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Abstract: Neyman–Scott rectangular pulse is a stochastic rainfall model with five parameters. The
impacts of initial values and optimization methods on the parameter estimation of the Neyman–Scott
rectangular pulse model were investigated using both the method of moments and the method
of maximum likelihood. The estimates using the method of moments were influenced by the
optimization method and were sensitive to the initial values and the aggregation scale of the data.
Thus, by using frequentist estimation methods, we cannot guarantee the unique values as estimates.
The aim of this study is to find more reliable unique values as estimates using a Bayesian approach.
In this approach, parameters are estimated from the posterior distribution, and model performance is
assessed by comparing observed values with fitted values. Slice sampling within the Gibbs sampler
algorithm demonstrates superior convergence and model fitting, yielding unique estimates for the
model parameters. The main conclusion of this study is that Bayesian estimation methods outperform
other estimation methods in terms of providing reliable and stable estimates that improve rainfall
generation accuracy.

Keywords: Bayesian estimation; Neyman–Scott rectangular pulse model; optimization; rainfall

1. Introduction

In this century, the world is facing a very serious challenge of climate change and
global warming. Many countries have suffered from this problem. Rainfall has a big impact
on society, particularly on the environment, such as plants, water, land, etc. Moreover,
floods have been the cause of the loss of many human lives. This has also affected many
countries in terms of the economic and agricultural sector; because of this, studies of storm
rainfall, such as the intensity of rainfall, extreme rainfall, total rainfall and heavy rains, have
attracted much attention from scientists throughout the world, for example, the research
carried out by [1–6].

Modeling rainfall is considered a tool for planning and managing water resources.
There exist many methodologies of modeling precipitation [7,8]. Time series could be one
method of modeling precipitation; however, it is not appropriate for small time scales such
as hourly rainfall precipitation, since the Neyman–Scott rectangular pulse model contains a
lot of parameters and due to the complexity and strong dependence upon initial conditions
of the precipitation process. A stochastic approach is likely to be preferable to a purely
physical model [9].

Different approaches for stochastic rainfall modeling exist; one of them is the Neyman–
Scott rectangular pulse (NSRP) model, which is our concern in this study. This model has
five parameters. In this paper, we investigate the method of moments and the method of
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maximum likelihood for NSRP parameter estimation. We found that these two methods
have two main challenges. (i) Parameter estimates are highly influenced by initial values,
and (ii) the optimization method has an impact on the estimates. Furthermore, Calenda
et al. [9] have shown that the choice of aggregation scale time has a great influence on the
estimates. Because of these challenges, classical methods of optimization are not able to
provide a unique solution for parameter estimates of NSRP [10–13].

The hypothesis of this study is that the estimation of NSRP parameters is greatly
impacted by two factors, the optimization method and the initial values, when using the
method of moments and the MLE method. This can lead to unstable NSRP parameter
estimates and affect prediction accuracy. The main goal of this study is to develop a method
for NSRP parameter estimation that is not influenced by initial values or optimization.
In order to overcome these challenges and obtain more reliable and unique estimates
for prediction and improved accuracy, we developed a Bayesian method for the NSRP
model parameter estimation. This approach uses existing information on parameters and
updates it using the data to obtain the posterior distribution of which we calculated the
parameter estimates. For the parameter estimation of the NSRP model, we adopted the
MCMC method, specifically slice sampling within the Gibbs sampler algorithm, to obtain
the posterior samples of our model parameters. The Bayesian method is not influenced by
initial values, the optimization method, or the choice of aggregation scale.

To test the effectiveness of our methods, we compared the statistics calculated from
observed precipitation and the statistics calculated from simulated data. We performed
a comparison analysis between these two frequentist parameter estimation methods and
the Bayesian approach. The primary contribution of this study is to address the issue of
unstable estimates when using the method of moments and maximum likelihood estimation
for NSRP parameter estimation. With this estimation method, we aim to generate unique
estimates of NSRP parameters, which can, in turn, enhance the accuracy of predicted
rainfall. In this study, we demonstrate our approach using hourly precipitation data from
Seoul spanning the years 1972 to 2019.

This paper is structured as follows. In Section 2, we briefly describe the Neyman–Scott
rectangular pulse model and the statistical properties of rainfall based on NSRP, and we
discuss statistical inference of the NSRP model using classical methods and the Bayesian
method. Section 3 presents the results of NSRP parameter estimation and application of
NSRP to Seoul’s hourly rainfall. In Section 4, we discuss the results and we report the result
of a comparative study between the methods of estimation. Finally, in Section 5, we draw
concluding remarks from the study.

