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Abstract: With the promotion and financial subsidies of the new energy vehicle (NEV), the NEV 

industry of China has developed rapidly in recent years. However, compared with traditional fuel 

vehicles, the technological maturity of the NEV is still insufficient, and there are still many problems 

that need to be solved in the R&D and operation stages. Among them, energy consumption and 

driving range are particularly concerning, and are closely related to the driving style of the driver. 

Therefore, the accurate identification of the driving style can provide support for the research of 

energy consumption. Based on the NEV high-frequency big data collected by the vehicle-mounted 

terminal, we extract the feature parameter set that can reflect the precise spatiotemporal changes in 

driving behavior, use the principal component analysis method (PCA) to optimize the feature pa-

rameter set, realize the automatic driving style classification using a K-means algorithm, and build 

a driving style recognition model through a neural network algorithm. The result of this paper 

shows that the model can automatically classify driving styles based on the actual driving data of 

NEV users, and that the recognition accuracy can reach 96.8%. The research on driving style recog-

nition in this paper has a certain reference value for the development and upgrade of NEV products 

and the improvement of safety. 

Keywords: driving style; high-frequency bid data; joint distribution characteristics; K-means  

algorithm; neural network; new energy vehicle 

 

1. Introduction 

With the new four modernizations strategy of automobile industry (electricity, net-

working, intelligence, and sharing), the new energy vehicle (NEV) industry in China has 

developed rapidly in recent years. Statistics from the Ministry of Public Security show 

that, by the end of 2020, the number of NEVs in China reached 4.92 million [1]. Different 

from traditional fuel vehicles, NEVs collect a large amount of operating data, which can 

reflect user habits and the product performance of NEVs to a certain extent. In order to 

improve the efficiency of NEV product R&D, optimize the product performance, and ac-

celerate the product upgrade speed, NEV operation big data mining will become an im-

portant foundation for the development of the NEV industry. 

At present, NEV technology is far less mature than traditional fuel vehicles. There 

are many issues that need to be researched in the R&D and operation of NEV. Among 

them, battery life and energy consumption are the most concerning issues of OEM and 

consumers, and are closely related to the driving style of the driver. Therefore, the driving 

style is an important factor that needs to be considered in the research of NEV products. 

As an interactive bridge between the driver and the NEV, the driving style is an important 

parameter that indicates the driver’s personal characteristics. The correct recognition of 
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driving style, which can deepen our understanding of driving behavior, has a great refer-

ence value for the research and development of driving assistance systems. Research on 

the recognition of driving style is beneficial for improving the energy efficiency and safety 

of NEVs. 

Many efforts concerning driving style recognition have been made in recent years. In 

past research works, researchers usually use driving data to calculate the maximum, min-

imum, average, and other conventional statistical parameters to represent the user’s driv-

ing characteristics. However, conventional statistical parameters can only reflect the over-

all status of the driving style, and the detailed information in the driving fragment is lost. 

In order to build a model that can accurately recognize the driving behavior of NEVs, 

improve NEV products based on different driving behavior characteristics, improve prod-

uct intelligence and driving experience, and promote the positive development of the 

NEV industry, this paper collects NEV high-frequency big data by CAN bus, extracts joint 

distributed feature parameters that can reflect the characteristics of driving behavior in 

time and space, and builds a driving style recognition model using a BP neural network 

algorithm. 

The remainder of this paper is organized as follows. Section 2 describes the related 

works. Section 3 introduces the methodology. Section 4 presents the results and discus-

sions. Lastly, conclusions are drawn in Section 5. 

2. Related Works 

2.1. Data Acquisition 

In order to classify and recognize driving styles, it is necessary to collect vehicle data 

in actual driving conditions. In recent years, the main methods for collecting driving be-

havior data are simulation experiments, smart phones, and CAN bus. 

Sun, B. et al. [2] designed the Driver-In-the-loop Intelligent Simulation Platform 

(DILISP), which can collect the actual accelerator pedal and brake pedal operation signals 

of the driver in real time. In addition, DILISP can collect the sport appearance of two ve-

hicles and record the drivers actions. Qun Wang et al. [3] designed a data acquisition sys-

tem based on an inertial navigation sensor and advanced RISC machine microcontroller 

that can collect the driver’s driving behavior and vehicle status in real time. Derick A. 

