
Article

Study on Capacity Estimation Methods of Second-Life
Application Batteries

Linkang Ma 1, Caiping Zhang 1,*, Jinyu Wang 1, Kairang Wang 2 and Jie Chen 1

����������
�������

Citation: Ma, L.; Zhang, C.; Wang, J.;

Wang, K.; Chen, J. Study on Capacity

Estimation Methods of Second-Life

Application Batteries. World Electr.

Veh. J. 2021, 12, 163. https://doi.org/

10.3390/wevj12040163

Academic Editor: Joeri Van Mierlo

Received: 12 July 2021

Accepted: 3 September 2021

Published: 26 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 National Active Distribution Network Technology Research Center, Beijing Jiaotong University,
Beijing 100044, China; 19121474@bjtu.edu.cn (L.M.); 18117023@bjtu.edu.cn (J.W.); 19121416@bjtu.edu.cn (J.C.)

2 State Grid Wind-Photovoltaic-Energy Storage Hybrid Power Generation Technology Laboratory, State Grid
Jibei Electric Power Research Institute, Beijing 100045, China; dkycw2222@aliyun.com

* Correspondence: zhangcaiping@bjtu.edu.cn

Abstract: For the capacity estimation problem of cells in series-retired battery modules, this paper
proposed three different methods from the perspective of data-driven, battery curve matching and
recession characteristics for different applications. Firstly, based on the premise that the battery
history data are available, the features of the IC curve are selected as input for the linear regression
models. To avoid multicollinearity among features, we apply a filter-based feature selection method
to eliminate redundant features. The results show that the average errors with Multiple Linear
Regression are within 1.5%. Secondly, for the situation with a lack of historical operating data, the
battery-curve-matching-based method is proposed based on the Dynamic Time Warping algorithm.
This method could achieve the curve matching between the reference cell and target cell, and then
the curve contraction coefficients can be obtained. The result shows that the method’s average error
is 2.34%. Thirdly, whereas the tougher situation is that only part of the battery curve is available,
we present a substitute method based on the battery degradation mechanism. This method can
estimate most of the battery plant capacity through the partial battery curve. The result shows that
the method’s average error is within 2%. Lastly, we contrast the applicability and limitations of every
method based on the retired battery test data after deep cycling aging.

Keywords: state of health; echelon use battery; capacity estimate

1. Introduction

The retired LIBs usually retain 70–80% of their original capacity. Scrapping and directly
recycling is a huge waste of resources. The retired LIBs can be used in charging stations,
communication base stations, mobile charging cars, low-speed EVs, energy storage systems
(ESSs), and other applications with lower performance after assessment and sorting. Thus,
they have considerable economic and environmental value. The reuse of retired LIBs is
called echelon utilization [1] or second-life application. The second-life application can
extend the service life of LIBs, maximize the value of the life cycle and reduce the running
cost. It can also alleviate the recycling pressure caused by large-scale LIB retirement and
reduce the total development and utilization of raw materials for LIBs [2]. Due to the
difference in aging characteristics and the increasing inconsistency of batteries in long-
term service and varying operating conditions, not all LIBs can be used in second-life
application. Thus, the battery performance evaluation before second-life application is
very necessary. The state of health estimation methods of the LIBs can be divided into four
types at present. The first method is to measure directly. The performance parameters,
such as battery capacity, can be obtained by full-charge or discharge, and the resistance
can be obtained through the Hybrid Pulse Power Characterization test [3]. Further, the
origin voltage or current signals can be transferred to ICA and DVA, which can express
battery aging characteristics and state feature obvious [4]. The model-based method
can represent the dynamic characteristics of LIBs in different aging stages and different
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current excitation. Several common battery models include electrochemical models, and
equivalent-circuit models often contain a large number of parameters, which may have a
strong dependence on battery capacity. The dynamic model parameters can be obtained
through some observers, such as the multi-scale extended Kalman filter [5], the particle filter
(PF) [6] and the nonlinear predictive filter [7]. However, it is difficult to establish an accurate
model for retired batteries, as testing cost and parameters differed considerably. The data-
driven methods are based on battery historical data, and some machine learning (ML) or
artificial intelligence (AI) algorithms are used to estimate SOH by learning the relationship
between features of battery operation data (V, I, T) and battery SOH (capacity, resistance,
energy). The method has become more and more popular for its flexibility and the great
nonlinear curve fitting capability. Those methods include linear regression (LR) [8], support
vector machine (SVM) [9], Gaussian process regression (GPR) [10], artificial neural network
(ANN) [11] and some deep-learning algorithms [12]. Contrastingly, the historical operating
data before the decommissioning interface of the retired battery is usually unknown and
the aging characteristics of second-use batteries are different due to different operating
conditions, which bring difficulties to the capacity estimation of the battery. Methods for
obtaining additional test data to quickly and accurately evaluate the battery capacity when
no historical monitoring data for retired LIBs are available is the key to achieving battery
second-life application.