2. Methods: NSRP Model and Parameter Estimation Methods
2.1. NSRP Model

Neyman–Scott models are described by three independent elementary stochastic
processes [1,5–10]. Briefly, these models are based on a Poisson process of storm origin, λ, a
process that sets the origin of the events. Each storm is associated with a random number
of rain cells (rectangular pulses), µc; with height, which represents the rain intensity, ψ; and
width, which represent the cell duration, β. Figure 1 shows the schematic diagram of NSRP
model. The basic formulation of the Neyman–Scott process is that the inter-arrival times of
the origin of successive events are independent and identically distributed, following an
exponential distribution with mean η. The number of rainfall cells associated with each
storm event follows a geometric or a Poisson distribution. The starting time of each rain
cell, measured from the origin of the event, is exponentially distributed. The rain cell is
rectangular and characterized by random radius, lifetime, and constant intensity, and both
the intensity and duration of each rain cell follow an exponential distribution.
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Figure 1. Schematic diagram of NSRP model: (a) interval between storm origins, (b) number of cells
in a storm, (c) interval between rain cells, (d) rainfall intensity, (e) composed rainfall events.

The precipitation intensity, Y, is given by the sum of the intensities of the individual
active cells at time t:

Y(t) =
∫ ∞

u=0
xt−u(u)dµ(t− u) (1)

where xt−u(u) is the intensity of the rectangular pulse triggered at time u, and µ(t− u)
represents the counting stochastic process of the arrivals of the individual cells. The time
series

{
Y(h)

k (x)
}

is given by:

Y(h)
k (x) =

∫ kh

(k−1)h
Y(t)dt (2)

where Y(h)
k (x) is the rainfall depth in the kth time interval of duration h at location x.

The second-order properties of the aggregated original NSRP process are derived in [9].
In the parameter estimation of NSRP, many researchers have used classical methods such
as the method of moments and maximum likelihood approaches for parameter estimation.
However, these methods do not achieve unique solutions for parameter estimates. The
lack of unique estimates may be due to optimization methods. During the search for an
optimum solution, this may be stacked in the local optimal solution [10,14].

2.2. Frequentist Inference for NSRP Model

In this section, we estimate NSRP model parameters using classical methods such as
method of moments estimation (MME) and maximum likelihood estimation (MLE). The
classical methods of NSRP of estimation of parameters are based on statistical properties of
precipitation. MME uses the first moment and second moment, which are mean, variance at
the first scale and second scale, and covariance [1,5–7]. MLE is achieved by maximizing the
likelihood function derived from the joint distribution of random variables and evaluated
at the observed data.



Water 2024, 16, 2515 4 of 15

2.2.1. Method of Moments

The first method of parameter estimation that we are evaluating in this paper is
the method of moments. In this method, the five parameters of the NSRP model are
estimated by equating the five statistical properties taken from observed data with their
derived expressions from the model and solving simultaneous equations for the parameter
estimates. The statistical properties of the rainfall are given below:

Hourly mean is defined by:
µh = λµcψ/η (3)

Hourly variance is:

σ2
1h = λη−3(η − 1 + e−η

)[
4µcψ2 + µc

2β2ψ2/(β2 − η2)− λµc
2(βh− 1− e−β)ψ2/β(β2 − η2)

]
(4)

Daily variance is:

σ2
24h = λη−3

(
ηh− 1 + e−hη

)[
4µcψ2 + (µc

2β2ψ2)/(β2 − η2)
]
− λµc

2(βh− 1− e−hβ)ψ2/β(β2 − η2)) (5)

Daily covariance is:

Cov24h = λη−3
(

1− e−hη
)2

e−η(lag−1)h[2µcψ2 +
0.5(µc

2β2)ψ2

β2−η2 ]

−λ
(

1− e−hβ
)2(

e(−β(lag−1)h)
)(

µc
2ψ2)/(2β

(
β2 − η2)) (6)

Daily correlation is:

ρ =
Cov24h

σ2
24h

(7)

E
{

Y(h)
k (x)− µh

}3

= 36λµcψ3
(

ηh− 2 + ηhe−ηh + 2e−ηh
)

