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Abstract: Commercial electric vehicles nowadays are powered by a battery system containing one
kind of lithium-ion battery cell. Due to the fixed ratio of the cells’ maximum power to nominal
energy, the possibilities for designing power and energy of the battery pack independently are
limited. The battery system’s energy and maximum power can only be scaled by adapting the
number of cells and modules, and the parameters furthermore depend on the characteristics of the
cells used. Additional power electronics in the form of one or more dc/dc converters can be used
to form a hybrid battery system comprised of more than one pack and different cell technologies.
This allows for individually designing each battery pack and thus optimizing the overall battery
system specification. This work presents a battery dimensioning and optimization approach for
single pack and hybrid battery systems. It is based on an evolutionary optimization algorithm and a
detailed, modular Matlab-Simulink vehicle model. Studies on the advantages of hybrid batteries for
different vehicle classes were carried out. Results indicate that optimized hybrid battery systems can
lead to weight and volume savings and further advantages in total cost of ownership, for example,
by enhanced battery life time or reduced investment costs. On the other hand, they require more
complex control logic, which is also discussed in this paper.

Keywords: BEV (battery electric vehicle); optimization; lithium-ion battery; powertrain; hybrid
battery system; power distribution

1. Introduction

Electric vehicles (EVs) still suffer from slow market penetration in Germany and worldwide,
although German politics have sought for a quick ramp-up since 2011 [1] and are currently supporting
purchases of new EVs with a monetary reward. The main hurdles still in place are the lower mobility
flexibility when using EVs due to their limited range compared to combustion driven vehicles, as well
as their higher investment costs—at least, if not significantly funded. One of the main cost drivers of
EVs is the battery system, although cell prices have decreased over the last years [2]. A sophisticated
dimensioning and design of the battery system is thus essential for the successful electrification of
vehicles. Otherwise, battery systems may be dimensioned conservatively in terms of initial energy
to guarantee a certain range at the end of life. This may lead to systems outside the economical and
ecological optimum.

This work presents an approach to address the above-mentioned challenges in the design and
dimensioning process of vehicle traction battery systems. The key idea is to equip electric vehicles
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with a hybrid battery system consisting of different battery cell types instead of using only one type of
cell. The background leading to this approach is explained in the following.

A typical battery cell used in current EVs is neither a cell designed towards very high energy
(apart from Panasonic cells used by Tesla), nor is the cell designed for high power as in the case for
hybrid electric vehicles. It is not possible to increase the energy density while maintaining the power
density of the cell. Typically, higher energy densities of battery cells are gained by increasing the
thickness of the active material layers or by reducing the thickness of copper and aluminum sheets.
Both measures decrease the power capability of the cell. Further measures on material level usually
also lead to disadvantages in terms of power capability or other characteristics—e.g., cycle life time of
the cell. Thus, a typical automotive battery cell is designed as a trade-off between enabling driving
agility through maximum electrical power of the battery and range of the vehicle, influenced by the
battery’s energy content. This leads to an over-dimensioning of the battery system if the available cell
types do not reflect the desired power-to-energy ratio, which is schematically shown in Figure 1a.
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with two kinds of cells.

The battery system’s energy and power can be linearly scaled following the arrow of battery cell
type 1 using additional cells (e.g., connecting more cells in parallel). Note that this is a simplification,
since the number of battery cells cannot be freely modified by one cell. Instead, one has to respect
the allowed voltage range when connecting additional cells serially, and that the number of cells
is doubled when connecting an additional cell in parallel. These boundary conditions increase the
complexity when dimensioning battery systems. In the case shown in Figure 1a, the usage of battery
type 1 leads to an over-dimensioning in terms of energy to meet the power requirements. On the other
hand, the shown battery type 2, with a higher power-to-energy ratio than type 1, leads to significantly
more power than required to meet the energy demand. Note that in most of the commercial battery
systems on the market, a battery manufacturer would use type 1, since additional energy in the battery
system translates to additional range or longer lifetime with reduced stress on each cell. However, this
is not the cost-optimal solution, as the battery is larger than required.

In contrast to this single-pack approach, a hybrid battery system using two different cell types
enables an exact dimensioning of both power and energy, as shown in Figure 1b. Here, a certain part
of the required energy is provided by using the respective number of cells of type 1. In the simplified
case in Figure 1b, the number can be determined by parallel shifting of the arrow of cell type 2 until
the combination of both arrows exactly matches the requirement, i.e., when forming a parallelogram.
The number of required cells of type 2 is then simply determined by the length of the type 2 arrow. As
mentioned before, in reality, one has to respect the boundary conditions of adding and subtracting cells
and still maintaining the allowed string voltage range. However, in many cases, this hybrid battery
approach leads to lower mass, volume, and costs of the complete system, as discussed in the analysis
of this work.
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Current battery systems in EVs are well suited for one type of EV, but it is difficult to scale them
to different vehicle classes and models like it is done with sizing of combustion engines for more
powerful models. Hybrid battery systems, on the other hand, can be dimensioned rather freely in
terms of energy and power. An OEM (original equipment manufacturer) might therefore use modules
of a high-energy (HE) pack across his models’ portfolio and add further high-power (HP) modules for
more powerful vehicle models and classes. Such an approach supports the economy of scales effect
and thus may contribute to decreasing EV investment costs.