Johnson et al. [4] collected the speed and direction data of the vehicle during driving using 

the rear camera, accelerometer, gyroscope, and GPS of a smartphone. Hamid Reza Eftek-

hari et al. [5] made use of the accelerometer, magnetometer, and gyroscope of a 

smartphone to collect the speed change rate, the rotation of the vehicle, and the angle 

between the coordinate axis of the device and the base. Fuwu Yan et al. [6] collected the 

driver’s EEG signal using the Biopac MP150 system, and collected the steering wheel an-

gular velocity using the photoelectric encoder. F. Martinelli et al. [7] collected data 

through CAN bus in order to identify the driving behavior, where the acquisition fre-

quency was one frame per second. 

2.2. Driving Style Recognition Mehtod 

In the current research results, there are mainly two methods for driving style recog-

nition: the subjective evaluation method and statistical classification method. The subjec-

tive evaluation method needs predefined rules to classify driving styles, so it has a strong 

dependence on professional knowledge. The statistical classification method has a strong 

generalization capability, so it can recognize the driving behavior easily and accurately. 

Ouali, T et al. [8] evaluated the driving style score through the speed, accelerator 

pedal position, brake pressure, lateral acceleration, longitudinal acceleration, steering an-

gle, and cruise control signals in CAN bus, and divided the driving style into three cate-

gories: calm, normal, or aggressive. This research method needs predefined rules to clas-

sify driving styles, so it has a strong dependence on professional knowledge, and relates 

to the subjective evaluation of the driver. Based on the historical data of vehicles, many 
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scholars have conducted much research work on building driving style recognition mod-

els by statistical algorithms and machine learning algorithms [9–15]. The statistical algo-

rithms and machine learning algorithms have a strong generalization capability, so they 

can recognize the driving behavior easily and accurately. At present, the algorithms that 

are commonly used in related works include PCA, KPCA, K-means, SVM, artificial neural 

networks, CatBoost, Random Forest, etc. Sun, B. et al. [1] divided driving style into three 

categories by particle swarm optimization clustering (PSO clustering), and built a driving 

style recognition model using a multidimensional Gaussian hidden Markov process 

(MGHMP). Qun Wang et al. also divided the driving style into three categories and built 

a driving style recognition model using different algorithms, which were the K-means and 

random forest algorithm. Fuwu Yan et al. [6] used K-means for clustering the driving data, 

and a support vector machine (SVM) for training in order to build the driving style recog-

nition model. F. Martinelli et al. [7] built five driving style classification models using J48, 

J48graft, J48consolidated, RandomTree and RepTree, and evaluated the classification re-

sults of them by parameters such as false alarm rate (FP), accuracy, recall rate, F measure, 

and ROC area quality. Weirong Liu et al. [16] used CatBoost as the basic classifier to es-

tablish a Tri-CatBoost-based driving style recognition method that can reduce the depend-

ence on data labels. Gqa B et al. [17] discovered distinguishable driving style information 

with a hidden structure from the real-world driving behavior data using two kinds of 

topic models: mLDA and mHLDA. Campo I D et al. [18] proposed modelling the driving 

style classifier based on a single layer data-driven extreme learning machine (ELM) algo-

rithm. Chen D et al. [19] used the Labeled Latent Dirichlet Allocation model to understand 

the latent driving styles from individual driving with driving behaviors. 

In addition to the above two types of methods, in recent years, some scholars have 

adopted probabilistic methods to establish driving style recognition models. Deng C et al. 

[20] realized the effective discriminant of the driving style based on the hidden Markov 

model algorithm, and three driving styles (aggressive, moderate, and mild) were modeled 

reasonably. Han W et al. [21] extracted discriminative features using the conditional ker-

nel density, and computed the posterior probability of each selected feature to classify 

driving styles into seven levels from normal to aggressive. Deng Z et al. [22] extracted 

maximum lateral acceleration as a crucial indicator, and determined driving style using 

the point estimation model and interval estimation model. 

In the above related works, in order to represent the driving styles, many researchers 

extracted statistical parameters, such as the maximum [22], and many researchers calcu-

lated the time gap (division of range and speed) and speed difference [17]. However, these 

parameters lost the detailed information of the driving behavior, and ignored the simul-

taneity and correlation between different data fields. In order to maintain the characteris-

tics of driving behavior to the greatest extent and consider the relationship between dif-

ferent data fields, we propose building a driving style recognition model based on a joint 

distribution feature parameter in this paper. 