/η4+6λψ3(µc
2
) f (η, β, h)/

[
2η4β(β2 − η2)2)

]
+λψ3(µc

3)g(η, β, h)/(2η4β(η2 − β2)(η − β)(2β + η)(β + 2η)

(8)

f (η, β, h) = 2η3β2e−ηh − 2η3β2e−βh + η2β3e−2ηh + 2η4βe−ηh + 2η4βe−βh + 2η3β2e−(η+β)h

−2η4βe−(η+β)h − 8η3β3h + 11η2β3 − 2η4β + 2η3β2 + 4ηβ5h + 4η5βh− 7β5 − 4η5

+8β5e−ηh − β5e−2ηh − 2hη3β3e−ηh − 12η2β3e−ηh + 2hηβ5e−ηh + 4η5e−βh
(9)

g(η, β, h) = 12η5βe−βh + 9η4β2 + 12ηβ5e−ηh + 9η2β4 + 12η3β3e−(η+β)h − η2β4e−2ηh − 12η3β3e−βh

−9η5β− 9ηβ5 − 3ηβ5e−2ηh − η4β2e−2βh − 12η3β3e−ηh + 6η5β2h− 10β4η3h + 6β5η2h
−10β3η4h + 4β6ηh− 8β2η4e−βh + 4βη6h + 12β3η3 − 8β4η2e−ηh6η6 − 6β6 − 2η6e−2βh

−2β6e−2ηh + 8η6e−βh + 8β6e−ηh − 3βη5e−2βh

(10)

κh = E
{

Y(h)
k (x)− µh

}3
(11)

Parameter estimates are simply obtained by minimizing the following sum of squares:

Z =
M

∑
i=1

wi

(
1− fi

f̂i

)2

(12)

where λ, µ, β, η, ψ > 0, and wi stands for weight. In this study, we chose the weight
to be 6. fi and f̂i stand for the function value from observed data and from the model,
respectively.

Z = 6
(

1− µ1h
µ̂1h

)2
+

(
1−

σ2
1h

σ̂2
1h

)2

+

(
1−

σ2
24h

σ̂2
24h

)2

+ 6
(

1− ρ24h
ρ̂24h

)2
+ 6
(

1− κ1h
κ̂1h

)2
+ 6
(

1− κ24h
κ̂24h

)2
(13)
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2.2.2. Maximum Likelihood Estimation Method

Maximum likelihood estimation (MLE) is a method by which parameters are estimated
by maximizing a likelihood function.

L(λ, µ, β, η, ψ) =
J

∏
j=1

f (Y(h)
1,j , . . . , Y(h)

m,j |λ, µ, β, η, ψ) (14)

Lee et al., Kim and Kim, and Mullen [11,12,14] constructed a likelihood function from
the relation of rainfall depth over an interval of length h and the method of moments
estimators of NSRP. The mean, variance and covariance follow a Gaussian distribution in
large samples.

∼
L(λ, µ, β, η, ψ) ∝ exp

−α1
J

∑
j=1

(
Y(h)

.j − E
[
Y(h)

])2

2σ2
1

×
exp

−α2
J

∑
j=1

(
log(V (h)

.j

)
− log

(
Var

[
Y(h)

]))2

2σ2
2


×exp

 J
∑

j=1

K
∑

k=1
α3,k

(
Cj,k − Cov

[
Y(h)

i,j , Y(h)
i+k,j

])2

2σ2
3,k


(15)

where σ2
1 , σ2

2 , and σ2
3,k stand for the variance of estimates of mean, variance and covariance,

respectively.

Y(h)
.j =

∑m
i=1 Y(h)

i,j

M
, V(h)

.j =
∑m

i=1 (Y
(h)
i,j −Y)

2

M− 1
, Cj,k =

∑m−k
1

(
Y(h)

i,j −Y(h)
j

)(
Y(h)

i+k,j −Y(h)
j

)
m− k− 1

(16)

where Y(h)
.j , V(h)

.j , and Cj,k stand for the estimates of the mean, variance, and covariance,
respectively. To minimize Equation (15), we multiplied the likelihood function by −1, and
the points that minimize the likelihood function are considered parameter estimates.