Hybrid battery systems require additional power electronics to adapt the different cell
characteristics—e.g., pack voltage levels and voltage curves. In the easiest case, this can be one
dc/dc converter attached to the clamps of one pack, as shown in Figure 2a.
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Such a system topology enables the use of different voltage levels in the drivetrain simultaneously,
e.g., using 800 V traction inverters (not shown in the figure) for high-power drives and one battery pack
at 400 V nominal voltage and a second one at either 800 V dc-link voltage (Figure 2a) or a completely
different voltage (Figure 2b). A dc-link voltage of 800 V has the advantage that the charging power can
be fed into the car with lower current than with 400 V system voltage, and thus allows higher power
with the same cable diameter [3]. The topology shown in Figure 2b allows dimensioning both packs
completely independently in terms of used cell types, as well as number of serially connected cells. The
resulting pack voltages are translated to one dc-link voltage by the two dc/dc converters. Furthermore,
decoupling both battery packs from the dc link (and thus the traction inverter(s)) may bring additional
advantages in terms of efficiency, since the dc-link voltage can be controlled, dependent on the speed,
as discussed in [4]. Due to these reasons, the topology shown in Figure 2b was used in the methodology
and analyses described in this work.

Hybrid battery systems have been analyzed in literature for many applications, from consumer
electronics [5] to stationary and mobile applications, using many different types of energy storage
technologies. Most of the combinations use supercapacitors to increase the system’s maximum
electrical power [6–8]. Supercapacitors, however, have a low energy density compared to lithium-ion
(Li-ion) batteries and a very high cyclic stability in combination with a very high power capability. The
latter properties are not required in the application of hybrid battery systems for full electric vehicles.
Furthermore, the voltage of capacitors is linearly dependent on the state of charge and thus requires a
wider operating range of the connected power electronics (e.g., inverter) compared to a battery with
a rather flat state-of-charge-voltage curve. This work consequently focuses on the combination of
different types of Li-ion batteries in one EV. Li-ion batteries cover a wide field of energy-to-power
ratios. One distinguishes between high-power cells and high-energy cells. High-power cells are used
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in applications focusing more on power than on range or run time. Today, they typically consist of
lithium titanate oxide anodes (LTO) in combination with a nickel manganese cobalt oxide (NMC)
cathode, or lithium iron phosphate cathodes (LFP) in combination with a graphite anode. High-energy
cells, on the other hand, consist of silicon-doped graphite anodes and transition metal cathodes, like in
Tesla’s battery packs or in consumer products. As mentioned before, the amount of active material is
higher in high-energy cells, with the disadvantage of lower power capability.

The dimensioning process for hybrid battery systems is even more difficult than it is for
single-pack battery systems, as described in Section 2.3. Due to the complex solution space, the
optimization process cannot be performed manually. Optimization goals can be chosen amongst or be
a combination of cost minimization, weight and volume reduction, or minimization of environmental
impact. The optimization methodology and results for specific vehicle types are presented in the
next sections.

2. Description of the Battery Optimization Methodology

The overall goal of the methodology is to find well-suited battery system solutions for defined
vehicle requirements, such as speed, range, acceleration, load capacity, and life time. This requires
evaluating how a certain battery system covers these requirements when used in the vehicle. The
requirements of the car are thus not translated to battery requirements, which are very complex in
some cases, since there is a circular dependency of battery parameters and vehicle requirements: The
weight of the battery influences acceleration of the vehicle, which sets the requirement for electrical
power of the battery. To analyze and compare different battery systems quantitatively, a detailed
vehicle model was created and implemented in Matlab-Simulink in the frame of the research project
“HV-ModAL”. It is explained in Section 2.1. The specification and modularization of the battery is
enabled by an external scaling possibility and the choice amongst a certain cell portfolio, which is
described in Section 2.2. The optimization tool itself is shown schematically in Figure 3 in the right
column. It has functional interfaces to the vehicle model to feed in parameter sets—most of all, the
specification of the battery systems which are evaluated. The interface is further used to receive the
simulation results. The optimization tool itself (left in Figure 3) is implemented in Matlab and makes
use of an evolutionary optimization algorithm. This main part of the tool is explained in Section 2.4.
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The optimization process is initiated by setting battery parameters, which are then fed into the
vehicle model. The vehicle model is then executed in certain driving cycles to analyze the battery’s
performance under real-life conditions. The optimization tool receives the results of these scenarios
and automatically assesses the battery system currently under investigation. The steps of evaluating
the simulation results and feeding new, optimized battery specifications (parameters) into the vehicle
model is repeated several (thousand) times, depending on the optimization performance, until a
solution is found which fulfills the requirements and a stopping condition of the optimization is
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reached. The vehicle model, as well as the actual battery optimization tool, are described in the
following sections.

2.1. Vehicle Model

The vehicle model is implemented in Matlab-Simulink. It contains submodels of all relevant
drivetrain components of an EV (batteries, dc/dc converters, inverters, and machines), as well as a
chassis and a driver model.

