevation
• Slope

NDWI

660 images

Accuracy = 0.98
Precision = 0.95

REcall
f-score = 0.95

2022 Tian et al. [51] Pamir Plateau RG Mountain glaciers Channel attention
U-net (U-net+cSE)

• Landsat 8

SRTM DEM data
7821 images

Accuracy:
U-net = 0.9756

GlacierNet = 0.9689
U-net + cSE = 0.9774

2022 Sood et al. [52]
Bara Shigri,

Himachal Pradesh,
India

Valley glacier ENVINet5 • Landsat 8 Accuracy = 91.89%
Kappa = 0.8778

2022 Sharda
et al. [53]

Karakoram Range,
Pakistan DCG Mountain, Valley,

Icefields

• Relief-F
• Pearson

correlation

Hybrid RF-Corr

• Landsat 8
• SRTM 1-Arc

Second GDEM
• Pamir and

Karakoram
inventories

• GLIMS
database

up to 99.8%
• MATLAB

eCognition
developer software

2023 Peng et al. [14] Qilian Mountains,
China Not specified

U-net with LGT
encoder and LGCB

decoder

• SAR
(Sentinel-1),

• Optical
(Sentinel-2)

• Image band
indices

• DEM
• NDSI
• NDWI
• NDVI

2072 glaciers:

• Training: 70%
• Testing: 30%

Accuracy:
U-Net: 0.725

DeepLab V3+: 0.924
Attention DeepLab

V3+: 0.960
Swin Transformer:

0.962
Proposed model:

0.972

NA



Water 2024, 16, 2272 11 of 39

Table 1. Cont.

Author Location Glacier Location
Name

Studied Glacier
Types

Classification by
GLIMS Manual AI Model Parameters Dataset Size Accuracy Software

2023 Thomas
et al. [54]

Khumbu—Nepal,
China

Manaslu—Nepal
Hunza—Pakistan

DCG

Valley,
Mountain,
Icefields,
Cirque

CNN
with OBIA

classification

• Sentinel-2
• Landsat-8
• ALOS DEM
• Corona KH-4B
•

Geomorphometric
data

69,500 samples
Supraglacial
debris-20,000
Non-glacial

material-20,000
Vegetation-10,000

Lakes-7500
Clean ice glacier-5000

Snow cover-5000
Shadows-2000

• CNN-OBIA—
93.8%

Trimble’s

eCognition
Developer 10.2

TensorFlow library

2023 Hu et al. [55] Western Kunlun
Mountains, China

Western Kunlun
Mountains Rock glaciers N/A DeepLabv3+ with

Xception71 backbone

• Sentinel-2,
• ALOS-1

PALSAR
• InSAR data
• Google Earth

images

Training (90%): 2007
images;

Validation (10%): 223
images;

N/A N/A

Monitoring of glacier evolution

2022, 2020 Bolibar
et al. [56,57] French Alps Écrins, Vanoise,

Mont-Blanc glaciers
Mountain Glaciers Mountain Glacier

ALpine
Parameterized
Glacier Model

(ALPGM) based on
ANN

• DEM
• Glacier

boundary
shape files

• SMB values
• Glacier

topographical
data

32 glaciers in French
Alps

47% in space
58% in time Python

2022 Ambinakudige
and Intsiful [58]

Columbia Icefields,
Canada Icefields

SVM
RF

MLC

• Landsat 8
• NDSI
• NDVI
• NDSI
• NDII

1985, 1991, 2013, and
2020 Landsat satellite

images

70% training
30% validation

Accuracy:
RF = 99.8%

MLC = 99.7%
SVM = 99.7%

Kappa:
RF = 0.995

MLC = 0.993
SVM = 0.994

N/A

2022 Rajat et al. [59] Himachal Pradesh,
India

Himalayan
mountains Mountain glaciers U-Net

• Landsat
• Indian Remote

sensing
• DEM

75% training
25% validation F1 score: 95% N/A



Water 2024, 16, 2272 12 of 39

Table 1. Cont.

Author Location Glacier Location
Name

Studied Glacier
Types

Classification by
GLIMS Manual AI Model Parameters Dataset Size Accuracy Software

2023 Yang et al. [60] Southeast Tibet Zelongnong ravine Glacier Debris Flow
susceptibility

Valley,
Cirque

• DeepLabv3+
[FCN (fully
convolutional
networks)]

DCNN

• SRTM X DEM
• SRTM C
• TanDEM-x

DEM
• Landsat 7/8

GLIMS

• MIOU (Mean
Intersection
over Union)—
92.15%

• MPA (Mean
Pixel
Accuracy)—
95.89%

Snow/ice differentiation

2022 Prieur C. [61] Zermatt, Switzerland Mont Rose massif Temperate
glacier/snow lines Temperate glaciers

• Feed forward
NN

• SVM linear
kernel

• SVM Gaussian
kernel

Random forest

• Copernicus
DEM

• Landsat 8

Alps’ glacier
inventory from 2015

- Ice/snow—
270,000 pixels

- Glacier—
200,000 pixels

- Mountain
shadow—
140,000 pixels

• Feed forward
NN—98%

• SVM linear
kernel—98.7%

• SVM Gaussian
kernel—99%

Random
forest—99.8%

-

Ice dynamics modeling

2021 Jouvet et al. [62]

• Andes
• Canada
• Caucasus
• Colombi
• Ethiopia

Icefields,
Valley glaciers

Instructed Glacier
Model (IGM) using

CNN
- ≈20 direct speedup

using CNN Python
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As supervised AI methods, random forest, ANNs (artificial neural networks), and
support vector machines (SVMs) are commonly used, while deep learning methods such
as U-Net, DeepLab, and CNNs (convolutional neural networks) represent another type of
AI technique frequently used in glacier studies, as can be noted from the chart in Figure 3.
Both supervised learning and deep learning methods have been actively used for years and
have been deployed at nearly the same rate, except in 2021, when deep learning methods
were dominant (Figure 4). In the next section, which is the main part, the reader will be
able to access a summary of each work along with detailed tabulated information (Table 1)
on the types of glaciers studied, their geographical locations, their classification according
to the GLIMS glacier manual, the AI methods applied, the input parameters, the datasets
used, and the accuracy of the studies.
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3. AI-Based Glacier Studies
3.1. AI for Glacier Inventory and Mapping

Glacier inventory and mapping represent a promising area of application of AI, of-
fering a transformative approach for optimizing the efficiency and accuracy of glacier
monitoring efforts. Through extensive training on a variety of datasets, including satellite
imagery, digital elevation models (DEMs), and historical records, AI models can quickly
learn to recognize various glacier features, delineate glacier boundaries, and quantify
glacier extent with unprecedented accuracy. This capability not only speeds up the creation
of glacier inventories and maps, but also improves the reliability and consistency of glacier
monitoring data, which are critical for understanding glacier dynamics, assessing climate
impacts, and making environmental management decisions. A summary of the works on
glacier inventory and mapping can be found in the first section of Table 1.