Both the method of moments and method of maximum likelihood estimation require
an optimization method to find estimates. Global optimization is the process of finding the
minimum of a function of n parameters, with the allowed parameter values possibly subject
to constraints. In the absence of constraints, the task may be formulated as minimizex f (x),
where f (x) is an objective function, and the vector x represents the n parameters [14]. To
evaluate the influence of optimization methods on these frequentist methods, we include
both deterministic and stochastic optimization methods. We investigated both methods
using the following optimization algorithm: generalized simulated annealing (GenSA)
is a stochastic optimization method that implements a generalized simulated annealing
algorithm. It is a modification of generalized simulated annealing (GSA). This was made
after finding that the distribution is not optimal for moving across the entire search space.
GSA uses a distorted Cauchy–Lorentz distribution among many other simulated annealing
algorithms such as fast simulated annealing (FSA), classical simulated annealing (CSA),
GSA, and GenSA. GenSA was made particularly for the purpose of solving complicated
nonlinear objective functions with a large number of local minima. It can also work for
multidimensional real valued functions. In a comparative study with 18 other algorithms
for continuous global optimization methods, it was found that GenSA performed better in
terms of the quality of the solutions determined. GenSA also provides a higher average
success rate compared to other algorithms. The main drawback of GenSA is searching time.
It takes a long time to find the optimum, and in the case of multi-objective optimization
problems, it usually finds only one solution rather than a set of solutions [13–15].
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Differential evolution optimization (DEoptim) is a stochastic optimization method
that implements differential evolution algorithms. This algorithm helps to optimize a
non-convex optimization problem. It searches the global minima of the objective function
between the lower and upper bound of each parameter. The solution is obtained by
minimizing the objective function over the course of successive generations. DEoptim
relies on the repeated evaluation of the objective function in order to move the population
towards the global minimum. It works by evolving a population of candidate solutions
using the alteration and selection of operators. Some advantages of this method are (1) its
performance when the function has many parameters and (2) that it does not require
derivatives of the objective function in the process of searching the global minimum. This
is also its drawback, because it can sometimes be inefficient in the case of smooth functions,
where mostly derivative-based methods are efficient; as a consequence, it can fall into a
local minimum [16,17].

The Davidon–Fletcher–Powel (DFP) method is a deterministic optimization method
used in unconstrained optimization, and it is the first to generalize the secant method to
a multidimensional problem. This method finds a solution to the secant equation that is
closest to the current estimate and satisfies the curvature condition. It is quasi-Newtonian.
This algorithm forces the Hessian matrix to be symmetric and positive definite, which can
greatly improve its convergence properties. This class uses first-order information only,
but builds second-order information. We usually start the hessian initialized to the identity
matrix and then update it at each iteration. This update maintains a positive definiteness of
the Hessian matrix. This algorithm is computationally attractive and converges rapidly.
Some of the problems of this method are that (1) sometimes, it fails to converge to global
minimum for general nonlinear objective functions and falls into a local minimum, and (2) it
is very sensitive to initial values [9,14]. The performance of a deterministic method depends
on properties of the function such as convexity, boundedness, smoothness, and so on.

Hydro particle swarm optimization (hydroPSO) is a stochastic method that imple-
ments a particle swarm optimization algorithm. It is used for the global optimization of
non-smooth and nonlinear functions. It is well known for its easy application in unsuper-
vised and complex multidimensional problems that cannot be solved using deterministic al-
gorithms. It solves a problem by having a population (swarm) of candidate solutions called
particles and moving these particles around in the search for the global minimum according
to a mathematical formula. This method can be simply implemented, is derivative-free, has
very few algorithm parameters, and is a very efficient global search algorithm. It also has a
disadvantage in its slow convergence in the refined search stage [15,16]. Due to the lack of
unique estimates, a reasonable alternative method of estimation is the Bayes estimation
method, by which parameters are estimated through posterior distribution.

2.3. Bayesian Inference on NSRP Model

In the previous section, we discussed both the method of moments and maximum
likelihood approach for NSRP parameter estimation, and the results in Section 3 show
that the estimates highly depend on initial values, and that the estimates change with the
optimization method. As a consequence, there are a lack of unique solutions. To address
this problem, we propose the Bayesian estimation method for NSRP parameter estimation.