The chassis model calculates the vehicle speed, resulting from the applied torque of the machine(s).
The quantity and type of each component is not static but can be chosen prior to every simulation start
within certain boundaries. It is possible to evaluate a vehicle with just one battery, one inverter, and
one electrical machine and compare it to a topology with four different machines, four inverters, and
five different battery packs with dc/dc converters. The whole model is fed with speed and slope over
time profiles, representing logged and standard driving profiles, like WLTP (Worldwide Harmonized
Light-Duty Vehicles Test Procedure) [9] or acceleration tests. The requirements for each vehicle type
have been determined by the OEMs and Tier 1 suppliers in the consortium and are motivated by
current and future electric vehicle perspectives.

2.2. Battery Model

The majority of the battery model is part of the vehicle model. However, some parts of the model
do not influence the driving behavior—e.g., the cost or environmental model. The implemented battery
model is described in the following.

The chosen battery cells for this exemplary portfolio were characterized on the test benches of
the Institute for Power Electronics and Electrical Drives (ISEA) of RWTH Aachen University. Their
characteristics are summarized in Table 1.

Table 1. Battery cell types of the used cell portfolio.

CharacteristicCell Type SB LiMotive Kokam 46 Ah Panasonic
NCR18650B A123 26650 M1B Toshiba 2.9 Ah

Cell format prismatic pouch bag cylindrical cylindrical prismatic
HE/HP 1 HE/HP HE HE HP HP

Electrode composition
(cathode vs. anode)

NMC/LMO-blend
vs. graphite

NMC vs.
graphite

NCA vs.
(silicon doped)

graphite
LFP vs. graphite LMO vs. LTO

Nom. capacity 60 Ah 46 Ah 3.25 Ah 2.5 Ah 2.9 Ah
Nom. voltage 3.75 V 3.7 V 3.6 V 3.3 V 2.4 V

Grav. energy density 123 Wh/kg 144 Wh/kg 241 Wh/kg 109 Wh/kg 46 Wh/kg
Grav. power density 2 860 W/kg 433 W/kg 362 W/kg 2170 W/kg 3200 W/kg

Relative costs 304 $/kWh 264 $/kWh 153 $/kWh 360 $/kWh 899 $/kWh
Cyclic aging rate relative

to reference
(in terms of equivalent full cycles)

1 1.4 1.6 1.33 0.2

1 HE: high energy, HP: high power; NMC: nickel manganese cobalt oxide; NCA: nickel cobalt aluminum oxide; LFP:
lithium iron phosphate; LTO: lithium titanate oxide. 2 In discharge direction at high state of charge (SoC) and with
10 s pulses.

There are no explicit favors towards any of the cell manufacturers or products. Amongst the
cells, all three major cell formats are present: prismatic cells (like in BMW i3), pouch bag cells (like
in Smart electric drive [10]), and cylindrical cells (like in Tesla Model S [11]). The portfolio contains
very high energy cells as well as very high power cells, as can be seen from the gravimetric energy
and power densities. This also motivates the differing anode and cathode combinations ranging from
common NMC (nickel manganese cobalt oxide) cathodes to NCA (nickel cobalt aluminum oxide) and
LFP on the cathode side and common graphite to silicon-doped graphite and LTO on the anode side.
The different cell characteristics significantly influence the cell costs relative to their nominal energy
content. These were determined using a bottom-up cost model, based on the “BatPac” approach by
Argonne National Laboratory [12–15] and the Tesla Battery Report [16]. This approach theoretically



World Electric Vehicle Journal 2018, 9, 19 6 of 18

designs each cell with its specific parameters: the electrodes are defined by their material, the thickness
of their active and passive material, and by the length of the electrodes (in the case of cylindrical
cells or folded electrodes) or the number of layers (in the case of stacked electrodes). The separator
is specified by its thickness, which leads to a certain amount on the cell level, where all anode and
cathode layers are separated. Furthermore, there are parameters for the housing material. The material
amounts were extracted from measured data from a post-mortem analysis carried out at the institute,
as well as from adapted assumptions from the “BatPac” tool. Based on the material amounts and
assumptions for producing the cells in high volumes, the individual cell costs have been determined.
The electrical parameters are not based on the theoretical model but measured in real experiments and
then fed into models. The measurements cover the determination of the voltage-state-of-charge curve
and pulse measurements to determine the internal resistance at different temperatures and different
states of charge. The results are stored in 3D lookup tables.

The total costs of ownership (TCO) of an EV are significantly influenced by the aging of the battery
system. If the aging effect exceeds a certain limit, the battery system has to be over-dimensioned
initially to compensate for the decrease in capacity and power capability. Key figures in this context
often are 70% remaining capacity after 8 years or 100,000 km [17–19]. To evaluate the aging effect of
dedicated battery packs in each vehicle, a straightforward battery-aging model was included. The used
data was adapted from a battery-aging study and model by Ecker et al. [20] and Schmalstieg et al. [21]
and transferred to the cells in this portfolio. The relative aging factors shown in Table 1 do not all
reflect measured data, as battery-aging characterization is very time consuming. An aging rate of 1.4
(assumed for the Kokam cell by the South Korean manufacturer Kokam Co., Ltd.) means that the
capacity fade after one equivalent full cycle is 1.4 times the capacity decrease after one equivalent full
cycle of the reference (SB LiMotive cell in this cell portfolio). LTO anodes are assumed to have a very
good cyclic stability, since volumetric expansion and contraction seen in graphite anodes does not
occur in this material. Furthermore, these battery cells do not suffer from Li plating [22], which, in
addition to posing safety issues, also leads to capacity fade in cells with graphite anodes. Thus, the
Toshiba cell’s aging rate is assumed to be 20% of the automotive grade SB LiMotive cell.