Earlier works in AI-based glacier inventory and mapping start from 2019, and one of
them was written by Zhang et al. [40]. In their work, the authors studied glaciers in the
Parlung Zangbo basin located within the Tibetan Plateau. The glacier data were collected
from Landsat-8 images with 30 to 100 m spatial resolutions, and the image textures were
analyzed using the Grey Level Co-occurrence Matrix (GLCM). Moreover, the authors calcu-
lated the Normalized Difference Water Index (NDWI), Normalized Difference Vegetation
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Index (NDVI), and Normalized Difference Snow Index (NDSI) and used them as a dataset
together with topographic parameters from ASTER Global Digital Elevation Model (GDEM
V2), including other DEMs such as TanDEM-X and Shuttle Radar Topography Mission
(SRTM) DEM to obtain elevation change data. Random forest (RF) with 100 decision trees
was selected as the AI method as shown in Figure 5, and there were three steps, prepro-
cessing, RF classification, overlaying of classification results, and accuracy assessment, to
achieve the final mapping. The overall accuracy of the RF classification was 98.6%. The
study showed 1476 glaciers spanning 2011.32 km2 in the Parlung Zangbo basin, where
20.7% of the glacier region was debris-covered and it was between 4600 m and 4800 m above
sea level (a.s.l.). Additionally, 77.5% of the glaciers (1558.79 km2) were located between
4600 m and 5600 m a.s.l., with smaller glaciers (<1 km2) mostly found at lower elevations.
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Mohajerani et al. [41] developed an ML toolkit that utilizes CNNs with a modified
U-Net architecture for automatic detection of glacier calving front margins from satellite
imagery (Figure 6). This approach was trained on a dataset of Landsat images of Greenland
periphery glaciers. The study utilized Landsat 5, 7, and 8 imagery, focusing on the “green”
and “panchromatic” bands, respectively. The optimized 29-layer deep neural network
incorporated 3 × 3 ReLU convolutional layers, 0.2 Dropout layers for regularization, and
2 × 2 MaxPooling for downsampling and upsampling layers. A sample-weighted loss func-
tion and data augmentation techniques were also employed to enhance the performance.
The model’s effectiveness was evaluated not only on validation datasets, but also on a new
glacier with higher spatial resolution to assess transferability across different fjord geome-
tries. After training on the Jakobshavn, Sverdrup, and Kangerlussuaq glaciers, the network
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was tested on the Helheim glacier, achieving a mean deviation error of 96.3 m (1.97 pixels
on average). This accuracy was comparable to manual delineation errors (92.5 m) and
significantly outperformed traditional edge-detection methods like the Sobel filter.
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The study highlights the advantages of using DL for glacier mapping, particularly
in enhancing the efficiency and accuracy of detecting calving fronts. The modified U-Net
architecture employed in this research effectively segments the calving fronts from satellite
images, providing a robust tool for continuous monitoring. The automated system allows
for the rapid delineation of calving fronts, which is essential for understanding regional
changes on the ice sheet periphery over several decades. This method not only reduces the
manual effort required, but also provides a consistent and scalable solution for processing
large volumes of satellite data, paving the way for more detailed seasonal and long-term
analyses of glacier dynamics.

Similarly, a modified U-Net model developed by Baumhoer et al. [42] can process
dual-polarization Sentinel-1 radar data along with elevation information from the TanDEM-
X digital elevation model to accurately delineate the Antarctic coastline (Figure 7). This
method outperforms traditional image processing techniques, especially in challenging
areas with low contrast between ice and water or the presence of sea ice. The ability to
automatically process large volumes of Sentinel-1 data enables the creation of dense time
series to track glacier and ice shelf front movements at continental scales.

The automated approach allows for consistent and objective coastline extraction, over-
coming the limitations of time-consuming manual delineation and subjective interpretations
in complex areas. When tested on multiple sites around Antarctica, the model achieved
average deviations of 78–108 m compared to manually drawn coastlines. Importantly,
the method demonstrated spatial and temporal transferability, successfully generating a
15-month time series of front positions for the Getz Ice Shelf without additional training.
This capability to produce frequent, large-scale measurements of glacier and ice shelf front
dynamics is crucial for improving our understanding of ice sheet mass balance, calving
processes, and potential sea level rise contributions from Antarctica.

The paper by Khan et al. [43] investigates the application of supervised ML tech-
niques to automatically classify glacier layers using a blend of Sentinel-2 images along
with texture, topographical, and spectral data. The study focuses on the Passu watershed
in the Hunza Basin, Pakistan. Three well-known supervised ML methods, namely, sup-
port vector machine (SVM), artificial neural network (ANN), and RF, were explored for
the classification.
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Similar to Zhang et al. [40], the method proposed by Khan et al. [43] involves three
main steps: feature extraction, machine learning classification, and accuracy assessment.
The extracted features encompass spectral reflectance data, textural properties obtained
from the GLCM, and topographical attributes acquired from the DEM. The classifiers
are then trained and tested on the data, producing classification maps for debris-covered
glaciers, usual glaciers, as well as non-glacier areas. The flowchart of the proposed method
is provided below in Figure 8. By comparing the output data with the reference data, an
accuracy evaluation is conducted.
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The results indicated high accuracy for all classifiers, with RF outperforming SVM
and ANN consistently across all classes. The accuracy was measured by means of the
Kappa coefficient, or Cohen’s Kappa, a statistical technique that evaluates the consistency
of agreement between two raters classifying items into mutually exclusive categories. Thus,
the overall accuracy, Kappa coefficient, and other indicators demonstrated the effectiveness
of the proposed method. For example, the overall accuracy reached as high as 92.77%,
and the Kappa value was 0.92. A comparison with existing glacier inventory datasets
revealed discrepancies, highlighting the need for more consistent and reliable classification
approaches. The study suggests that ML approaches, particularly RF, coupled with remote
sensing data, offer robust and accurate means of mapping glaciers and debris-covered
glaciers, which is crucial for water resource management and hazard assessment.

In another research work, to map debris-covered glaciers, Haireti Alifu et al. [45]
developed an ML-based classification technique. As the multi-sensor input data, they
considered SAR coherence, thermal, topographic, and optical data obtained from remote
sensing devices to evaluate the accuracy of ML methods such as SVM, decision tree,
gradient boosting, and k-nearest neighbors. Furthermore, from Google Earth images, the
authors created outlines of debris-covered ice by applying manual delineation (Figure 9).
Northwestern region of Karakoram in Pakistan (Location 1) and Shaksgam Valley in
Western China (Location 2) were selected as areas for testing the ML methods. In particular,
datasets from the testing locations, such as RGI-based vector data and GAMDAM glacier
inventory, were used for validation purposes.

Water 2024, 16, x FOR PEER REVIEW  17 of 39 
 

 

 
Figure 9. Proposed flowchart of the methodology [45]. 

The analysis included how training data size affected (up to 20,000) the accuracy of 
the selected ML-based classification methods, and they were compared between each 
other to select the most effective method. The outcomes obtained from this increased vol-
ume of training data indicated that RF attained greater accuracy, nearly 97%, compared 
to the GB and SVM methods. Furthermore, the data points increased from 2000 to 20,000, 
increasing the accuracy of the mapping by 1–2%. When isolated pixels were excluded 
from the dataset, the accuracy was further improved by up to 1.5%. 

In another work [46], the authors combined a CNN with object-based image analysis 
(OBIA) to predict rock glaciers (RG) in an automated way. Thus, the CNN produced a 
prediction raster or heatmap, with pixel values ranging from 0 to 1, as shown in Figure 
10. Further, OBIA was used to classify objects from the generated heatmaps. In fact, OBIA, 
a common remote sensing method, segments images into homogeneous objects for sub-
sequent classification. 