2.3.1. Definition and Model Specification

The Bayesian approach directly assumes that vectors of unknown parameters θ = (λ, µ, β, η, ψ)
are random variables that follow a specified distribution, which reflects uncertainty about
these parameters [17]. In Bayesian inference, we also consider available knowledge about
parameters before the sample data are analyzed. This information is known as prior
distribution, denoted by p(θ). This prior information is combined with observed data
information, y, to calculate posterior distribution, p(θ|y). Bayes’ theorem illustrates the
process of updating the prior to posterior distribution.
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p(θ|y) = p(y|θ)p(θ)
p(y)

(17)

p(θ|y) = p(y|θ)p(θ)
p(y)

(18)

Bayes’ theorem can also be written as

π(θ|y) ∝ L(θ)p(θ) (19)

where p(θ) is the prior distribution, and L(θ) stands for the likelihood function.
In the NSRP model structure, all parameters have positive support motivating the use

of a uniform distribution as prior to parameter λ. The proposed minimum and maximum
parameters of λ distributions are given in Table 1.

Table 1. The range I of NSRP parameters (λ: storm origin, µc: random number of cells, β: cell
duration, ψ: rain intensity).

Parameters λ µc β η ψ

Minimum 0.0001 0.1 0.02 1 1
Maximum 0.02 30 1 60 4

We consider Equation (15) as the likelihood function. However, this likelihood is not
in a closed form, and this makes it hard to derive the full conditionals. We summarized
the posterior by drawing large samples θ1, . . . , θN from the posterior p(y). We used the
posterior distribution to compute a point estimate, which is given by the mean of samples
of θ. After a sufficient burn-in period, the chain gradually did not depend on the initial
value and converged to a unique stationary distribution. Since the full conditionals of
all parameters were not in a closed form, we applied slice sampling to samples from
posteriors [18]. In research carried out by [19], the authors found that gamma distribution
fit outperformed other distributions in the wet season. Thus, we used gamma distribution
as the prior distribution for all remaining parameters (µ, β, η, ψ). In addition, we used other
distributions, such as log-normal distribution, inverse gamma distribution, and uniform
distribution, for all parameters for prior sensitivity analysis, and the difference in the results
was not significant.

2.3.2. Slice Sampling

Markov chain Monte Carlo (MCMC) is a powerful algorithm for drawing samples
from a probability distribution, especially when it is complex. MCMC methods such
Gibbs sampling and Metropolis Hasting are commonly used to summarize the posterior
distribution. However, these two methods have some limitations in the implementation
of their corresponding algorithm [19]. For example, to implement Gibbs sampling, we
need full conditionals, and in Metropolis Hasting, we need to find an appropriate proposal
distribution that will lead to efficient sampling. Based on the NSRP model, you might
also think to implement the Metropolis Hasting within Gibbs sampling. However, this
algorithm generates highly correlated samples and achieves poor convergence. In this
study, we applied slice sampling within the Gibbs sampler, since it is easily implemented
and can be used to sample from multivariate distribution by updating each variable at
a time. In this study, we implemented a Markov chain Monte Carlo method with slice
sampling with Algorithm 1.
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Algorithm 1: Algorithm of MCMC with slice sampling

Input:
1. f = function proportional to density
2. x0 = the current point
3. y = the vertical level of the slice
4. y = estimate of the typical size of a slice
5. p = integer limiting the size of a slice to 2pw
Output: (L, R) = The interval found.

U ∼ uni f orm(0, 1)
L← x0 − w ∗U

R← L + w
K ← p

Repeat while K > 0
And {y < f (L)ory < f (R)} :

V ∼ Uni f orm(0, 1)
If V < 1/2 then L← L− (R− L)
else R← R + (R− L)

K ← K− 1

3. Results of Parameter Estimation

In this section, we present the results of NSRP parameter estimation using different
methods. The method of moments and the method of likelihood estimation were inves-
tigated using two different initial value ranges given in Tables 1 and A1. Both methods
required optimization methods in the process of finding the estimates. We evaluated the
impact of the optimization methods using DEoptim, GenSA, DFP and hydroPSo algorithms.
Seoul is the largest city in South Korea with a population of approximately 10 million and
is expected to suffer significant human and material damage due to summer heavy rain,
so it was selected as the target site for the parameter estimation of this model. Rainfall
characteristics in Seoul are concentrated during summer compared to the other seasons.
Hourly summer rainfall data at Seoul were downloaded from the KMA (Korea Meteorolog-
ical Administration) Open MET Data Portal site (https://data.kma.go.kr/cmmn/main.do,
accessed on 1 December 2020). To investigate the influence of initial values and optimiza-
tion methods on the NSRP model, historical time series data of hourly rainfall from 1972 to
2019 were used.