3. Methodology 

In this paper, the main steps of driving style recognition method is: (1) NEV high-

frequency big data acquisition; (2) joint distribution feature parameters extraction; (3) fea-

ture parameters optimization; (4) driving style classification; (5) driving style recognition. 

3.1. NEV High-Frequency Big Data Acquisition 

At present, according to national requirements in GB/T32960[23] of China, companies 

need to acquire real-time data on NEVs and upload the data to the national big data plat-

form. The data acquisition frequency is usually 10 s per frame. At the highest frequency, 

it can reach 1 s per frame, whereas the data uploaded to the national big data platform is 

30 s per frame. This data frequency is far from enough to study the driving behavior of 

NEV users. Take the NIO ES6 as an example: its 100 km acceleration time is only 4.7 s. If 
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the data acquisition frequency is 10 s, the data characteristics of the vehicle during accel-

eration cannot be captured. Even if the data frequency is 1 s per frame, up to 5 frames of 

data can be obtained, and it is difficult to accurately represent the user’s actual accelerator 

pedal operation characteristics at this stage. In order to cover the important characteristics 

of the user’s driving behavior, we used the CAN bus to collect high-frequency big data; 

the frequency can be up to 100 Hz, which is 0.01 s per frame. Similarly, taking the NIO 

ES6 100 km acceleration test as an example, the number of data frames we can collect 

reaches 470 frames, which is sufficiently detailed to describe the characteristics of the 

user’s driving behavior changes during this time period. 

In this paper, a certain brand of BEV operating in Tianjin is used to collect NEV high-

frequency big data. The five selected vehicles have close on-line dates and are operated in 

the same region, which can reduce the influence of factors, such as region, driving condi-

tions, and battery life. The pure electric driving range of the selected vehicles is 320 km. 

According to the collected data field requirements in GB/T32960 “Technical specifi-

cations of remote service and management system for electric vehicle”, we acquired NEV 

operation data using on-board OBD system and CAN bus, and transmitted the data to 

NEV data remote monitoring platform, as shown in Figure 1. The acquired NEV high-

frequency big data mainly includes driving behavior data, charging data, battery data, 

motor data, DCDC data, etc. In addition to the data fields required by GB/T32960, we also 

collected steering wheel angle and longitudinal acceleration. By using big data clusters as 

support, the NEV data remote monitoring platform is based on the ADC-DA efficient 

R&D architecture, and monitors the real-time data of NEVs through the high concurrency 

of the clusters. The real-time data are stored in Oracle database. 

 

Figure 1. Flow chart of high-frequency big data collection for new energy vehicles. 

In this paper, the data fields we focus on are those that reflect characteristics of driv-

ing behaviors, including timestamp, vehicle speed, steering wheel angle, and longitudinal 

acceleration. We extracted the monitoring data of five selected vehicles from February 

2019 to September 2019 from the database. To reduce storage and improve computational 

efficiency, we only extracted the required data fields and few data fields for auxiliary anal-

ysis, as shown in Table 1. Among them, the voltage and current are used to confirm the 

vehicle status and the subsequent energy consumption analysis. The total data volume is 

18 GB. 

Table 1. The required data fields for driving behaviors. 

No. Date Name Description 

1 Time Data style: year-month-day hour:minute:second 

2 Vehicle status 
“0” means flameout state; “1” means start state; “2” means inva-

lid state 

3 Speed The unit is km/h, accurate to one decimal place 

4 Steering wheel angle The unit is °, accurate to one decimal place 

5 
Longitudinal acceler-

ation 
The unit is m/s2, accurate to two decimal places 

6 Total voltage The unit is V, accurate to one decimal place 

7 Total current The unit is A, keep integer 
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3.2. Driving Style Feature Parameter Extraction 

Generally, the data used in evaluating driving behavior mainly include vehicle 

speed, steering wheel angle, longitudinal acceleration, braking deceleration, etc. The sta-

tistical parameters are extracted to reflect the driving characteristic, such as maximum, 

minimum, mean, median, mode, standard deviation, etc. The statistical parameters can 

represent the driving behavior characteristics in the time dimension, but the simultaneity 

between vehicle speed and longitudinal acceleration, braking deceleration, or steering 

wheel rotation speed is missed. In order to distinguish acceleration segments and decel-

eration segments, we redefine the segment data with positive longitudinal acceleration as 

longitudinal acceleration, and the data with negative longitudinal acceleration as braking 

deceleration. 