Two areas with glaciers, namely, the La Laguna (Chile) and Poiqu (Central Hima-
laya) catchments, were considered for AI-based RG mapping (Figure 11). The La Laguna 
catchment, located at the Elqui River’s headwaters in Chile, encompasses glaciers and RG, 
contributing 4–13% of the annual streamflow in an elevation range of about 4000 to 6000 
m across an area of approximately 140 km2 and hosting 105 RGs. On the other hand, the 
Poiqu catchment, a transboundary watershed in the Himalayas draining into Nepal and 
the Ganges River, spans over 2000 km2 with elevations from 1100 to over 8000 m, featuring 
a variety of glaciers. The study focuses on approximately 1500 km2, including about 140 
rock glaciers, with sizes ranging from <0.01 to >1 km2. Approximately 30% of manually 
interpreted outlines from the Pléiades imagery (RG_Man) were used for training. The rock 
glaciers from the La Laguna and Poiqu catchments had sizes of 2.3 km2 and 6.1 km2, re-
spectively, while an additional 0.7 km2 was extracted from the Pléiades subset. All these 
outlines were integrated with adjacent polygons, merged, and small ones were removed. 
To evaluate the accuracy, the leftover polygons—50 from La Laguna, 117 from Poiqu, and 
7 from the Poiqu Pléiades subset—were utilized. Around 300 random training points were 
created within the RG outlines, along with extra points representing debris-covered glac-
iers, pristine ice glaciers, and stable terrains. As a result, the CNN_OBIA classification 
technique detected a combined 108 rock glaciers, encompassing an area of 26.0 square 
kilometers, out of the total 120 (spanning 20.3 square kilometers in the validation dataset 
(RG_Man) across both study areas. This led to an overestimation of 28.0%, with the end-

Figure 9. Proposed flowchart of the methodology [45].

The analysis included how training data size affected (up to 20,000) the accuracy of
the selected ML-based classification methods, and they were compared between each other
to select the most effective method. The outcomes obtained from this increased volume of
training data indicated that RF attained greater accuracy, nearly 97%, compared to the GB
and SVM methods. Furthermore, the data points increased from 2000 to 20,000, increasing
the accuracy of the mapping by 1–2%. When isolated pixels were excluded from the dataset,
the accuracy was further improved by up to 1.5%.

In another work [46], the authors combined a CNN with object-based image analysis
(OBIA) to predict rock glaciers (RG) in an automated way. Thus, the CNN produced a
prediction raster or heatmap, with pixel values ranging from 0 to 1, as shown in Figure 10.
Further, OBIA was used to classify objects from the generated heatmaps. In fact, OBIA, a



Water 2024, 16, 2272 18 of 39

common remote sensing method, segments images into homogeneous objects for subse-
quent classification.
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Two areas with glaciers, namely, the La Laguna (Chile) and Poiqu (Central Himalaya)
catchments, were considered for AI-based RG mapping (Figure 11). The La Laguna catch-
ment, located at the Elqui River’s headwaters in Chile, encompasses glaciers and RG,
contributing 4–13% of the annual streamflow in an elevation range of about 4000 to 6000 m
across an area of approximately 140 km2 and hosting 105 RGs. On the other hand, the
Poiqu catchment, a transboundary watershed in the Himalayas draining into Nepal and
the Ganges River, spans over 2000 km2 with elevations from 1100 to over 8000 m, featur-
ing a variety of glaciers. The study focuses on approximately 1500 km2, including about
140 rock glaciers, with sizes ranging from <0.01 to >1 km2. Approximately 30% of manually
interpreted outlines from the Pléiades imagery (RG_Man) were used for training. The
rock glaciers from the La Laguna and Poiqu catchments had sizes of 2.3 km2 and 6.1 km2,
respectively, while an additional 0.7 km2 was extracted from the Pléiades subset. All these
outlines were integrated with adjacent polygons, merged, and small ones were removed.
To evaluate the accuracy, the leftover polygons—50 from La Laguna, 117 from Poiqu, and 7
from the Poiqu Pléiades subset—were utilized. Around 300 random training points were
created within the RG outlines, along with extra points representing debris-covered glaciers,
pristine ice glaciers, and stable terrains. As a result, the CNN_OBIA classification technique
detected a combined 108 rock glaciers, encompassing an area of 26.0 square kilometers,
out of the total 120 (spanning 20.3 square kilometers in the validation dataset (RG_Man)
across both study areas. This led to an overestimation of 28.0%, with the end-user’s and
producer’s accuracy indicating a relatively high percentage of correctly identified rock
glaciers, but with some instances of false positives.

The study by Lu et al. [47] focused on mapping debris-covered glaciers (DCG) around
the Tibetan Plateau, in particular, High Mountain Asia (HMA). The selected AI models
were RF and CNN. The study employed data from Landsat 8 OLI, thermal infrared sensors,
GDEM (Reflection Radiometer Global Digital Elevation Model), and ASTER (Advanced
Spaceborne Thermal Emission) for the mapping of debris-covered glaciers on the Tibetan
Plateau, namely, in the Eastern Pamir and Nyainqentanglha areas. Various classification
models, including RF and CNN, were compared and integrated to achieve the best classifi-
cation performance. The relationship between debris coverage and ML model parameters
was investigated, revealing that debris coverage directly influences model performance
and aids in detecting both active and idle DCG.

The authors proposed an approach combining RF and CNN models, referred to as
an RF-CNN composite classifier, to enhance the classification accuracy of debris-covered
glaciers. By leveraging the respective advantages of the RF and CNN models, the RF-
CNN composite classifier achieved promising results, providing valuable insights for
glacier mapping and boundary extraction. The study demonstrates that the performance
of ML techniques and the accuracy of glacier extraction are closely tied to the intensity
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of debris coverage, highlighting the importance of considering local characteristics in
mapping efforts.
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Furthermore, the study evaluated the performance of the RF-CNN model against
existing glacier inventory datasets, showcasing its effectiveness in accurately delineating
debris-covered glaciers. The results indicated that the RF-CNN model outperformed
individual classifiers, offering a more reliable approach for glacier mapping. The study
underscored the significance of machine learning methods in improving the efficiency
and accuracy of glacier mapping, laying the groundwork for future research in this field.
Future work will focus on refining the RF-CNN model and exploring its applicability to
SAR images for enhanced glacier classification.

Xie et al. [48] compared the performance of GlacierNet with other CNN-based methods
such as Mobile-UNet, Res-UNet, FCDenseNet, R2UNet, and DeepLabV3+. Each model un-
derwent training using 15% of the total study area, specifically focusing on the Karakoram
glaciers (shown in Figure 12), followed by evaluation across twelve glaciers (represented as
yellow dots in figure) beyond the training domain. These glaciers exhibited diverse surface
and topographical characteristics.

Due to computational intensity, the input image for GlacierNet was sub-sampled
by means of a sliding window approach with a stride of 32 and sizes of 256 × 256 or
512 × 512. As the input consisted of multi-channel images, the networks were configured
with an input layer comprising 17 channels instead of the typical 3 channels for RGB images.
The CNN output is a binary image representing the input data category, which was then
combined into a larger binary image as shown in Figure 13. Additional refinement steps,
including region size thresholding, water index-based removal of excess water pixels, and
hole filling, were applied to enhance the accuracy.
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The analysis revealed DeepLabV3+ as the frontrunner, demonstrating the highest
intersection over union (IOU), F-measure, kappa, and accuracy values, with GlacierNet
following closely behind. The authors noted variations in performance among the models
concerning the estimation of melting zones and terminus, with DeepLabV3+ exhibiting
superior performance in this regard. Notably, terminus estimation emerged as a significant
challenge across the compared models, prompting suggestions for potential enhancements
in network architecture to address this issue.