In this paper, we take the retired LFP battery modules as the research object. Given
the fast estimation of the cell capacity, three estimating methods that need small batch data
are proposed to achieve the fast estimation capacity of retired batteries. First, the IC curve
is derived and the peak area value is extracted as a capacity feature. Then, the filter method
is selected to choose the key features and the linear regression is applied to estimate the
capacity. Through this method, the battery capacity can be evaluated with some sampling
data. Furthermore, for batteries that do not have historical monitoring data, we present a
battery-curve-matching method and a degradation-mechanism-based method to estimate
the capacity. The curve-matching method obtains the curve-matching relation between the
reference cell and target cell. Then, the contraction coefficients can be obtained through
calculating the slope of the warping path, then the capacity can be easily estimated. The
degradation-mechanism-based method can estimate the capacity through the changes of
the partial battery curve; compared to the above methods, it needs a narrower common
voltage range in the module. The effectiveness of the proposed methods has been validated
through experimentation.

The remainder of this paper is structure as follows: Section 2 gives a brief introduction
of the experiment platform and test produced. Section 3 describes the ICA method, the prin-
ciples of linear regression and the capacity estimation framework for retired LIBs. Section 4
introduces the principles of the dynamic time warping algorithm and the curve-matching-
based method is proposed. The final part of this section describes some interesting decay
trends of LFP cells, and the mechanism-based method is purposed. Experimental results,
validation, and discussion are in Section 5; Section 6 offers a conclusion.

2. Experiment Setup

In this study, six retired LFP battery modules are obtained from an electric bus. Each
battery module consists of 8 series-connected battery cells, the rated capacity is 200 Ah,
and the rated voltage is 25.6 V. The decommissioning interface rated capacity of the battery
module is 150 Ah. As shown in Figure 1, the experiment platform is composed of an Arbin
BT-2000 module tester and a cell tester. The Arbin BT-2000 module tester can charge or
discharge up to 100 A, with a maximum voltage of 60 V. All of the test was conducted in a
constant temperature (25 ◦C) in a DGBELL temperature cabinet with high precision. The
cell tester can charge or discharge with a maximum voltage of 5 V and a maximum of 20 A.
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Figure 1. Battery pack test platform.