In order to characterize the driving style of drivers precisely, especially vigorous 

driving behaviors, such as rapid acceleration, rapid deceleration, and sharp turning, we 

propose using the joint distribution of vehicle speed and other fields for evaluating driv-

ing style. The joint distribution characteristic parameters [24] can reflect the spatial rela-

tionship between vehicle speed and longitudinal acceleration, braking deceleration or 

steering wheel speed, and evaluate the temporal and spatial characteristics of driving be-

havior comprehensively. 

Taking a trip of driver A and a trip of driver B as examples, the joint distribution 

characteristic parameters of vehicle speed and longitudinal acceleration, braking deceler-

ation, or steering wheel speed are extracted, respectively, as shown in Figures 2–4. 

In Figure 2, when the steering wheel speed is higher than 20°/s, the vehicle speed of 

driver A is concentrated below 30 km/h, whereas the vehicle speed of driver B is concen-

trated in the range of 10–50 km/h. Figure 2 shows that the turning speed of driver B is 

higher than driver A. It can be seen from Figures 3 and 4 that the joint distribution between 

vehicle speed–longitudinal acceleration and vehicle speed–brake deceleration of driver B 

is relatively scattered, and the vehicle speed, longitudinal acceleration, and braking decel-

eration are all higher than that of driver A. Figures 3 and 4 show that the driving style of 

driver B is more intense than driver A. 

 

Figure 2. Joint distribution characteristics of vehicle speed and steering wheel speed. 
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Figure 3. Joint distribution characteristics of vehicle speed and longitudinal acceleration. 

 

Figure 4. Joint distribution characteristics of vehicle speed and brake deceleration. 

3.3. Optimization of Driving Style Characteristic Parameters 

The driving style characteristic parameters of this paper include a plurality of statis-

tical parameters of NEV big data, the percentage of intervals, and three different joint dis-

tribution characteristics, totaling 383 dimensions. In order to minimize the resources re-

quired for calculation and maximize the retention of the information contained in the driv-

ing behavior characteristic parameters, the characteristic parameters need to be optimized 

for dimensionality reduction. 

In this paper, we used principal component analysis algorithm to orthogonally trans-

form the characteristic parameters of driving behavior. The characteristic parameters that 

may have a certain correlation with each other can be transformed into a linear and un-

correlated principal component. As shown in Figure 5, the cumulative contribution rate 

of the first 35 principal components is over 85%. Therefore, the first 35 principal compo-

nents can be used to represent the driving styles. The dimensionality reduction optimiza-

tion processing reduces the complexity of the characteristic parameter matrix and can im-

prove the calculation efficiency. 
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Figure 5. Principal component contribution rate and cumulative contribution rate. 

3.4. Automatic Classification of Driving Style 

At present, the driving behaviors are usually divided into aggressive, normal, and 

mild driving behaviors based on the intensity of driving. Based on the characteristic pa-

rameters of driving behaviors in this paper, we use the clustering algorithm to realize the 

automatic classification of driving behavior intelligently and objectively. 

The K-means algorithm randomly selects K points from the dataset as cluster center 

points, calculates the Euclidean distance between the data points of dataset and the cluster 

center points, and assigns them to the cluster center point with the smallest Euclidean 

distance. Then, it replaces original cluster center with the mean value of K-cluster, and 

iterates until the cluster center point remains unchanged or the sum of the squared errors 

reach local minimum. Among them, the formula for calculating Euclidean distance is 





n

i
ii kxd

1

2)(  (1)

where d is the Euclidean distance from the data point to the cluster center point, n is the 

dimension of the data point, xi is the characteristic parameter of the data point, and ki is 

the characteristic parameter of the cluster center point. 

The sum of the squared errors refers to the sum of clustering errors of all data points 

in the dataset, which can represent the clustering effect to a certain extent. The calculation 

formula is 


 


k

i Cx
i

i

kxSSE
1

2  (2)

where SSE is the sum of squares of errors, Ci represents the i-type of data, ki is the cluster 

center point of Ci, and x is any point in the i-type of dataset. 