Furthermore, computational expenses were assessed, revealing FCDenseNet and
R2UNet as the most resource-intensive, DeepLabV3+ as moderately demanding, and
Mobile-UNet and GlacierNet occupying the lower end of the computational cost spectrum,
akin to Res-UNet.

The authors highlighted the suitability of DeepLabV3+ for large-scale glacier mapping
tasks, noting its superior performance compared to other models. The GlacierNet emerged
as a viable option for regional-scale mapping. The careful selection of training data was
emphasized as pivotal given its significant impact on overall model performance.

Later, Xie et al. [49] upgraded the previous model and presented a multi-model
learning architecture, GlacierNet2, for glacier mapping. The architecture is based on data
subsampling and DL using CNN models such as GlacierNet and DeepLabV3+, and it
can estimate the terminus, ablation, and snow-covered accumulation zones of glaciers
(SCAZ). Glaciers of central Karakoram in northern Pakistan were selected to test the
predictive performance of GlacierNet2. Two scenes of Landslide 8 from September and
October of 2016 were used. Notably, mapping glaciers is most achievable in the September–
October timeframe due to the end of the ablation season. The architecture has a 17-channel
input, which receives the following data: 11 bands of Landsat 8; a digital elevation model
(DEM); and five layers of geomorphometric parameters such as unsphericity, profile,
tangential curvatures, slope angle, and slope azimuth divergence index. Thus, GlacierNet2
showed the best accuracy in terms of mapping the ablation zone relative to DeepLabV3+
and GlacierNet.

Erharter et al. [50] applied ANN based on U-net architecture to map rock glaciers of
Austria. The dataset they used consisted mainly of DEM and orthophotos obtained from
Google Maps satellite images. The inventory consisted of 5769 rock glaciers covering an
overall area of 303 km2 from Austrian states such as Vorarlberg, Salzburg, Tyrol, Styria,
Carinthia, and the alpine of Upper Austria. The inputs were images 512 × 512 in pixel
size, with a rough precision of 2 m, meaning the overall size of an image was 1 × 1 km.
The slope maps were computed using the QGIS software based on DEM data. On the
other hand, in the second channel, the greyscale orthophotos were inputted, allowing the
landscape’s surface and vegetation characteristics to be evaluated. Therefore, the output
data consisted of a 512 × 512 binary raster, indicating whether each pixel represented a rock
glacier or not. As shown in Figure 14, the U-Net architecture consisted of five contracting
and five expanding blocks. It employs 2D convolution layers, batch normalization, and
max pooling to reduce the image dimensions. The center part utilizes two conv2d layers,
a two-dimensional convolution operation in neural networks that extracts features from
images using sliding filters to produce feature maps. This is essential for tasks like image
classification, object detection, and image segmentation, and is highly suitable for glacier
studies. The final output is generated through a last conv2d layer with sigmoid activa-
tion (i.e., f (x) = 1/(1 + e−x ), producing a binary output to predict RGs. ANN was trained
using the Adam optimizer at a learning rate of 0.0001. To evaluate the accuracy of the
model, the dice similarity coefficient (DSC) was used, where 0 and 1 referred to dissimilarity
and perfect similarity, respectively, between the ground truth and ANN output.
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Figure 15 illustrates RG examples and an ANN-based probability map. Thus, after
testing thresholds ranging from 0 to 1 in steps of 0.05, the authors identified 0.4 as the
optimal value to divide results into two categories: values ≤ 0.4 represented no rock glacier,
and values > 0.4 indicated the existence of a rock glacier. It should be noted that a maximum
DSC of 0.616 was obtained at a threshold of 0.4.
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Kaushik et al. [17] trained a deep CNN (DCNN), named GLNet, using a dataset of
660 images from multiple sources such as DEM, thermal, microwave, and other remote
sensing techniques, as shown in Figure 16. The dataset was obtained from 12 locations
within and around the Himalayan glaciers, and the overall selected region was divided
into four testing sites.

The GLNet demonstrated a strong performance overall, achieving high accuracy,
F1 scores, and correctness in mapping glacial lakes across multiple test sites. However,
challenges such as erroneous predictions in certain areas, particularly related to shadows
and wet ice pixels, were observed, leading to false positive and false negative results in
some instances. One of the evaluation results is shown in Figure 17, specifically for site
3, in eastern Himalaya. Despite these challenges, the model showed an improvement in
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its performance over different test sites, highlighting its potential, but also the need for
continued refinement to address specific limitations.
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Figure 17. Glacial lakes in the Eastern Himalaya’s test site 3 were mapped and compared with the
reference data to identify errors in false positives and false negatives [17].

Tian et al. [51] proposed an enhanced U-Net model, incorporating a channel-attention
mechanism, for glacier mapping and evaluated its performance using Landsat 8 OLI and
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Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) data obtained
for the Pamir Plateau.

The results demonstrate that the channel-attention U-Net model achieved superior
accuracy in glacier identification compared to the standard U-Net and GlacierNet mod-
els. Furthermore, fine-tuning with a conditional random field (CRF) model effectively
reduced background misidentification, enhancing the overall accuracy of glacier extraction.
Evaluation metrics such as accuracy, recall, and F1-score validated the effectiveness of the
proposed approach, with the channel-attention U-Net model outperforming other methods,
albeit with a slight reduction in recall due to its focus on glacier features.

The Pamir Plateau, characterized by its high altitude and extensive glacier coverage,
served as the study area, highlighting the relevance of the research in a region highly
vulnerable to climate change. Utilizing Landsat 8 OLI imagery and SRTM DEM data, the
study ensured data consistency and accuracy, which are critical for reliable glacier mapping.
The incorporation of ground-truth data from the Global Land Ice Measurements from Space
(GLIMS) database enhanced the reliability of the findings, despite temporal discrepancies
necessitating manual modifications.

Despite the promising results, the study acknowledges certain limitations, such as
challenges in distinguishing glaciers from similar geological features like water bodies
and debris-covered glaciers. Additionally, issues like cloud cover and shadows pose
challenges to optical remote sensing-based glacier mapping, requiring careful selection of
input imagery. Future research directions include exploring additional data sources, such
as synthetic aperture radar (SAR) images, and further refining the model to address specific
challenges like the underestimation of debris-covered glaciers.