To obtain battery pack and cell decommissioning interface performance, the mod-
ule level and cell level battery performance test was conducted. The battery packs are
charged/discharged with constant currents: (1) charge at 0.1 C (15 A) until any cell’s
voltage reaches 3.65 V, then it rests for 1 h; (2) discharge at 0.1 C until any cell reaches
2.5 V, then its rests for 1 h. In the cell capacity tests, the cells are charged/discharged
with the same current rate (0.1 C) as the battery module, and the cut off voltages for the
charge/discharge processes are 3.65 and 2.5 V, respectively. Between charge and discharge
regimes, batteries are set to rest for 1 h. Batteries are cycled three times and the charge
capacities of batteries in the second cycle are considered to be the maximum available
capacities. In order to get battery module cycling aging data, two retired modules are
selected to carry out the cycle life tests under the peak shaving operating condition. In this
condition, the battery state of charge (SOC) operates in the range of 10–90%. The packs are
charged/discharged with constant currents. The charge current rate is 3/8 C (56 A) and
the discharge rate up to 1/2 C (75 A). We conduct the cell performance test and module
performance test after the 1000th cycle; the test processes are the same as above. Owing
to the fact that one module expanded after the 700th cycle, the cycle life test for it was
aborted. Through the battery test, we get the 48 cells’ interface capacity data, the 8 aged
cells’ capacity data, module interface capacity data and aged capacity test data. Some of
the cells’ interface capacity data are shown in Figure 2. The capacity is varied in those
retired cells, the maximum capacity is 213.34 Ah, the minimum capacity is 147.8 Ah, the
range is 65.5 Ah and the standard deviation is 19.34 Ah.
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3. IC-Features-Based Method

The causes of capacity decline in an LFP battery can be roughly divided into active
material loss, lithium-ion inventory loss, and internal resistance increase [13]. These decay
processes are difficult to obtain directly from the charge–discharge curve. The IC curve
can transform the voltage plateau on the original V–Q curve into redox peaks that are
easy to analyze and identify. Then, the degradation of each part of the battery curve
can be characterized by the characteristic information of each peak. The corresponding
relationship between the IC curve and the V–Q curve of an LFP battery is shown in Figure 3.
The voltage platform of the battery shows five characteristic capacity peaks on the IC curve.
The area of each peak can represent the capacity of each platform on the battery curve, and
the position changes of the peak can represent the change of the internal resistance of the
battery. From the shape of the IC curve, it can be found that most of the capacity of the
battery is located in the platform area of the battery, and the fast polarization section at
both ends accounts for a small proportion.

World Electr. Veh. J. 2021, 12, x FOR PEER REVIEW 4 of 16 
 

 
Figure 2. Interface capacity of retired LFP batteries. 

3. IC-Features-Based Method 
The causes of capacity decline in an LFP battery can be roughly divided into active 

material loss, lithium-ion inventory loss, and internal resistance increase [13]. These decay 
processes are difficult to obtain directly from the charge–discharge curve. The IC curve 
can transform the voltage plateau on the original V–Q curve into redox peaks that are easy 
to analyze and identify. Then, the degradation of each part of the battery curve can be 
characterized by the characteristic information of each peak. The corresponding relation-
ship between the IC curve and the V–Q curve of an LFP battery is shown in Figure 3. The 
voltage platform of the battery shows five characteristic capacity peaks on the IC curve. 
The area of each peak can represent the capacity of each platform on the battery curve, 
and the position changes of the peak can represent the change of the internal resistance of 
the battery. From the shape of the IC curve, it can be found that most of the capacity of 
the battery is located in the platform area of the battery, and the fast polarization section 
at both ends accounts for a small proportion. 

 
Figure 3. IC curve and V−Q curve of LiFePO4 battery. 

Figure 3. IC curve and V−Q curve of LiFePO4 battery.



World Electr. Veh. J. 2021, 12, 163 5 of 16

In order to explore the aging characteristics of retired batteries, we obtained the cycle
aging data of second-life application battery packs under laboratory conditions. Then, a
cell in the battery pack was selected to analyze its IC curve decay trend, and the battery
IC curves under different cycle conditions are shown in Figure 4. The decline of the cell
can be characterized by the obvious decline of the first peak and the decline of the second
peak on the IC curve. However, the other positions are basically unchanged or change
little. Therefore, the conjecture that the capacity decline of the battery is dominated by
peak 1© and peak 2© is proposed, which brings inspiration to feature selection based on the
IC curve. In this paper, the IC peak area (PA) characteristics of each cell were extracted,
and the correlation scatter diagram and correlation thermodynamic diagram (Figure 5a)
were drawn based on the initial performance test data of a batch of retired batteries. From
the correlation scatter diagram, we can find that PA 1© and PA 2© have a strong linear
correlation with battery capacity, while PA 5© has a weak correlation with battery capacity.
In the meantime, there is a strong correlation between PA 2© and PA 5©, which will be
discussed in detail in Section 4. In order to quantitatively describe the correlation between
the features and battery capacity, Pearson correlation coefficient was introduced. The
correlation coefficient between battery capacity and the features of IC curves is calculated
using Equation (1):