The aging model itself analyses the cyclic-aging stress on the batteries through the car usage in
the specified aging driving cycles (micro- and macrocycles), as well as the stress through calendric
aging. The latter mainly depends on the average voltage and temperature of the battery system.
Note that, due to performance reasons of the tool chain, the complete vehicle life of eight years is
not simulated. Instead, the aging driving cycles are simulated once for each battery system under
investigation to determine the above-mentioned stress factors. Furthermore, it is assumed that both
aging factors (cyclic and calendric) can be expressed with a linear behavior in the relevant time frame
(eight years and approximately 100,000 km) [23]. Using that extrapolation approach, the capacity
decrease and resistance increase can be approximated for the cycle life so that the battery system can
also be evaluated at the point in time where the battery has been used for 100,000 km of driving and
eight years. The complete aging model was implemented in Matlab with an interface to the Simulink
vehicle and battery model to feed in the “aged” battery parameters.

The generic battery model, as part of the Matlab Simulink vehicle model, internally consists of an
electrical model interacting with a thermal model and a battery management model. The structure of
this “online” model is shown in Figure 4 and explained in the following. Note that the vehicle model
has five instances of this library to simulate a maximum number of five completely different battery
pack types. An instantaneous power (PPack) is input to each pack at every time step. This is the power
extracted from the individual pack or fed back into the pack during recuperation. This power is scaled
down to one cell and then further processed in the electrical model. The electrical model consists of an
open circuit voltage part, a serial resistor, and an RC element (parallel connection of a resistor and a
capacitor), and is parameterized by electrical cell tests at different temperatures, as mentioned above.
Differences in cell behavior in one string, which do occur in real battery systems, were neglected in
order to maximize computing efficiency. A cell voltage balancing system was thus not modeled. The
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electrical model calculates the voltage response to a certain power, which is fed into the battery pack,
or vice versa. It further computes the thermal loss power according to the electrical power and the
measured and modeled internal resistances, which is then fed into the thermal model.
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The thermal model can represent a battery pack with pure passive cooling, with active air cooling,
or with active liquid cooling. The type of cooling system is chosen before the simulation is started. Each
component of the battery system is assumed to have a homogenous temperature distribution within.
Temperature gradients inside the system model can thus only exist between components, e.g., between
cell and cooling channel or surrounding air. The temperature of the individual components is calculated
based on the heat transfers into (

.
Qin) and out of the component (

.
Qout), the component’s initial

temperature (Tcomponent initial), its mass (mcomponent), and thermal capacity (cp,component) according to
Equation (1). This leads to an efficient simulation with limited computational errors.

Tcomponent = Tcomponent initial +
∫ .

Qin −
.

Qout
mcomponent·cp,component

dt (1)

The battery model further consists of a battery management model. Besides other values, it
outputs the battery’s state-dependent maximum available power and also controls the cooling system
of the pack, depending on the actual temperature and the individual temperature boundary conditions
of each cell type.

At least one instance of the above-described combination of electrical-thermal and battery
management model has to be available and active in the vehicle model. In the case of hybrid battery
systems, there can be up to five instances of battery models, each one parameterized individually prior
to simulation. This approach enables the tool chain to automatically find the most suitable combination
of cell types and dimension of the individual packs, as described in Section 2.4.

As mentioned above, the tool assumes that in the case of a hybrid battery system, each pack is
connected via one suitable dc/dc converter to the dc link. The dc/dc converter was chosen according
to the maximum power of the individual pack. The investment costs for the dc/dc converters in the
near future were assumed to be 6 $/kW in this work.

2.3. Power Distribution in Hybrid Battery Systems

In the case of just one battery pack, the complete power for the drivetrain and auxiliaries is
extracted from this pack. Hybrid battery systems, on the other hand, require a sophisticated power
distribution logic, continuously determining which portion of traction power is taken out of which
pack, respectively, and fed into which pack during recuperation. In the model, this task is done by a
central control software called “energy management”, as shown in Figure 5.
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The energy management has a communication link to the batteries to determine each battery
pack’s state, as well as a communication link to each dc/dc converter to actually control the power
flow. In the literature, one can find many solutions for distributing power amongst different energy
sources, ranging from rule based [24–26], through stochastic methods [27], up to complex methods,
all of which try to predict future traction power profiles based on navigational data [28].

However, none of the described methods suits the power distribution for five batteries required
here, which are only distinguished and characterized based on the communication link between battery
and energy management.

2.3.1. Implemented Power Distribution Algorithm for a Generic Hybrid Battery System

Due to the above-mentioned reasons, a straightforward power distribution algorithm was
implemented in this work: it primarily seeks to equalize the state of charge (SoC) of all packs and
simultaneously maintains each pack’s individual power limitations. Figure 6 shows an exemplary
result using the implemented power distribution logic for five different battery packs in a driving
scenario. The power distribution is explained using this excerpt of the scenario.