Sood et al. [52] proposed a deep learning classifier ENVINet5 based on U-Net ar-
chitecture for glacier monitoring over the Bara Shigri glacier and compared that to the
ANN model. ENVINet5 and ENVI Net-Multi are based on the U-Net model and are
specifically designed for single-class and multi-class classification, respectively (Figure 18).
ENVINet5 utilizes a mask-based encoder–decoder architecture, incorporating features
such as convolutional layers, feature fusion, dimensionality reduction, co-convolution,
and 1 × 1 convolutions. On the other hand, ENVINet-Multi is tailored for classifying
multiple class categories, leveraging the spectral and spatial properties of input datasets
along with field data knowledge. These architectures demonstrate the potential of deep
learning in handling complex classification tasks in remote sensing. The overall accuracy of
the ENVINet-5 was 91.89%, while ANN had 88.38%, and the kappa coefficient was 0.8778
versus 0.8241. The authors mentioned that errors using the ENVINet-5 are high due to the
spatial resolution of the input data and parameter selection during the training process.
Furthermore, the results may be affected by clouds or topographic effects. Therefore, these
effects should be tested.
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In another work, a hybrid feature selection (FS) approach was created to reduce
classifier intricacy and enhance prediction accuracy by Sharda et al. [53]. This method
automatically selects the optimal feature set and removes irrelevant or redundant features.
Additionally, a supervised ML-based classifier was integrated to automatically select
threshold parameters. This reduced the need for trial-and-error iterations in choosing
suitable threshold values for assigning objects to various classes.

The FS method they created involved three stages: initial screening, identifying shared
features, and fine-tuning. The integration of Relief-F and Pearson correlation filter-based
methods improved the feature space. Additionally, the DT classifier enhanced the refined
feature space using the Twoing split criteria. The suggested ML-based automatic classi-
fication approach, as depicted in Figure 19, underwent testing in the Central Karakoram
Region and demonstrated significant resilience across all glacier types.
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Figure 19. Flowchart of the hybrid feature selection mechanism for automatic object-based glacier
mapping [53].

They developed method consisted of three stages: an initial screening stage, a selection
of general properties stage, and a refining stage. Thus, the future space was optimized by
means of Pearson correlation and Relief-F algorithms. Twoing split criteria were used in
the decision tree classifier (DT) classifier to optimize the feature space. Thus, the developed
ML-based automatic classification method was validated based on the glacier data from
the Central Karakoram area and further demonstrated accurate results in other selected
glaciers. The efficiency of the hybrid FS method was assessed by computing the prediction
accuracy via 5-fold cross-validation. Compared to the Relief-F and Pearson correlation
approaches, the hybrid model showed a minor enhancement in classification accuracy of
0.04% for the Siachen glacier and 0.17% for other glaciers.

Peng et al. [14] introduced a transformer-based DL method using a U-Net architecture
with a Local–Global Transformer encoder and Local–Global CNN Blocks in the decoder,
integrating global and local information. Out of 2740 glaciers covering 1514.01 km2 in Qilian
Mountains, China, those between 1 and 10 km2 accounted for the largest glacierized areas
(832.52 km2); our study focuses on 2072 glaciers larger than 0.05 km2, totaling 1498.06 km2.
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Thus, trained on Sentinel-1, Sentinel-2, HMA DEM, and SRTM DEM data, the DL model
achieved 0.972 accuracy.

Thomas et al. [54] introduced a method for mapping debris-covered glaciers (DCG)
that combined a CNN and object-based image analysis into a single categorizing work-
flow. This method was applied to open-source datasets, including thermal (Landsat-8),
multispectral (Sentinel-2), interferometric coherence (Sentinel-1), and geomorphometric
records (Figure 20). Central Himalayan areas in China and Nepal, including the Karakoram
glaciers in Pakistan, were selected to apply and test the developed method.

Water 2024, 16, x FOR PEER REVIEW  26 of 39 
 

 

 
Figure 20. Flow chart of the developed approach. The steps include dataset pre-processing, refer-
ence vector dataset generation, convolutional neural network classification, and object-based image 
analysis refinement [54]. 

However, as the authors stated, the complex topography and precipitous slopes in 
certain sections of the selected areas led to errors of omission in mapping DCG termini. 
Specifically, the CNN-OBIA method underestimated the locations of glacier termini with 
gradients exceeding 24° in the Hunza region and steep tributaries covered with debris in 
the Manaslu area. These challenging terrains posed difficulties for the CNN, as there was 

Figure 20. Flow chart of the developed approach. The steps include dataset pre-processing, reference
vector dataset generation, convolutional neural network classification, and object-based image
analysis refinement [54].



Water 2024, 16, 2272 27 of 39

A precision–recall graph was produced for supraglacial debris outlines in the Khumbu
region, initially delineated without object-based image analysis (OBIA), with a set probabil-
ity heatmap threshold of ≥0.65. Furthermore, the recall and precision accuracies increased
by 0.9% and 4.2%, as shown by the precision–recall curve. As a result, the F-score accu-
racy was improved up to 2.6%, meaning that by utilizing OBIA after CNN classification,
one can access more accurate mapping of DCG extents compared to relying solely on
CNN classification.

However, as the authors stated, the complex topography and precipitous slopes in
certain sections of the selected areas led to errors of omission in mapping DCG termini.
Specifically, the CNN-OBIA method underestimated the locations of glacier termini with
gradients exceeding 24◦ in the Hunza region and steep tributaries covered with debris in
the Manaslu area. These challenging terrains posed difficulties for the CNN, as there was
limited variation within the samples of supraglacial debris, hindering accurate classification.

In another study [55] of the Western Kunlun Mountains, researchers combined Inter-
ferometric Synthetic Aperture Radar (InSAR) techniques with a DL model, DeepLabv3+, to
create a comprehensive inventory of rock glaciers. The workflow for automatic mapping
of rock glaciers is shown in Figure 21. The deep learning method improved the map-
ping efficiency by automating identification and delineation tasks, while also overcoming
limitations of InSAR-based methods such as coherence loss and insensitivity to certain
movement directions.
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The combined AI and remote sensing approach enabled the first regional-scale map-
ping of rock glaciers in this arid mountain range, resulting in an inventory of 413 rock
glaciers. Of these, 290 were active rock glaciers mapped manually using InSAR, while
123 were newly identified and delineated by the DL model applied to Sentinel-2 optical
imagery. This semi-automated workflow allowed for consistent mapping across a large,
remote area where field studies are challenging. The resulting inventory provides valuable
baseline data on rock glacier distribution, morphology, and kinematics that can inform
further research on permafrost, climate change impacts, and water resources in this high
mountain region.

Thus, as can be seen from the reviewed works dedicated to inventorying and mapping
glaciers, traditional ML classifiers such as RF, SVM, KNN, DT, GB, and MLP were applied.
These methods mostly rely on structured data and use algorithmic approaches for classifica-
tion. In contrast, CNNs and their variants, such as U-Net, DeepLabv3+ with ResNet, DRN,
MobileNet, GlacierNet, Mobile-Unet, Res-UNet, FCDenseNet, R2UNet, GLNet, Channel
Attention U-net, and ENVINet5, are DL models designed for image processing and segmen-
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tation tasks. The difference lies in their architecture: CNNs leverage convolutional layers
to automatically extract features from input images, whereas traditional ML classifiers
use predefined features. Some works are considered hybrid models, like RF-CNN and
ANN with U-Net, as they combine elements from both traditional ML and DL learning
to leverage their respective strengths. Methods like Relief-F and Pearson correlation are
feature selection techniques that can be used to preprocess data for either traditional ML
classifiers or CNNs, enhancing the performance by selecting the most relevant features.

3.2. AI for Monitoring of Glacier Evolution

Monitoring of glacier evolution becomes crucial for understanding the environment
as glaciers worldwide respond to the effects of global climate change. AI offers tools for
continuously tracking glacier dynamics, providing insights into changes in glacier extent,
volume, and behavior over time. By leveraging AI algorithms in conjunction with satellite
imagery and remote sensing data, researchers analyze trends, detect patterns, and forecast
future glacier evolution with sufficient accuracy and efficiency. In this section, we delve
into the innovative applications of AI in monitoring glacier evolution.