ρX,Y =
cov(X, Y)

σXσY
=

E((X− µX)(Y− µY))

σXσY
(1)

where X and Y represent two sets of data, cov(X, Y) represent the covariance between X
and Y, and σX and σY represent the standard deviation of two sets. E represent mathe-
matical expectation and µX, µY represent the mean value of each set. The results of the
correlation coefficient between the battery capacity and features of IC curves and the coeffi-
cient between features are presented as a variable correlation heatmap in Figure 5b. The
results show that PA 1© has a strong linear correlation with capacity, PA 2© has a moderate
correlation with capacity, and PA 5© only has a weak correlation with capacity. Besides,
PA 2© and PA 5© show obvious collinearity, which should be avoided. Considering the IC
curve decay trend as shown in Figure 4, PA 2©may decrease obviously in the recirculation
test, and there is no clear correlation between PA 1© and PA 2©. PA 1© and PA 2© are
selected for regression.

World Electr. Veh. J. 2021, 12, x FOR PEER REVIEW 5 of 16 
 

In order to explore the aging characteristics of retired batteries, we obtained the cycle 
aging data of second-life application battery packs under laboratory conditions. Then, a 
cell in the battery pack was selected to analyze its IC curve decay trend, and the battery 
IC curves under different cycle conditions are shown in Figure 4. The decline of the cell 
can be characterized by the obvious decline of the first peak and the decline of the second 
peak on the IC curve. However, the other positions are basically unchanged or change 
little. Therefore, the conjecture that the capacity decline of the battery is dominated by 
peak ① and peak ② is proposed, which brings inspiration to feature selection based on 
the IC curve. In this paper, the IC peak area (PA) characteristics of each cell were extracted, 
and the correlation scatter diagram and correlation thermodynamic diagram (Figure 5a) 
were drawn based on the initial performance test data of a batch of retired batteries. From 
the correlation scatter diagram, we can find that PA ① and PA ② have a strong linear 
correlation with battery capacity, while PA ⑤ has a weak correlation with battery capac-
ity. In the meantime, there is a strong correlation between PA ② and PA ⑤, which will 
be discussed in detail in Section 4. In order to quantitatively describe the correlation be-
tween the features and battery capacity, Pearson correlation coefficient was introduced. 
The correlation coefficient between battery capacity and the features of IC curves is calcu-
lated using Equation (1): 

,
(( )( ))cov( , ) X Y

X Y
X Y X Y

E X YX Y μ μρ
σ σ σ σ

− −= =  (1) 

where X and Y  represent two sets of data, cov( , )X Y  represent the covariance be-
tween X  and Y , and Xσ and Yσ  represent the standard deviation of two sets. E  

represent mathematical expectation and Xμ , Yμ  represent the mean value of each set. 
The results of the correlation coefficient between the battery capacity and features of IC 
curves and the coefficient between features are presented as a variable correlation 
heatmap in Figure 5b. The results show that PA ① has a strong linear correlation with 
capacity, PA ② has a moderate correlation with capacity, and PA ⑤ only has a weak 
correlation with capacity. Besides, PA ② and PA ⑤ show obvious collinearity, which 
should be avoided. Considering the IC curve decay trend as shown in Figure 4, PA ② 
may decrease obviously in the recirculation test, and there is no clear correlation between 
PA ① and PA ②. PA ① and PA ② are selected for regression. 

 
Figure 4. IC curve decay trend. 

Since the battery IC features have a linear correlation with the battery capacity and a 
limited sample size, the binary linear regression models are very well suited to capacity 

Figure 4. IC curve decay trend.