The uppermost graph in Figure 6 shows the reference speed and the actual vehicle speed controlled
by the driver. One can see that the reference speed is met in this example. It is reached by applying
a certain drivetrain power, depending on the vehicle’s properties (e.g., front area, chassis mass, tire
friction, etc.) and the actual mass of the drivetrain—in many cases, dominated by the battery system.
The latter is the reason why, in this tool chain, every new battery system has to be evaluated in the
vehicle model, as the battery mass directly influences the vehicle’s traction power requirements.
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Figure 6. Example of the implemented power distribution for five different battery packs, each with 1
kWh of different cells.

The very theoretical example in Figure 6 makes use of five equally dimensioned battery packs,
each containing cells with a nominal pack energy of approximately 1 kWh. The first pack contains
SB LiMotive cells, the second pack contains Kokam cells, the third contains Panasonic cells, the
fourth contains A123 cells, and the fifth contains Toshiba cells—all described in Table 1. The different
cell characteristics can be clearly seen by the output maximum discharge and charge power limits,
indicated by the dashed lines in plots 2–6 in Figure 6. These values are predicted in real time by the
modeled battery management systems’ power predictions and thus are cell type and state dependent.
High states of charge, for example, lead to a reduction of maximum charging power, in most cases, to
prevent overcharging or lithium-plating. The power distribution algorithm works in a way that these
limits are never exceeded, while distributing the power to each battery so that the states of charge
of all batteries are equalized as much as possible. This strategy can be recognized in the instances
of long and powerful recuperation, e.g., at t = 250 s in Figure 6. Battery 5, containing the Toshiba
cells (providing a very high charging capability), is charged with a higher current rate than the other
packs in this instance. Consequently, the SoC of this pack rises more than the SoC of the other packs.
To compensate this mismatch, the power distribution strategy tries to assign relatively more discharge
power to this pack in the next acceleration phases. One can see in the bottom plot in Figure 6 that this
strategy works well in this scenario, although the packs have such different characteristics—the states
of charge can diverge temporarily but are leveled out afterwards. The power distribution algorithm
was implemented in Simulink Stateflow and is part of the energy management software. It is used for
the tool chain described in this paper. The algorithm is fully generic in a way that up to five batteries
can be handled. If fewer batteries are available, the algorithm adapts itself automatically based on
missing availability signal of the unavailable packs. If just one pack is in the vehicle, the complete
power distribution algorithm is bypassed to save computational effort.

2.3.2. Alternative Power Distribution Algorithms for Defined Hybrid Battery Systems

The implemented power distribution logic is not necessarily the most suitable if the battery
system is defined. This means that if one has dimensioned a certain hybrid battery system, the power
distribution may be optimized towards a specified objective, knowing the used battery cells and
the application in detail. The objective might address an optimization of overall system efficiency.
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The latter was, for example, investigated for fuel-cell/high power storage hybrids in [29]. Then, a
model predictive control-based strategy, which optimizes the system efficiency, was developed for a
plug-in EV with a hybrid battery system in [30]. In [31,32], power distribution strategies for hybrid
storages were developed utilizing basic filter approaches. Another optimization objective might
address the minimization of battery aging. In [31,33–35], high-energy storage/supercapacitor hybrids
were analyzed for automotive applications. The authors showed that current peaks and, moreover, the
root-mean-square current load on the high-energy storage can be reduced. Thereof, they concluded
that battery aging can be reduced. Nevertheless, the latter conclusion was not validated by aging
measurements utilizing realistic driving-related load profiles.

The optimized power distribution for hybrid battery systems comprising two battery parts
was subject to complementary work described in detail in [27,36]. In addition, beneficial aspects
of hybrid battery systems comprising a high-energy solid-state lithium metal polymer battery were
discussed in [37]. Mainly two types of energy management strategies were introduced in [27]: firstly, a
reference solution was calculated offline, gaining the global optimal power distribution for a given
driving mission and EV hybrid battery system. The procedure is based on a deterministic dynamic
programming algorithm [38]. Secondly, two online energy management strategies were established that
allow for an optimized power distribution, though there is no exact knowledge of the future driving
mission. One of these strategies considers a stochastic model of the vehicle’s drive mission. The other
strategy is based on an instantaneous minimization of battery system energy losses. An equivalence
term was added, taking into account a charge-sustaining operation of the high-power battery part.
Overall, it was shown that the online energy management approaches allow for a near-optimal power
distribution, which is comparable to the offline reference solutions. For example, the stochastic online
strategy only shows a maximum of around 8.5% higher battery system energy losses (including dc/dc
converters) when comparing it to the offline reference solution.