3.5. Driving Style Recognition Model Construction 

By K-means clustering algorithm, driving behavior is divided into five categories, 

and category labels are automatically generated. The classification results and data labels 

can be used as a training dataset for building a driving style recognition model. In this 

paper, BP neural network algorithm, which has strong inductive ability, is used to build 

a driving style model. BP neural network algorithm can obtain hidden data relationships 

from training data without prior assumptions, and deal with problems with unclear rules 

or complex internal relationships. The training optimization method of BP neural network 

is the gradient descent method. The input data of each neuron is 





n

i
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where xi is the input feature and wi is the connection weight. 

If the Sigmoid function is used as the activation function, the hidden layer neuron 

output is 

nete
netfy



1

1
)('  (4)

The training process of BP neural network includes forward propagation of infor-

mation and back propagation of error. In the forward propagation process, the input of 

the previous layer is weighted, and becomes the input of the next layer, namely net. In the 

back propagation process, according to the difference between the actual output y’ and 

the ideal output y, the weight matrix is adjusted to minimize the error, and finally the 

error is controlled within a certain required range. The error of the sample data can be 

described as 





m

j
pjpjp OyE

1

2)(
2

1  (5)

The total error of the sample data set is  PEE . The algorithm will iterate until the 

parameters meet the requirements. 

4. Results and Discussions 

In this paper, the model was built and solved by Python. The output results are the 

driving behavior levels of all of the driving behavior fragments. 

In theory, the larger the K value of the cluster number, the more accurate the classi-

fication. However, the larger K value is not conducive to the classification and analysis of 

real data. Therefore, it is necessary to first define the optimal cluster number K value. In 

this paper, we test the clustering effect of different clustering numbers K based on the 

driving behavior feature parameter set after the dimensionality reduction, as shown in 

Figure 6. When K is less than 5, SSE drops sharply, indicating that, as K increases, the 

clustering effect is significantly improved. When K is greater than 5, the downward trend 

of SSE gradually weakens, indicating that the increase in K does not obviously improve 

the clustering effect. Therefore, we use 5 as the optimal number of clusters, and divide 

driving style into 5 levels, as shown in Figure 7. 

 

Figure 6. Relationship Curve Between Driving Style Cluster Number and SSE. 
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Figure 7. Driving style classification result. 

There are 4563 effective driving fragments in the high-frequency big data of this pa-

per. Seventy percent of them are selected randomly as training samples, and the remain-

ing 30% are selected as test samples. In order to speed up the learning process and avoid 

training non-convergence, the feature vector parameters are standardized and limited to 

the interval [0,1]. 

After experimental testing, a three-layer neural network driving style recognition 

model is established, as shown in Figure 8. In Figure 8, Xi is a input layer node and repre-

sents a driving parameter, and yi is an output layer node and represents the driving style 

level. The input layer has 383 driving style characteristic parameters, the output layer has 

5 driving style levels, and the number of hidden layer nodes is 20. We select the BP algo-

rithm training function tradingdx for network training, define the training parameters, 

and train the network combined with the number of hidden layer nodes in order to deter-

mine the driving style model parameters. The training parameters include a maximum 

network training times of 10,000, a learning rate of 0.02, and a target error of 1.0 × 10−8. 

 

Figure 8. Driving style recognition model neural network topology map. 

We apply the driving behavior recognition model in Figure 8 to the dataset of this 

paper, and recognize the driving styles of the 4563 effective driving fragments. In the re-

sults, 4417 driving styles are the same as in Figure 7, and the recognition accuracy is 96.8%. 

This paper uses joint distribution parameters and statistical parameter characteristic 

parameter sets. The characteristic parameter has 383 dimensions, among which, the joint 
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distribution parameter has 320 dimensions, and the traditional statistical characteristic 

parameter has only 63 dimensions, as shown in Table 2. Compared with the traditional 

driving behavior recognition method that only uses statistical feature parameters, this pa-

per adds 320-dimension joint distribution feature parameters, which can describe the cor-

relation between the vehicle speed and the steering wheel speed, acceleration, and decel-

eration during the driving stage. For example, in Figure 2, when the steering wheel speed 

is in the range of 10–20°/s, the speed distributions of driver A and driver B are different, 

which expresses the difference in the driving style of the two drivers. Only statistical pa-

rameters extracted for the vehicle speed or steering wheel angle cannot express this infor-

mation. 

Table 2. The 63-dimension statistical characteristic parameters. 