World Electr. Veh. J. 2021, 12, 163 6 of 16

World Electr. Veh. J. 2021, 12, x FOR PEER REVIEW 6 of 16 
 

estimation, and the univariate linear regression is for comparison. Normally, a linear 
model has the following form: 

0
1

( )
n

j j
j

f X Xβ β
=

= +  (2) 

where X is the input variable for the predictor, and β  is called the coefficient. If n > 1, 
the regression is called the multivariate linear regression model. Each 

1 2( , , ..., )j j j j pX x x x= is a vector of feature. The common parameter estimation method 
is the least square method; through this method, we can estimate the parameter 

0 1( , , ..., )Tnβ β β β= from the train set 1 1( , )...( , )n nx y x y  through the follow equation: 

1( )T TX X X Yβ −=  (3) 

 
Figure 5. Correlation scatter diagram (a) and correlation thermodynamic diagram (b). 

In this paper, we avoid the multicollinearity problem by applying a feature filter 
method. So, we can get the coefficient by Equation (3). The model is trained based on forty 
batteries’ retirement interface capacity test data, and the other eight cells are for model 
validation. The capacity characteristic decision surface of the binary regression model is 
shown in Figure 6. 

 
Figure 6. Capacity characteristic decision surface. 

4. Capacity Estimation Method Based on Partial Battery Curve 
4.1. Curve-Matching-Based Method 

Figure 5. Correlation scatter diagram (a) and correlation thermodynamic diagram (b).

Since the battery IC features have a linear correlation with the battery capacity and a
limited sample size, the binary linear regression models are very well suited to capacity
estimation, and the univariate linear regression is for comparison. Normally, a linear model
has the following form:

f (X) = β0 +
n

∑
j=1

Xjβ j (2)

where X is the input variable for the predictor, and β is called the coefficient. If n > 1, the
regression is called the multivariate linear regression model. Each Xj = (xj1, xj2, . . . , xj p) is
a vector of feature. The common parameter estimation method is the least square method;
through this method, we can estimate the parameter β = (β0, β1, . . . , βn)

T from the train
set (x1, y1) . . . (xn, yn) through the follow equation:

β = (XTX)
−1

XTY (3)

In this paper, we avoid the multicollinearity problem by applying a feature filter
method. So, we can get the coefficient by Equation (3). The model is trained based on forty
batteries’ retirement interface capacity test data, and the other eight cells are for model
validation. The capacity characteristic decision surface of the binary regression model is
shown in Figure 6.
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4. Capacity Estimation Method Based on Partial Battery Curve
4.1. Curve-Matching-Based Method

The loss of lithium inventory and the loss of active materials will not affect the
full-cell voltage curve in the full life cycle of the cell. Even the retired battery can still
maintain the shape invariance of the full-cell voltage curve [14]. Based on this assumption,
we can compare the voltage curve difference between the aging battery and the new
battery by the curve-matching method. The Dynamic Time Warping Algorithm (DTW)
is often used in audio processing. The algorithm obtains the best matching relationship
between two sequences and the corresponding warping path through the idea of dynamic
programming [15]. Two signals with equivalent features arranged in the same order can
appear very different due to differences in the durations of their sections. DTW distorts
these durations so that the corresponding features appear at the same location on a common
time axis, thus highlighting the similarities between the signals.

The general steps of the DTW algorithm can be explain as follows:
Consider the two 1-dimensional signals,

X = [x1, x2, . . . , xm] (4)

Y = [y1, y2, . . . , yn] (5)

dmn(X, Y) is the distance between the mth sample of X and the nth sample of Y. For
the one-dim series, the dmn(X, Y) is the absolute value of the difference of two points.
The algorithm, firstly to distance, stretches X and Y onto a common set of instants such
that a global signal-to-signal distance measure is smallest. Initially, the function arranges
all possible values of dmn(X, Y) into a lattice of the form. Then, distance looks for a
path through the lattice—parameterized by two sequences of the same length such that

d =
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dmn(X, Y) is the minimum and the distance paths start at d11 and end at dmn must

follows the principles below:

• Vertical moves: (m,n)→ (m + 1, n);
• Horizontal moves: (m,n)→ (m, n + 1);
• Diagonal moves: (m,n)→ (m + 1, n + 1).