3.1. Results of NSRP Parameter Estimation Using MME Method

We present the results of NSRP parameter estimation using the method of moments.
We evaluated this method using different initial value ranges, given in Tables 1 and A1. For
more accuracy and for the sake of comparison, we used the range of parameters proposed
by [5] in Table A1, and we used different optimization methods to find the global minimum
of Equation (15). The results in Table 2 show the NSRP parameter estimates using the range
of initial values in Table 1. The results in Table A2 show the NSRP parameter estimates
using the range of initial values in Table A1. From Tables 2 and A2, we can see that both
the initial values and optimization methods have an impact on NSRP parameter estimates.

Table 2. Parameter estimation by MME method using range I (λ: storm origin, µc: random number
of cells, β: cell duration, ψ: rain intensity).

Parameters λ µc β η ψ

DEoptim 0.0144 21.1308 0.8411 0.9327 2.1825
GenSA 0.0126 10.7427 0.4493 1.1772 2.9835

DFP 0.0140 29.8637 0.9118 2.0507 1.6917
hydroPSO 0.0200 18.8292 0.8034 3.3670 3.0841

https://data.kma.go.kr/cmmn/main.do
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The results in Tables 2 and A2 indicate that two different ranges of initial values
produce different parameter estimates. The results also indicate that different optimization
algorithms produce different parameter estimates. One way of evaluating the model is to
compare the statistics calculated from observed data and statistics calculated from simu-
lated data. Figure 2 shows the comparison, in which the boxplot indicates the precipitation
at different aggregations. The performance of optimization algorithms is ordered as follows:
DEoptim, GenSA, DFP, and hydroPSO.
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3.2. Results of NSRP Parameter Estimation Using MLE Method

In this subsection, we evaluate the method of maximum likelihood estimation of NSRP
parameters using different initial values and different optimization algorithms. The two
initial values are given in Tables 1 and A1, and the optimization algorithms that we used
for evaluation were GenSA, DEoptm, DFP and hydroPSO. The estimates are the global
minimum of Equation (15). The results presented in Table 3 show the NSRP MLE parameter
estimates using the range of initial values from Table 1. Additionally, the results in Table A3
display the NSRP MLE parameter estimates using the initial values from Table A1. Both
Tables 3 and A3 indicate that the maximum likelihood estimation (MLE) is sensitive to
initial values and optimization methods.
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Table 3. Parameter estimates of NSRP by MLE using range I (λ: storm origin, µc: random number of
cells, β: cell duration, ψ: rain intensity).

Parameters λ µc β η ψ

DEoptim 0.0098 8.8522 0.1385 1.0000 3.9765
GenSA 0.0104 21.820 0.2150 2.1609 3.3091

DFP 0.0097 8.8333 0.1380 1.0000 3.9996
hydroPSO 0.0121 21.765 0.2204 1.7172 2.4197

Tables 3 and A3 show that the parameter estimates are highly influenced by both
optimization methods and initial values. Thus, there are no unique estimates when using
the maximum likelihood estimation method. To evaluate the method’s performance,
we compared the statistics calculated from the observed precipitation and the statistics
calculated from simulated data. We considered fitting values and observed values based
on the results obtained in Table 4. Figure 3 shows the comparison, in which the boxplot
indicates the precipitation at different aggregations. The performance of the optimization
algorithm is ordered as follows: DEoptim, GenSA, DFP, and hydroPSO. Results from both
estimation methods showed that the parameter estimates change with the optimization
method, and no unique solution can be found for parameter estimates.

Table 4. Parameter estimates of NSRP using Algorithm 1 (λ: storm origin, µc: random number of
cells, β: cell duration, ψ: rain intensity).