Bolibar et al. [56] simulated the annual glacier-wide surface mass balance (SMB) using
a novel algorithm based on deep ANN. This was integrated into an open-source model
for mapping selected regional glaciers. They evaluated the nonlinear deep learning SMB
model and compared it with standard linear statistical methods using data obtained from
French Alpine glaciers. ALPGM is an open-source Python glacier model mainly structured
into: (i) a glacier-wide SMB simulation and (ii) an update module for glacier geometry.
The SMB simulation component utilizes ML algorithms for predictive modeling, while
the geometry update module produces glacier-dependent functions for annual geometry
adjustments. The workflow (shown in Figure 22) execution is configurable via the model
interface, where users are allows to deploy or skip specific steps, including preprocess-
ing meteorological forcings, training SMB models, evaluating model performances, and
updating glacier geometries.
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The machine learning SMB model production workflow involves selecting relevant
topographical and climatic predictors based on literature reviews and sensitivity analyses.
To generate the SMB model, algorithms such as OLS, Lasso, and deep ANN may be
selected, with ALPGM employing popular Python libraries like stats models, scikit-learn,
and Keras with a TensorFlow backend. The presented approach showcases the potential
of DL for the simulation of SMB, capturing nonlinearities not only in spatial, but also in
temporal dimensions. The developed method showed explained variations of 64% for
spatial and 108% for temporal, and accuracy values of 47% and 58% for spatial and temporal,
respectively. This resulted in an r2 value of about 0.7 and an RMSE (root-mean-square
error) of 0.5 m of water equivalent.

Ambinakudige and Intsiful [58] assessed the accuracy of three ML algorithms (SVM,
RF, and MLC) for area classification and estimated the glacier volume change of Columbia
Icefields from 1985 to 2020. All three algorithms classified images with over 99% accuracy
and kappa coefficients of over 0.993, with SVM performing slightly better in identifying
debris. The authors found that 10.4% of the ice/snow area was lost over the study period,
which is consistent with other studies in the same region.

Utilizing Landsat satellite imagery from various years, the study revealed a significant
decline in glacier area and volume in the Columbia Icefield between 1985 and 2020. SVM
classification consistently showcased over 99% accuracy in classifying glacier features across
different years, enabling accurate estimation of glacier changes over time. The observed
trends align with broader global patterns of glacier retreat and volume loss attributed to
climate change-induced warming. Moreover, the study underscores the importance of
continued research leveraging ML methodologies, particularly in assessing glacier changes
on a global scale. The findings not only reiterate the efficacy of ML techniques for glacier
classification, but also emphasize the urgent need for comprehensive studies in order to
understand the impacts of climate change on glacier dynamics. As glaciers continue to
retreat worldwide, the integration of advanced ML approaches with remote sensing data
holds promise for developing reliable records of glacier changes, which are essential for
informing climate mitigation and adaptation strategies.

The study by Rajat et al. [59] applied U-Net to identify and map glacier evolution in the
Himachal Pradesh province of India, leveraging Indian Remote Sensing (IRS) and Landsat
satellite data spanning from 1994 to 2021. The results demonstrated a high identification
accuracy of 95%, with a significantly reduced processing time compared to traditional
methods. The findings revealed a concerning trend of glacial retreat in the region, with the
glaciated area decreasing at a rate of approximately 67.84 km2 per annum over the past
three decades.

Utilizing Landsat satellite imagery from different years, the study evaluated changes
in glacier area and volume, highlighting a substantial loss of approximately 1822 km2 in
glacier area from 1994 to 2021. This decline in glacial coverage underscores the urgency of
understanding and mitigating the impacts of climate change on Himalayan glaciers, which
are crucial water sources for the region.

The U-Net network model employed in the study effectively learns glacier characteris-
tics and enhances feature extraction, leading to improved accuracy in glacier identification.
By integrating deep learning with remote sensing data, the study offers a valuable tool for
monitoring and assessing glacial changes, essential for water resource management and
hydropower planning in the region. Furthermore, the paper suggests avenues for future
research, including exploring the integration of additional variables such as thermal bands
and precipitation data to enhance the machine learning model’s accuracy. Incorporating in
situ observations and debris glacier data could provide valuable insights into the relation-
ship between glacier changes and climate change, facilitating more precise predictions of
future glacier dynamics.

Yang et al. [60] conducted a study on glacier changes using remote sensing (RS) data
and applied a DL technique to assess the risk of glacier debris flow in the region of the
great bend of the Brahmaputra River in the Tibet Plateau, focusing particularly on the
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Zelongnong ravine. Thus, they evaluated the glacier regions in the Zelongnong ravine
using an automated semantic segmentation method trained using remote sensing data
and the DL technique. They proceeded by computing variations in glacier elevation and
volume between 2000 and 2016, examining the nature of changes within the research site.

Subsequently, they partitioned the Zelongnong ravine into five sub-basins, applied
the glacier correction coefficient to enhance the initial geomorphic information entropy
theory, and assessed the susceptibility of glacier debris flow in the Zelongnong ravine.
Furthermore, glacier ablation is influenced by various factors, including slope, aspect,
elevation, and climatic conditions such as sunlight exposure. These factors play crucial
roles in determining the rate of glacier ablation. Therefore, the assessment of the sus-
ceptibility of debris flow can be obtained from the indicator—the ablation volume of the
glaciers. Thus, by categorizing susceptibility grades based on the ablation volume, accurate
predictions regarding glacier debris flow susceptibility can be made. The overall workflow
and schematics of the developed method are shown in Figures 23 and 24.
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Thus, the monitoring of glacier evolution using AI methods is advancing. It is more
complex compared to mapping and inventory studies due to the inclusion of temporal
changes in glaciers. Therefore, the development and testing of such methods require more
time and effort. Nevertheless, it can be considered one of the main areas for future research
in glacier studies using AI.

3.3. AI for Snow/Ice Differentiation

Another opportunity for AI applications arises in the area of snow and ice discrimina-
tion, which represents an innovative solution for optimizing the accuracy and optimization
of remote sensing analysis. Through extensive training on a variety of datasets including
satellite imagery and ground-based observations, AI models can quickly learn to discern
the subtle spectral and textural nuances characteristic of snow and ice, overcoming the
limitations of traditional manual interpretation or spectral analysis methods. This capability
not only speeds up the processing of extensive remote sensing data, but also facilitates
rigorous quantification of the extent of snow and ice, which is fundamental for climate
research, hydrologic modeling, and environmental monitoring initiatives.