Moreover, in [36], it was particularly analyzed whether a hybrid battery system can be utilized
in order to reduce battery aging. Results were gained from elaborate cycle aging measurements and
analysis on the battery cell level. The underlying hybrid battery system comprises the Li-ion cells in
presented this work; i.e., the Panasonic high-energy and the Toshiba high-power cells. In comparison
to the Panasonic cell, the Toshiba high-power LTO cell showed subordinate aging. Hence, aging
investigations were focused on the Panasonic high-energy cell. For real world driving cycle profiles, it
was found that the distance-related aging effects on the high-energy cell are largely independent of the
level of energy throughput and short duration load profile power peaks for the given test conditions
(Panasonic cell, constant 60% depth of discharged energy range, charge protocol, 23 ◦C cell surface
temperature, load profile sequences). Nevertheless, it was then found that increasing recuperation
pulse durations caused an acceleration of aging. This result leads to hybrid battery system operation
recommendations addressing aging minimization: long time recuperation on the HE battery part
should be avoided. In other words, recuperation phases exceeding a charging current rate of 1 C
on the cell level and exceeding a duration of 30 s shall be avoided. In fact, these recuperation loads
can be shifted to the less sensitive high-power battery part. On the other hand, discharging currents
within the high-energy battery’s specifications can be applied on the HE battery without varying its
aging behavior.

2.4. Battery Optimization Framework

The design process of a battery system is complex because the dependencies of characteristics
spread across the complete development chain: the choice of cell type(s) influences the necessary
number of cells for given application requirements, which influences the weight and volume of the
pack. The resulting weight and loss power of the cells directly influence acceleration and range
characteristics of the vehicle. The cooling system has to be well adapted to the chosen cells and
application requirements to maintain the battery cells in their valid temperature range in worst case
conditions, while not over-dimensioning the cooling system. Thus, the design process for an EV battery
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system shows circular dependencies. For a hybrid battery system, the design is even more complex.
Assuming that an OEM may choose amongst five different cell technologies or types and also combines
them to hybrid systems, the solution space for possible battery systems becomes huge. However,
finding the best solution is a complex task. An evolutionary optimization approach (“Covariance
Matrix Adaption Evolution Strategy” (CMAES), developed by Hansen et al. [39]) was chosen in this
work to solve this multidimensional and nonlinear optimization problem. Evolutionary optimization
algorithms work similar to biological evolution: the best individuals of each generation are chosen
to create new generations of individuals based on genetic operators. From generation to generation,
the best individuals better fit the searched optimum. A major advantage of the chosen optimization
approach by Hansen et al. compared to, e.g., genetic algorithms, is the significantly reduced number
of parameters that have to be set in order to use the optimization algorithm for a specific problem,
since the optimization algorithm adapts itself to the optimization problem. The migration towards the
optimum solution is reached by mathematical methods, i.e., adapting the covariance matrix.

In the following, one specific hybrid battery configuration can be, for example, the combination
of a pack made of 20 kWh of Panasonic cells and a second pack made of 3 kWh of Toshiba cells. Such a
battery configuration is called an individual in the context of evolutionary optimization. In this work,
the individual is coded by the energy of each cell type in the five packs:

[ESB LiMotive; EKokam; EPanasonic; EA123; EToshiba]—each given in Wh.
The above-mentioned individual would thus be coded as [0; 0; 20,000; 0; 3000]. The optimizer

evaluates a certain number of such individuals in the very first step, called the first generation. The
best individuals are then chosen for the next generation of individuals, i.e., the covariance matrix is
adapted. Similar to evolutionary theory, the new generations contain individuals which are closer to
the problem’s optimum. The key and major task in this process is the individuals’ evaluation. This is
done inside the cost function. Besides what the name suggests, it not only calculates the direct costs of
the particular individual (i.e., the battery costs) but also assigns penalty points or “costs” if certain
requirements of the vehicle are not fulfilled with the chosen battery configuration. Inside the cost
function, the vehicle model is used to determine the vehicle’s acceleration, maximum speed, and range
for the specified individual under different conditions (warm, cold, beginning of life, after eight years).
Simulink’s Rapid-Accelerator mode was used in order to maximize simulation speed. In this mode, an
executable is built which contains all components of the model itself, as well as the equation solver.
Thus, the model is not interpreted as it is in the case in the Simulink “Normal Mode”. In order to
use the executable without modification, the particular settings for each individual—i.e., the battery
specifications—are fed into the model using the concept of tunable parameters. This enables very
fast simulations and furthermore parallelization of evaluations on multicore CPUs using the same
executable with different parameters. If the specified vehicle requirements cannot be reached with the
particular battery configuration (e.g., vehicle acceleration too low due to insufficient battery power),
then penalty “costs” are assigned (e.g., X $ for every second (s) of acceleration time from standstill to
100 km/h, which is higher than the required acceleration time).

Weight, volume, and investment “costs” can be directly calculated in the cost function without
simulation in the vehicle model. While investment costs are calculated in a currency, weight and
volume are also converted using a linear penalty “cost” approach. All penalty “cost” factors can be
parameterized in accordance to their particular relevance. If, for certain applications, the weight is of
higher importance than the volume, the weight penalty “cost” factor can be increased relative to the
volume “cost” factor and thus has higher influence on the individual’s evaluation.

The components of the cost function which are summed to the total costs are visualized in Figure 7
for an example of a single-pack battery system which is iteratively increased in its nominal energy size
by 1 kWh steps (x-axis).
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Figure 7. Costs and penalty points evaluated in the cost function of the battery optimization tool box
for a single-cell battery system of different sizes.