Speed 
Steering Wheel 

Speed 

Longitudinal Acceler-

ation 
Braking Deceleration 

Maximum Maximum Maximum Maximum 

Mean Mean Mean Mean 

Mode Mode Mode Mode 

Common value Common value Common value Common value 

Standard deviation Standard deviation Standard deviation Standard deviation 

Ratio of 

range 

(km/h) 

[0,10) 

Ratio of 

range 

(°/s) 

[0,10) 

Ratio of 

range 

(m/s2) 

[0,0.25) 

Ratio of 

range 

(m/s2) 

[0,0.25) 

[10,20) [10,20) [0.25,0.5) [0.25,0.5) 

[20,30) [20,30) [0.5,0.75) [0.5,0.75) 

[30,40) [30,40) [0.75,1) [0.75,1) 

[40,50) [40,50) [1,1.25) [1,1.25) 

[50,60) [50,60) [1.25,1.5) [1.25,1.5) 

[60,70) [60,70) [1.5,1.75) [1.5,1.75) 

[70,80) [70,80) [1.75,2) [1.75,2) 

[80,90) [80,90) [2,2.25) [2,2.25) 

[90,100) [90,100) [2.25,2.5) [2.25,2.5) 

- [100,∞) [2.5,∞) [2.5,∞) 

In order to discuss the influence of the feature parameter set on the driving style 

recognition result, we built a driving style recognition model using 63-dimension statisti-

cal feature parameters using the same method in Figure 8. The number of input layer 

nodes is the same as the dimension of feature parameters, and the number of output layer 

nodes is the same as the number of driving style levels. Due to the reduction of input 

feature parameters, the number of nodes in the input layer of this model is reduced to 63. 

However, since the driving behavior is still divided into five levels according to Figure 7, 

the number of nodes in the output layer remains unchanged. The number of nodes in the 

input layer is reduced, and the complexity of the model solution is reduced, so we redefine 

the number of nodes in the hidden layer to 10. Compared with the model in Figure 8, the 

complexity of the new model is reduced, and the computing resources occupied are re-

duced. The parameters of the two driving behavior recognition models are shown in Table 

2. 

Using the statistical parameters model and the 63-dimension statistical parameters of 

4563 driving behavior fragments for driving style recognition, 4248 fragments can be cor-

rectly recognized, as shown in Table 3. Compared with the joint analysis parameter sets 

model, the number of correct recognition fragments is reduced by 169. Most of the 169 

driving behaviors with recognition errors are level 1, level 2, and level 3. In our opinion, 

the reason for the recognition error is that their statistical parameters are close to each 

other, and the subtle differences between driving behaviors in level 1 to level 3 cannot be 

distinguished. 
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Table 3. Comparison of models and results. 

Comparison Item Joint Distribution Parameters Sets Statistical Parameters 

Dimensions 383 63 

Models 

Input layer 383 63 

Hidden layer 20 10 

Output layer 5 5 

Results 

Number of ac-

curately identi-

fied fragments 

4417 4248 

Recognition ac-

curacy 
96.8% 93.1% 

The focus of this paper is to use new joint distribution feature parameters to represent 

driving behavior, instead of conventional statistical parameters, and to build a driving 

style recognition model based on these new parameters. We use the BP neural network 

algorithm because the BP algorithm has a strong generalization ability. Furthermore, the 

new joint distribution feature parameters can be applied to other modeling algorithms, 

such as SVM, random forest, Tri-CatBoost, ELM, etc. 

It should be noted that we need to extract the joint distribution characteristic param-

eters from NEV high-frequency big data, so the method in this paper is not suitable for 

the low-frequency real-time big data currently being collected by the new energy vehicle 

industry in China. In addition, NEV high-frequency big data requires much higher stor-

age equipment and computing resources than low-frequency data. 

5. Conclusions 

Driving behavior has an impact on safety, energy consumption, and battery life. A 

deep understanding of driving style will have important guiding significance for the in-

novative development of new energy vehicles. This paper studies a NEV driving style 

recognition model relying on high-frequency big data, and extracts the joint distribution 

characteristic parameters of different data types, which can more fully reflect the temporal 

and spatial characteristics of driving behavior. The model has been tested with real-world 

driving segment data, and the accuracy can reach 96.8%. 

Next, we will expand the sample size of driving fragments and analyze the correla-

tion between the driving style and energy consumption of NEV in order to improve the 

quality of research results and clarify the impact of driving style on energy consumption. 
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