This structure ensures that any acceptable path aligns the complete signals, does not
skip samples and does not repeat signal features. Additionally, a desirable path runs close
to the diagonal line extended between d11(X, Y) and dmn(X, Y).

The battery-curve-matching example is shown in Figure 7. The reference sequence is a
longer battery charge curve and the object sequence is a shorter one. Additionally, the DTW
algorithm can find the best match between the reference and object through the translation,
rotation and scale of the shorter sequence. Then, the warping path is obtained and the cell
capacity scaling coefficient can be calculated form the slope of it as Figure 8 shows.

With this method, the scale coefficient of the voltage curve can be obtained by compar-
ing two battery charging or discharging curves, and then the capacity shrinkage coefficient
of the battery (platform area) can be obtained, which can help achieve the estimation of
battery capacity. In order to obtain the expansion coefficient of the platform area, a simple
linear fitting was used to obtain the slope corresponding to the warping path, which is
shown in Figure 7. This slope is approximately the platform area expansion coefficient of
the target battery relative to the reference battery, and the capacity of the target battery can
be obtained by the following formula:

Qest = Qre f erence × K (6)

In this formula, Qest is the target battery capacity estimation, Qre f erence is the reference
battery capacity, and K is the slope of the warping path.
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4.2. Battery Decay Mechanism-Based Method

DuBarry et al. [16] proposed an LIB health state estimation method based on the
half-battery curve, which is based on the fact that the full-battery curve of the battery can
be obtained by the superposition of positive and negative half-battery curves. This method
could realize the simulation of the battery charging curve under different aging modes by
analyzing the changes of positive and negative half-battery curves. Based on this method,
the causes and performance of battery degradation can be further subdivided, and the
basic mode of it can be inferred according to the change of battery IC curve. According
to the degradation trend of this batch of batteries and the conclusion obtained from the
analysis in Reference [17], the degradation of batteries can be explained as follows:
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For the LFP battery, the main reason for the initial decline of the battery is the lithium-
ion loss. The effect of negative electrode material loss on the battery can be ignored, as
the battery has an excess of negative electrodes. In this stage, the decline of the cell can be
represented as the fast decline of peak 1©When the peak 1© declines to a certain extent,
the negative electrode material decline will have a significant influence on battery capacity.
The contraction of the negative half-cell curve will affect all voltage platforms, especially
the proportional contraction of the 5©- 2© platform. At this time, the decline of the battery
will be accelerated to a certain extent, and the dominant factor of the decline will be the
combination of the loss of negative electrode material and the loss of a lithium ion.

Based on the analysis above, the degradation of a battery can be simply characterized
by two parts. The first part is the capacity change of the high platform of the battery, and
the other is the capacity change of the 5©- 2© platform dominated by the negative electrodes
of the battery. Therefore, all the capacity changes of the negative dominant platform can
be quantitatively obtained only by the change proportion of peak 2©. This conclusion
can be proved by the green mark in Figure 5. Figure 5 shows that there is a strong linear
relationship between PA 5© and PA 2©. Figure 9 compares the ratio of the PA 2© area of the
battery and the capacity of the negative platform area, proving the positive proportional
relationship between them. Thus, the capacity change of the anode leading platform can be
evaluated by the area change of the main peak. According to this, the capacity estimation
method proposed in this paper can be expressed as follows:

Qest = Q5_2 + Q1 + Qhigh (7)
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In Equation (7), Q5_2 is the IC peak area corresponding to the negative leading plat-
form, Q1 is the area corresponding to PA 1©, and Qhigh is the area corresponding to the
high polarization section. Q5_2 can be further expressed as:

Q5_2 =
Q2

Q2_re f erence
×Q5_2_re f erence (8)

In Equation (8), Q2 is the PA 2© of the cell that is to be estimated, Q2_re f erence is the
PA 2© of the reference battery, and Q5_2_re f erence is the area corresponding to the leading
platform of the negative electrode of the reference battery.