Parameters λ µc β η ψ

Estimate 0.0101 9.3392 0.1453 1.0779 3.9024
SD 0.0001 0.0930 0.0033 0.0025 0.0245
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3.3. Results of NSRP Parameter Estimation Using Bayesian Estimation Method

In Bayesian estimation, it is very important to check whether the sampling achieves
convergence and stationary distribution. In this study, we applied different convergence
diagnostic methods such as trace plots for one single chain and trace plots for multiple
chains [20–23]. Three MCMC chains with different initial values mixed well within 10,000
iterations after 5000 burn-ins, and they converged to the same range of value of each
parameter, which is also the reason why Bayesian estimation provides a reliable estimate.
Dependency between samples is a problem, since it delays the convergence. Therefore,
we checked autocorrelation plots for the posterior samples for each parameter. The auto-
correlation in all posterior samples is very small. In addition to that, we performed some
standard tests of the stationarity of MCMC samples such as Geweke and Gelman–Rubin
plots. Both visual and numerical diagnostic methods indicate a good MCMC convergence.
The fact that three different chains of each parameter with different initial values converge
indicates that the parameter estimates do not depend on initial values. Thus, this method
produces a unique solution for parameter estimates. We evaluated models by comparing
the statistics calculated from the observed precipitation and the statistics calculated from
simulated data using different parameter estimation methods in Table 5.

Table 5. Observed and fitted values obtained using different estimation methods at different
time scales.

Mean 1 h Mean 6 h Mean 12 h Var 1 h Cov lag1, 1 h

Observed 0.3449 2.0698 4.1396 4.3152 2.3418

MME

DEoptim 0.3397 2.0439 4.1277 4.6554 2.5385
GenSA 0.3433 2.0960 4.1921 4.0692 2.3056

DFP 0.3539 2.0739 4.1279 4.6632 2.4388
HydroPSO 0.3720 2.2322 4.4644 3.8210 2.3045

MLE

DEoptim 0.3544 2.1267 4.2534 4.9697 2.3275
GenSA 0.3503 2.1018 4.2037 3.8905 2.2915

DFP 0.3496 2.0976 4.1953 4.4513 2.3395
hydroPSO 0.3598 2.1593 4.3186 5.6873 2.3632

Bayesian SS 0.3433 2.0600 4.1200 4.6025 2.2555

In this section, we compare the method of moments estimation, maximum likelihood
estimation and Bayesian estimation (posterior means) approaches for NSRP parameters.
First, we compared the fitted values produced using these methods and the actual values,
and secondly, we compared them by generating precipitation using the estimates obtained
by these methods; then, we compared the statistics of generated rainfall and statistics
obtained from actual rainfall.

3.4. Parameter Estimate Evaluation Methods

In this section, we propose a method of evaluating the performance of different NSRP
parameter estimates. This method is based on generating synthetic rainfall using the
estimates and calculating statistics from generated rainfall. Algorithm 2 provides steps for
generating synthetic rainfall.

Note that we compared MME methods with different optimization algorithms with
the Bayesian method. We used the range of initial values given in Table A1. The results in
Table 6 show that the Bayesian method produces the closest estimate to true.
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Algorithm 2: Algorithm for generating a synthetic rainfall

1. Set 5 parameters of NSRP as True values.
2. Generate rainfall using these parameters in NSRP model.
3. Consider the synthetic rainfall obtained in step 2 as observed data and then estimate

parameters.
4. Repeat step 2 and 3 100 times.
5. Calculate the mean and standard deviation of the obtained parameters.

Table 6. Results from Algorithm 2 (comparative study between estimates obtained from different
method with true parameters).

Opt. Method DEoptim GenSA DFP hydroPSO Bayesian True Value

λ
Mean 0.0073 0.0052 0.0033 0.0055 0.008

0.01SD 0.0005 0.0030 0.0010 0.0150 0.003

µ Mean 10.586 11.663 7.0120 12.020 9.50
9.30SD 2.5040 1.0690 0.2110 0.7920 2.32

β
Mean 0.1670 0.1820 0.9460 0.1202 0.13

0.14SD 0.0670 0.1453 0.0830 0.1540 0.05

η Mean 0.9236 1.0235 1.2370 0.8923 1.12
1SD 2.6520 2.4040 0.8740 1.8090 0.15

ψ
Mean 4.3000 5.2130 4.4587 5.9340 3.80

4SD 0.6230 0.8210 0.7530 1.6210 1.02

4. Discussion

In this study, we investigated methods of parameter estimation for the NSRP model
and evaluate the method of moments estimation and the method of maximum likelihood
estimation using different optimization algorithms with different initial values. The four
optimization algorithms considered in this paper are DEoptim, GenSA, DFP, and hydroPSO.
All these algorithms produce a significant heterogeneity in estimates. The results indicated
that initial values highly influence the estimates, which vary with the choice of optimization
algorithm. Consequently, both frequentist estimation methods failed to produce reliable
estimates, as they all depend on optimization techniques in the estimation process. We
evaluated the estimation method by comparing statistics of observed data with fitted values.
The accuracy of the estimates produced by different optimization methods is ordered as
below: DEoptim, GenSA, DFP, and hydroPSO.