In their study, Prieur et al. [61] created an automated procedure that allows snow
lines on glaciers to be identified from remote sensing images. It was tested on temperate
glaciers located in the Alps of Europe. A feed-forward NN, SVM with Gaussian and
linear kernels, and RF were selected as ML methods, and they used data from Landsat 8,
especially data that considered the glacier inventory of the Alps in 2015 and the Copernicus
DEM (Figure 25). The algorithms were designed to systematically categorize each glacier
within the research region, employing a step-by-step binary classification approach. This
process involves identifying and removing shadowed areas and eliminating leftover ice
or snow pixels to eventually create a map that delineates ice and snow coverage on the
glacier. The resulting map may be presented as either a binary map or a probability map,
depending on the chosen method of map extraction. Since glaciers often have ice- and
snow-covered areas devoid of clouds, the developed procedure suggests two techniques to
identify the snow lines on the glaciers. If these methods fail, the mapping of the glacier is
stopped. The initial method involves a modified version of automatic snow mapping on
glaciers (ASMAG) bin decomposition detection process. This approach utilizes the snow
line produced by ASMAG’s procedure as an initialization vector for the detection of active
contours. The alternative approach involves calculating the gradient of the snow cover
map and then applying a threshold to this gradient based on elevation. This is intended to
eliminate the gradient caused by patches of snow in the ablation region of the glacier. Both
approaches provided good accuracy in identifying the lines between snow and glaciers, but
discontinuous snow lines and steep sections of glaciers led to the failure of the methods.

3.4. AI for Ice Dynamics Modeling

AI also has the potential to transform the efficiency and accuracy of calculations in
modeling ice dynamics, presenting another prospective application in this research domain.
By leveraging vast amounts of observational data, satellite imagery, and remote sensing
datasets, AI-based models can capture the nuanced interactions that include ice flow, mass
balance, and calving dynamics. This capability not only speeds up the modeling time,
but also allows researchers to gain a deeper understanding of the multifaceted drivers of
glacier dynamics and their responses to environmental changes.

With this purpose, Jouvet et al. [62] introduced a glacier model (IGM), a novel approach
to simulating ice dynamics, mass balance, and their combination, to estimate the evolution
of glaciers and icefields. Central to the novelty of the model was its utilization of a
convolutional neural network (CNN) to model ice flow, optimized using the data developed
by means of a hybrid Shallow Ice Approximation (SIA) + Shallow Shelf Approximation
(SSA) or Stokes ice flow model. This substitution of the computationally intensive ice flow
component with a cost-effective emulator enabled IGM to model mountain glaciers up to
1000 times faster than traditional Stokes models on central processing units (CPUs), with
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accuracy levels surpassing 90% in terms of ice flow solutions and nearly identical transient
thickness evolution. Leveraging graphics processing units (GPUs) further enhanced speed-
ups, especially for emulating Stokes dynamics or modeling at high spatial resolutions. IGM
is an open-source Python code designed for 2D gridded input and output data, facilitating
effective and user-friendly glacier and icefield simulations.
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The approach applies DL to ice flow modeling, employing CNN to predict ice flow
using topographic properties as well as basal sliding parametrization in a generic man-
ner. Unlike previous methods that emulated specific glacier dynamics from small-sized
ensemble parameters, the neural network emulator in this study is trained from a large
dataset generated from ice flow simulations obtained from state-of-the-art models—PISM
and CfsFlow—equipped with hybrid SIA/SSA and Stokes mechanics at varying spatial
resolutions. Integration of surface mass balance (SMB) and the conservation approach
with the ice flow simulator yields the IGM, facilitating highly efficient and mechanically
advanced ice flow simulations (Figure 26).
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However, IGM’s limitations include dependency on the training dataset’s represen-
tativeness, assumptions of isothermal ice, limitations in boundary conditions, and com-
patibility only with regular gridded data. Despite these limitations, IGM’s computational
efficiency opens new opportunities in paleo ice flow modeling, with applications in recon-
structing glacial cycles, studying landscape evolution, inferring paleo climatic patterns,
and improving global glacier modeling by reducing uncertainties associated with simpli-
fied models. Overall, IGM presents a promising advancement in glacier modeling, with
potential applications in both paleo and modern ice sheet simulations.

The latest two areas of research, snow/ice differentiation and ice dynamics modeling,
are relatively new and have not matured yet compared to the first two classified research
areas. However, researchers have already begun working in these directions, and they are
expected to become areas of greater interest in the near future.

4. Discussion

The most common type of AI-based glacier study consists of mapping and glacier
inventory. In fact, mapping and glacier inventory are crucial for evaluating glacier sizes and
keeping track of them, providing essential data for understanding climate change impacts
and predicting future water resources. These activities help scientists assess glacier health,
contributing to global efforts in managing ecosystems and mitigating natural hazards. Thus,
as can be noticed in the main section above, the earliest methods were classification methods
such as random forest (RF), K-nearest neighbor (KNN), support vector machines (SVMs),
decision trees (DTs), and gradient boosting (GB). In their work, Zhang et al. [40] selected
the number of trees in RF as 100, but there was not any information on how the number
of trees affected the accuracy of the RF in mapping glaciers, nor in testing or training
sample sizes. Alifu et al. [45] compared these classification methods among each other
and showed that RF was the best-performing and most robust ML method by carrying out
hyperparameter analysis optimization. Khan et al. [43] also confirmed that RF performed
better than the neural network method (i.e., ANN) when tested and compared using
26,688,723 pixels (391,907 labeled as debris-covered glacier, 1,354,622 as glacier, and 942,194
as non-glacier areas). The authors also mentioned that the computational complexity to
train ANN is relatively higher. During the model parameter selection, only the learning rate
and momentum were optimized, with fixed settings for other parameters (1000 iterations,
sigmoid activation, and 200 hidden neurons), resulting in optimal accuracy with a learning
rate of 0.1 and momentum of 0.8. Although tuning additional parameters such as the
number of hidden layers, units per layer, batch size, and regularization techniques (e.g.,
dropout, weight decay) could have led to a better performance of ANN, it was not explored
in this study.
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The earliest studies of glaciers using CNN were conducted in 2019. Mohajerani et al. [41]
and Baumhoer et al. [42] developed modified U-net models. The U-Net architecture by
Mohajerani et al. [41] consists of 29 layers with three downsampling steps, increasing
feature channels from 32 to 256, and uses custom sample weights to address class im-
balance. In contrast, Baumhoer’s [42] modified U-Net processes larger 780 × 780-pixel
tiles with four input channels, includes four downsampling and upsampling units, and
features 7.8 million trainable parameters. Both architectures use 3 × 3 convolutions, ReLU
activations, 2 × 2 max pooling, and dropout layers, but differ in the number of layers,
input size, and approach to handling class imbalance. Neither works performed thorough
hyperparameter optimization to fine-tune parameters such as the learning rate, batch size,
number of layers, and dropout rate, which could be used to evaluate the robustness of the
models and potentially enhance their performance.

In other works [47–53], the authors proposed the combination of two methods into a
hybrid AI approach to map glaciers, hoping for better accuracy compared to non-hybrid
methods. For example, Lu et al. [47] combined RF with CNN and showed that the hybrid
approach performs better than RF-only and CNN-only approaches in terms of user accuracy.
However, in terms of producer accuracy, RF showed a better accuracy. Thus, the author
clearly stated that due to the limited size of the glacier dataset in their experiment, the
advantages of hybrid RF-CNN over traditional ML methods (i.e., RF and CNN) were not
evident. In fact, the accuracy of the models depends on the testing data. For example,
Kaushik et al. [17], in their study, showed that their developed GLNet method performed
with an accuracy of 0.99 for site 1, while for site 2, this was reduced to 0.80, which is
significantly low. They described this reduction in accuracy as being due to the presence of
frozen and partly frozen lakes in the testing data, which was not accounted for during the
training of GLNet.