Note that the y-axis is logarithmic. Very small battery systems generate very high penalty points,
since they cannot fulfill the performance requirements in the vehicle. One can see that from 35 kWh
nominal energy upwards, the penalty points for acceleration vanish, meaning that these battery
configurations enable the vehicle to accelerate fast enough. Also, from 45 kWh onwards, the penalty
points for the range criterion are zero. The total costs thus have a minimum in this range of energy for
this particular cell type and vehicle. For even higher energy capacity, the mass and volume increase,
which generates higher penalty points again—additional to higher investment costs.

Figure 8 shows the result of the cost evaluation for the five different cell types with different
sizing of the packs. The particular cost components (as shown in Figure 7) are not visualized but only
the total costs. Similar to Figure 7, one can see a global cost minimum in the range of 50 kWh for packs
with SB LiMotive, Kokam, and A123 cells. Due to the limited power of the Panasonic cell, significantly
higher energy content is required with this cell type in order to fulfill the acceleration requirement,
which is mainly influenced by the cells’ maximum electrical power. Battery systems only containing
the Toshiba cell show comparatively high mass and volume figures, which leads to high costs over
the complete energy range. A visualization of the cost function’s results for differently sized battery
packs, as shown in Figure 8, is only possible for single-pack battery systems, since a combination of cell
types leads to a more dimensional solution space. Furthermore, the computational effort to analyze all
cell combinations with all sizes (brute force optimization) increases significantly in a hybrid battery
approach. This is why a systematic optimization approach was developed in this work and used for
different vehicles.
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3. Dimensioning Results

To evaluate the concept of hybrid battery systems and compare the approach to the state of the
art single battery pack approach, the developed tool chain was used for five different EVs:

• a reference vehicle of the current generation—similar to the first version of the BMW i3—with
150 km range, called “Compact 150 km”;

• a reference vehicle having the same chassis properties as “Compact 150 km” but with 300 km
range, called “Compact 300 km”;

• a sportive compact vehicle with chassis properties similar to a BMW M3, with 350 km range and
3.9 s acceleration time from zero to 100 km/h, called “Medium Sport”;

• an upper class vehicle with 400 km range and 5.1 s acceleration time, called “High Class“;
• a large, electrified sports utility vehicle (SUV) with a range of 500 km, accelerating in 5.1 s from

standstill to 100 km/h.

For each of these vehicles, an individual reference battery system was optimized using the full
cell portfolio from Table 1. This reference battery was formed out of a certain cell type that best suits
the individual vehicle’s requirements. The hybrid battery solutions, described later, are all compared
to the individual single-pack reference battery systems. The cell type and battery pack size of these
reference packs in terms of energy is indicated in the upper row in Figure 9 for each analyzed vehicle
type. The resulting mass, volume, and investment costs of these reference battery systems formed out
of one cell type are considered as 100% in the following comparison and in Figure 9 (blue horizontal
line). One can observe that in the case of vehicles with a rather high power-to-energy requirement, the
SB LiMotive cell turns out to be the best choice for a single-cell battery system (“Compact 150 km” and
“Medium Sport”). In the case of the other three vehicles with higher range, and thus higher energy
requirements, the Kokam cell with slightly higher energy density is better suited and was chosen by
the optimization tool.
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Now, after knowing the properties of the reference battery system, the heuristically optimal hybrid
battery system was obtained for each vehicle, using the developed hybrid battery dimensioning tool
chain. The resulting battery configurations and sizes in terms of energy are indicated in the second row
in Figure 9 for each vehicle. The resulting mass, volume, and investment costs of these hybrid battery
solutions are finally shown in the lower part of Figure 9, relative to the above-explained reference
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battery systems. It becomes clear that, in all analyzed cases, the mass, volume, and investment costs
of the hybrid batteries are lower compared to the best single-pack system (reference), although these
solutions require at least one additional dc/dc converter, as shown in Figure 2. As mentioned before,
the solutions shown in this work were obtained using two dc/dc converters, as shown in Figure 2b.
Furthermore, the results show that the combination of a HE Panasonic cell and a high-power cell
leads to the best combinations for all vehicles. In the case of the vehicles with moderate acceleration
performance, the A123 cell turns out to be the better option, in combination with the Panasonic cell. In
the case of the vehicles with higher mass or higher specified acceleration power, the Toshiba cell is
better suited.

The highest reduction potential in battery mass through hybridization is obtained in the case of
the large electric SUV (20%). The battery volume reduction compared to the reference is the largest
in the case of the Medium Sport vehicle (31%). The highest cost reduction potential is again gained
in the case of the SUV (24%). The lowest mass reduction effects through battery hybridization are
obtained with the two compact EVs, both in the range of 11–13%, the lowest volume reduction with
the “Compact 300 km” (5%), and the lowest cost reduction with the “Compact 150 km” (5%). The
results are discussed in the following section.

4. Discussion

As shown in the previous section, the hybridization of battery systems with a high-energy and
a high-power part may result in considerable weight, volume, and cost savings, although at least
one additional dc/dc converter is required, as indicated in Figure 2. This is due to the fact that the
significantly higher energy density of the high-energy battery cell and the higher power density of the
high-power cell overcompensate for the disadvantages of the additional converter. The overall energy
density of the hybrid battery systems (including the power electronics) is higher than the energy
density of the reference battery systems. At the same time, the hybrid battery systems fulfill the power
requirements, since the high-power part of the system shows very high peak power capabilities.