It is also important to note that these methods do not only produce different estimates
but they are also different in terms of computing time. Our major contribution is the devel-
opment of a Bayesian statistical approach to the problem of NSRP parameter estimation
that guarantees reliable estimates. A Markov chain Monte Carlo (MCMC) method, specif-
ically slice sampling within the Gibbs sampler algorithm, was developed for parameter
estimation. Different convergence diagnostic measures such as density plot, autocorrelation
plot, Geweke plot and Gelman–Rubin plot (multichain plot) were applied to all posterior
samples, and all of them indicated good convergence. The Bayesian estimation method
was able to provide reasonably and good reliable solutions as parameter estimates, in terms
of convergence and model fitting. In this case, the estimates were not influenced by initial
values. A comparison between frequentist estimation methods and Bayesian estimation
methods was also considered, and Bayesian estimates were found to be consistent and
more accurate in terms of model fitting. The application of Bayesian estimation methods
for parameter estimation yields unique estimates that enhance precipitation prediction
accuracy, rendering these results more reliable due to their stable estimates. Compara-
tively, unstable estimates identified in other studies hinder result reproduction and lead to
prediction variations.

Additionally, we introduced a simulation method to evaluate model performance,
involving the generation of synthetic rainfall using the estimates and derivation of statistics
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from the generated rainfall. Our study demonstrates that the Bayesian estimation method
can produce NSRP parameter estimates unaffected by scale. The resulting rainfall statistics
closely align with actual rainfall in Seoul, indicating the suitability of this method for
parameter-estimation modeling. However, the Bayesian estimation method has its limita-
tions. The drawback of this method lies in its computational expense, particularly when
handling large datasets and numerous simulations, as well as the challenge of selecting the
appropriate prior.

In the present study, the results of NSRP Bayesian estimation method were compared
with existing results in [11,16], and while the estimates were comparable, our method
produced reproducible and unique estimates. For future research, it is imperative to
assess the performance of these methods on other datasets with varying aggregates and
quantify the impact of unstable estimates. Furthermore, additional testing of the model’s
applicability for rainfall in other seasons, catchment areas, and different time scales is
recommended. The performance of observed data should be verified by comparing them
with data generated through simulation.

5. Conclusions

In conclusion, the results of this study unequivocally establish the efficacy of the
Bayesian estimation method in producing NSRP parameter estimates that are both unique
and highly reliable. Significantly, our findings indicate that this method shows great
promise in enhancing the precision and dependability of NSRP Bayesian parameter esti-
mates, which is crucial for engineering applications reliant on accurate rainfall data for
design and planning purposes. The rainfall statistics derived from the estimates closely
correspond with the actual rainfall in Seoul, affirming the suitability of this method for
NSRP parameter estimation. Further investigation and validation of this approach within
rainfall modeling have the potential to drive substantial progress in rainfall estimation and
its impact on engineering design and infrastructure planning.
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Appendix A

Table A1. The range II of NSRP parameters (λ: storm origin, µc: random number of cells, β: cell
duration, ψ: rain intensity).

Parameters λ µc β η ψ

Minimum 0.001 2.00 0.01 0.10 0.30
Maximum 0.050 100 0.50 10.0 15.0
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Table A2. Parameter estimate by MME method using range II (λ: storm origin, µc: random number
of cells, β: cell duration, ψ: rain intensity).

Parameters λ µc β η ψ

DEoptim 0.0144 26.1241 0.4636 4.9650 4.5400
GenSA 0.0145 33.8982 0.5000 8.9875 6.2956

DFP 0.0174 11.7683 0.4510 2.4031 4.0359
hydroPSO 0.0048 72.9754 0.1355 2.1073 2.0771

Table A3. Parameter estimates of NSRP by MLE using range II (λ: storm origin, µc: random number
of cells, β: cell duration, ψ: rain intensity).

Parameters λ µc β η ψ

DEoptim 0.0104 10.8663 0.1572 1.3414 4.1866
GenSA 0.0107 34.8706 0.2538 7.4592 6.9941

DFP 0.0100 8.07160 0.1288 0.9044 3.9175
hydroPSO 0.0105 10.2974 0.1532 1.6907 5.5753
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