It is necessary to estimate the complete PA 1© according to the incomplete peak area
data, as the PA 1© of the battery to be estimated may be incomplete. In this paper, we
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estimate the complete peak area by using the ratio of the incomplete part area to the part of
the reference battery corresponding to the same voltage interval (peak area) based on the
approximate invariance of battery peak width and the similarity principle. The step can be
represented as follows:

Q1 =
Q1_part

Q1_part_re f erence
×Q1_re f erence (9)

In Equation (9), Q1 is PA 1© for the battery to be estimated, Q1_part is the measured
part of PA 1©, Q1_part_re f erence is the part of PA 1© corresponding to the reference battery,
and Q1_re f erence is the full PA 1© of the reference battery.

To analyze the proportion of each part capacity, this paper plots the IC curve of a
retired battery, as shown in Figure 10. This part of the high part capacity (Qhigh, blue)
occupies a small part of the battery capacity and changes a little, which can be considered
a fixed value. With this method, after obtaining the complete charge (discharge) curve of a
reference battery in the module, the capacity of the remaining cell and the cell after cycle
aging can be estimated.
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5. Results and Discussion

In order to verify the effectiveness of the proposed methods, another set of battery
pack data outside the training set is taken as the verification set. In this paper, there are two
battery verification sets: the first is the interface capacity set of the model and the other
is the aged battery pack capacity data set. The cell capacity data set is shown in Table 1.
To ensure data consistency, we use the same validation data to verify the accuracy and
efficiency of different methods.

Table 1. The cell capacity of verification set.

Cycle 0 1000

1# 174.0 Ah 153.7 Ah
2# 179.6 Ah 143.5 Ah
3# 166.8 Ah 143.4 Ah
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Table 1. Cont.

Cycle 0 1000

4# 176.2 Ah 147.5 Ah
5# 193.5 Ah 139.1 Ah
6# 186.9 Ah 150.1 Ah
7# 171.7 Ah 156.2 Ah
8# 170.7 Ah 155.8 Ah

For the data-driven method, we extract the PA 1© and PA 2© features from module
capacity test data, and the cell capacity test results are for error analysis. The battery
capacity estimated results, and the estimate errors are shown in Figure 11. It can be found
that the binary regression model has a better estimation effect compared to the single-
element regression model. The result shows that the maximum relative error of the binary
regression model is 5%, and the average error is within 1.5% while the single-element
regression model error is 6.8%. This is because the retired battery often has different ageing
characteristics. In this paper, the single-element regression model only focuses on PA 1©,
which represents the LLI of the battery and ignores the impact of the loss of active material.
For the data set after 1000 cycles, the estimated results and the estimate error are shown
in Figure 12. The estimation error is larger than the result before the aged data, and the
average error is 3.66%. This is because PA 5© and PA 3©– 4© in the IC curve also show a
significant decline with the deepening of battery ageing, and the binary regression model
does not consider this impact.
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In a word, the binary regression model can quickly evaluate the retired capacity in
different aging states without relying on the complete battery curve data, but the method
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needs data to train the model, so it is difficult to apply when there is not enough initial
battery training data.

For the curve-matching-based method, we select the #5 cell in the battery pack as the
reference battery, and the reference charge curve is extracted. Because the cell charge curve
is incomplete, we extract the common cell voltage range, which is about 3.25 to 3.4 V. Then,
the platform area expansion coefficient is obtained. The estimated results and the relative
error based on interface data are shown in Figure 13. The estimation results show that
the method has a general fitness for the battery capacity estimation in this module. The
average error is within 2.5%. However, the maximum relative error is up to 11%. In order
to find the error source, we get the warping path (Figure 14) and the IC curve (Figure 15).
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We find that the warping path is more winding and the IC curve is partly mismatched.
It says that the battery curve deformation is obvious. Furthermore, the IC peak