Furthermore, the hybrid battery approach allows tailoring of the battery system’s energy and
power capability exactly to the requirements for each vehicle. This fact plays a further important
role as soon as OEMs begin electrifying a wider range of their offered vehicle fleet. Then, two types
of battery cells may, in the best case, qualify for the complete range of vehicles in differently scaled
versions of high-energy and high-power packs, as shown in the previous section and in Figure 9. Note
that the corresponding optimization results for the analyzed vehicles using just the Panasonic and
the Toshiba cell type (instead of the A123 cell for the two compact vehicles) were very close to the
optimum results shown here.

It is foreseeable that new battery technologies with even higher energy density will follow
the current Li-ion cell technology, e.g., Li-sulfur or solid-state batteries [37]. Using such cells will
presumably further decrease the battery system costs (per energy). These new cells will, on the
other hand, suffer from some disadvantages—most probably, lower power capability, at least in
some operating points. Nevertheless, such cells may be perfectly suited for vehicle applications
when combined with a high-power battery pack, as discussed in this work. Then, the peak power is
delivered or absorbed by the high-power pack. Moreover, the shift of loads to a high-power battery
pack might lead to a reduction of cycle aging on the high-energy battery pack, which is based on new
battery technologies.

Since hybrid battery systems require additional power electronics, these batteries are more
complex to control than systems with just one battery type. Possible ways to control the power
between the available packs are described in this work. In addition to the higher complexity, power
electronic systems may also suffer from failures, which increases the failure probability of the battery
system in the first place. However, the overall availability of the hybrid battery system may even be
better than a single-pack system, since a proper setup may allow an emergency or limp-home mode if
one of the packs or converters fails. This has to be quantified in further research by combining failure
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rates of cells, battery strings, and topologies [40], as well as power electronic devices in the context of
modularized battery systems. Availability of battery systems will certainly become one of the most
important figures in future highly automated electric vehicles.

In general, the hybrid battery approach can be extended to other applications besides vehicles.
It is well suited in cases with significantly varying electrical power demands, where the high-energy
part can be discharged at a rather constant rate and the high-power part delivers or absorbs the higher
loads. Such applications can be electric railways running without catenary system, marine systems, or
airborne systems.

Finally, it has to be noted that the hybrid battery approach does not solve the “problem” of fast
charging batteries to drive vehicles over longer distances with minimal stops for recharging. Although
the system can absorb high electric loads for short times due to the high-power part (e.g., lithium
titanate oxide), the energy which can be fast charged is more or less limited to the high-power part.
This part usually will be significantly smaller in terms of energy, which can be seen in Figure 9.
Consequently, the charging duration for a full charge of the hybrid systems indicated in the previous
section may be the same or even longer than the charging duration of the reference systems, since
the hybrid systems discussed in this work make use of consumer cells, which are not optimized for
high-power charging but for high energy densities.

5. Conclusions

This work describes a methodology for the optimization of hybrid battery systems for automotive
applications. These battery systems can consist of different battery cell technologies, which are
connected by dc/dc converters on the pack level. The combination may consist of cells of different
electrode materials and thus different voltage characteristics.

After defining the requirements for a certain vehicle (e.g., acceleration, maximum speed, and
range), as well as setting a cell portfolio, the developed tool automatically searches for the battery
system solution, which generates the least penalty points for weight, volume, and the least investment
costs. The optimization criteria can be prioritized according to the set penalty points for each evaluation
criterion by adjusting the penalty cost factor for each property. The search algorithm makes use of the
evolutionary optimization approach “Covariance Matrix Adaption Evolution Strategy” (CMAES).

The obtained results show that the hybrid battery approach can generate significant advantages
concerning weight, volume, and investment costs for the investigated vehicle classes. The concept
allows exact dimensioning of both energy and power simultaneously, while using the best properties of
two battery technologies. With the developed tool, the hybrid approach was evaluated by optimizing
two types of battery systems for five different vehicle types. The best single pack approach—serving
as a reference—as well as the best hybrid battery approach were determined for each vehicle. It was
observed that the weight advantage of the hybrid battery system was at least 11% for the smaller
cars but up to 20% for the high-range and high-power SUV. Similar results were obtained for the
volume reduction potential (5% for the compact car with 300 km range and up to 31% for the medium
sport vehicle). The cost-saving potential using hybrid battery systems ranges from a negligible 5%
for the compact vehicle up to 24% for the SUV. The results show that in the investigated cases, the
weight, volume, and cost advantages compensate for the additional weight, volume, and costs of the
required power electronics, which are included in the given numbers. The analysis also shows that the
cells and the energy content of each battery pack must be carefully chosen and dimensioned for the
investigated vehicles.

Future extensions of the analysis have to cover the best modularization for multivehicle usage of
battery types, e.g., cross-platform for a complete fleet of vehicles. Furthermore, the analysis has to be
extended to other vehicle classes, like electric buses and light trucks or even different applications,
e.g., railway.
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