The development of CNN-based models for glacier studies further continued and was
actively studied by the authors, Xie, Asari, and Haritashya [48,49]. They initially developed
the so-called GlacierNet and CNN segmentation model, and performed comparative analy-
ses of their model with Mobile-UNet, Res-UNet, FCDenseNet, R2UNet, and DeepLabV3+.
Based on their comparative analysis, DeepLabV3+ was the most effective for regional
and large-scale glacier mapping due to its high intersection over union (IOU) and overall
performance. During their study, they explored that the challenge lies in estimating the
glacier terminus, which requires additional studies on the network’s architecture, imple-
mentation of automated post-processing techniques, and incorporating additional terminus
data. Peng et al. [14] also confirmed that DeepLabV3+ performed with higher accuracy;
however, their proposed model with the LGT encoder and multiple LGCB layers was able
to map both the complete glacier area and clear edges, making it potentially suitable for
glaciers with accurate terminus mapping. Collectively, these studies illustrate the evolving
landscape of AI techniques in glacier mapping, where various models are combined to
improve the accuracy and address diverse challenges.

Another area of glacier studies where AI models have started to be actively applied
is the monitoring of glacier evolution. Compared to glacier mapping, which focuses on
spatial changes, monitoring glacier evolution also considers temporal variations, making
it more complex than mapping studies. Bolibar et al. [56,57] studied the evolution of
glaciers in the French Alps in the 21st century. Their comparative study showed that
nonlinear DL models outperformed linear models by 94% to 108% in variance and 32% to
58% in accuracy, indicating that DL maintains a consistent performance across spatial and
temporal dimensions, whereas linear methods struggle with the increased complexity of
temporal SMB variations. Similarly, Ambinakudige and Intsiful [58] studied the glacier
volume changes of Columbia Icefields from 1985 to 2020, but they used classification
models such as SVM and RF. The latter models provided about 99% accuracy in classifying
glacier features in 1985–2020. Furthermore, Rajat et al. [59] used U-Net to identify and
map glacier evolution in the Himachal Pradesh province of India, but their timeline was
from 1994 to 2021, and the accuracy of the model was around 95%. Yang et al. [60] clearly
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outlined and acknowledged limitations in their approach in their study, including the
assumption that all melted glacier ice converts to water, which overlooks the potential
formation of new ice bodies and does not fully address variability or errors in glacier
changes. Thus, because of the complexity of modeling dynamic glacier changes over time
and space, AI models face notable challenges, highlighting the need for more advanced
approaches. This presents an intriguing opportunity for exploring new AI techniques in
order to better address these challenges. Moreover, the availability and time-frequency of
data are crucial for the accuracy of AI models. Given that glacier monitoring spans several
decades, consistent data throughout the measured and evaluated periods are essential for
training AI models effectively.

Some other studies have pioneered new areas of study, such as snow/ice differentiation
and ice dynamic modeling. In fact, snow/ice differentiation is indeed very important,
because identifying the boundaries between snow and ice allows the size and volume of
glaciers to be estimated. Prieur et al. [61] applied ML methods and showed good accuracy.
However, their pre-processing algorithm (CFMask) might have compatibility problems
with other multi-spectral products like Sentinel. They also mentioned another limitation,
which was the need to retrain classifiers for new multi-spectral products, because different
imaging systems offer varying spectral information. Therefore, training AI models for
snow/ice differentiation using different types of images with varying spectral information
is crucial. This is especially true for all image-based glacier studies using AI, particularly
when developing advanced AI tools that can be applied to any glacier location once trained.
In terms of ice dynamics modeling, Jouvet et al. [62] developed the instructed glacier
model (IGM). In fact, ice has been modeled as a viscous, non-Newtonian fluid as described
by computationally expensive Stokes equations. The authors explained that their IGM
provides near-Stokes accuracy with high computational efficiency; operates on 2-D regular
grids, simplifying data management; and requires only basic topographic inputs without
the need for catchment or flowline identification. However, IGM’s applicability is limited
by its training dataset; it cannot model ice flow beyond the training data’s scope; assumes
isothermal ice; and only supports regular gridded data, excluding unstructured meshes.

5. Conclusions

Understanding changes in glaciers, evaluating their current conditions, inventorying,
and predicting future scenarios based on climate change effects are highly crucial endeavors.
Glaciers serve as vital sources of drinkable water, agricultural irrigation, and energy
generation. Therefore, monitoring their status and forecasting their future behavior are
important tasks in the face of ongoing environmental transformations.

As methods requiring less human interaction to deliver computational results evolve,
the possibility of their application towards monitoring and forecasting glacier layers
becomes feasible. Compared to conventional methods based on remote sensing, such
methods, which mostly rely on artificial intelligence (AI) techniques, are highly accurate,
cost-effective, and reliable once they are trained with accurate and sufficient datasets.
With the rise of AI, the number of works dedicated to the application of ML and DL
methods on glacier mapping and evaluation has notably increased. Therefore, within the
scope of the current state-of-the-art review work, the available research works in AI-based
glacier studies are studied and classified, and relative data are collected and tabulated for
comparative purposes.

Thus, from the collected number of research papers, the following conclusions are obtained:

• All the reviewed works are classified by the purpose of their research. Among them,
glacier mapping is the most studied area, followed by glacier evolution, ice/snow
differentiation, and ice dynamic modeling.

• For AI-based glacier evolution studies, the availability of glacier data in terms of time-
frequency and overall measured duration is highly important to accurately capture
the temporal evolution of glaciers.
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• Ice/snow differentiation and ice dynamic modeling are in their early stages regarding
AI-based studies. However, the methods developed so far show promising accuracy
and require further advancements.

• Methods such as random forest (RF), K-nearest neighbors (KNN), support vector
machines (SVMs), and decision trees (DTs) have been foundational. Among them, RF
often outperforms other traditional methods in accuracy and robustness, especially
for glacier mapping studies.

• Recent studies in glacier mapping have developed CNN-based models, notably U-net
and DeepLabV3+, which showed enhanced accuracy in glacier mapping. However,
the robustness of these models needs to be tested with appropriate methods, such as
hyperparameter optimization, to fine-tune parameters like the learning rate, batch
size, number of layers, and dropout rate.

• Hybrid methods that combine two ML and/or DL methods generally show better per-
formance compared to single methods. However, the compatibility and integrability
of different methods in hybrid solutions have not been thoroughly studied yet, and
comparative studies among hybrid methods are lacking.

• Overall, AI-based glacier research has notably been gaining the attention of scientists
and requires more detailed studies. The consistency of AI-based methods needs to be
further evaluated, particularly when training on one glacier dataset and testing on a
different dataset. Additionally, the impact of training and testing dataset sizes, as well
as the remote sensing technologies used to obtain these datasets, should be assessed.

• More generalized AI-based glacier assessment tools, particularly for worldwide glacier
mapping and inventory, appear to be a promising direction for future research.

Overall, the integration of AI technologies holds enormous promise for improving
glacier mapping and analysis, offering new insights into the complex dynamics of these
vital components of the Earth’s cryosphere. As researchers continue to explore and improve
artificial intelligence methodologies, the potential for greater understanding and better
management of glaciers in the context of climate change is becoming increasingly accessible.

The importance of the current state-of-the-art review is significant because it will serve
as a guideline for future research works in AI-based glacier studies. As the first review
paper in this area, the authors are confident that its results will provide notable value in
this research field.
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