position moves to the high-voltage side and the repaid-polarization area is much bigger
than the other cell. These two factors are the main error sources because we regard the
repaid-polarization area as an approximately invariant value. The estimated results and the
relative error based on aged data are shown in Figure 16. The estimation error is also larger
than the result before the aged data. The average error is 4.19%. This result indicates that
the inconsistency of battery curve shape is more and more obvious with the degradation of
retired batteries. The difference based on aging characteristics tended to be wider.
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For the decay mechanism-based method, the #5 cell in the battery pack as the reference
battery and Q2_re f erence, Q2_re f erence and Q1_re f erence is obtained from the cell capacity test.
The estimated results and the relative error based on the interface data are shown in
Figure 17. The maximum relative error is within 5%, and the average error is within 2%.
For the aged batteries, the maximum relative error is 6.7%, and the average error is within
3.2% (Figure 18). The reason for the larger error of estimation of 5# (after 1000 cycles) is
that the high part capacity of the battery is increasing significantly.
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To compare the performance of three different battery capacity estimation methods,
this paper gets an error statistics table for three methods, as shown in Table 2. It can be
found that the method of multivariate linear regression has the minimum average error
and then the degradation-mechanism-based method. The performance is approximately
the same between MLR and the degradation-mechanism-based method from the facet of
average error. The accuracy of the method of one-dimensional regression is the worst, and
the results of the curve similarity method are also relatively general.

Table 2. Error statistics table for three methods.

Method Maximum Error (%) Average Error (%)

Cycle 0 1000 0 1000
MLR 5.0 6.6 1.38 3.65
LR 6.8 20 3.3 12.0

Curve-matching 11.0 8 2.34 4.2
Mechanism-based 4.4 6.7 1.57 3.15

From the aspect of possibility and practicability, the multiple regression method is
a data-driven method, which needs a model pre training. Therefore, it may be difficult
to implement under some historical data missing conditions. The other methods do not
rely on historical data. As long as the complete charge and discharge data of a battery
are obtained, the single battery in series can be quickly evaluated. However, the battery
platform area curve that needs to be matched must be complete. In actual situations, it
is also difficult to obtain a complete charging section due to the differences in battery
consistency and operating conditions. At the same time, the mechanism-based method
does not require a large amount of historical data. It also does not require complete charging
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data of the aged battery. To sum up, the degradation-mechanism-based method has the
advantages of small calculation amount, low data dependence and strong applicability, so
it is very suitable for the capacity estimation of retired batteries. Future work will focus on
battery pack capacity estimation and the regularity of consistency changes based on the
capacity estimation methods and battery pack cycle data.

6. Conclusions

This work focuses on the estimation of the capacity of retired LFP batteries. Six LFP
retired battery modules were selected to conduct a performance test, and two of them were
selected to conduct a cycle life test under peak shaving operating conditions. Based on the
test data, we propose three different methods to estimate the battery capacity. The first
method is the IC-feature-based data-driven method and the other is based on the partial
battery curve, which does not rely on historical data. After validation and discussion, the
main conclusions can be summarized as follows:

1. When historical data are available, the data-driven method based on battery capacity
features is still a good choice for retired battery capacity estimation, but attention
should be paid to feature selecting in the modeling process to make the method
suitable for batteries with deep aging degree.

2. When there is little or no historical data, the method based on curve matching pro-
posed in this paper can realize the rapid estimation of battery capacity. However,
the estimation accuracy of battery algorithms with a large aging difference may be
reduced to a certain extent.

3. Finally, the capacity estimation method based on the charging voltage segment men-
tioned in this paper can estimate most of the capacity by extracting voltage segment
information. This method has stronger applicability than the DTW algorithm. So, the
mechanism-based method can be used to estimate the capacity under some energy
storage conditions.
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Nomenclature

LFP LiFePO4
DVA Differential voltage analysis
DTW Dynamic Time Warping
EVs Electric Vehicles
SOH State of Health
LIBs Lithium-ion battery
ICA Incremental capacity analysis
ESSs energy storage systems
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