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Abstract: The new energy of concrete truck mixers is of great significance to achieve energy conser-
vation and emission reduction. Unlike general-purpose vehicles, in addition to driving conditions,
upper-mixing system conditions, operation scenarios, and variable loads are the key factors to be
considered during the new energy of concrete truck mixers. This study focuses on the machine-
learning-based approximate optimal energy management design for a concrete truck mixer equipped
with a novel extended-range powertrain from two aspects: trip information and energy management
strategy. Firstly, an optimal control database is constructed, which benefits from a global optimization
algorithm with dimension reduction for the constrained time-varying two-point boundary value
problems with two control variables, and the driving data analysis through machine learning and
data-driven methods. Then, different machine-learning-based driving condition identifiers are con-
structed and compared. Finally, a vehicle mass and power demand of an upper-part system based
novel neural network energy management strategy is designed based on a constructed optimal
control database. Simulation results show that the intelligent optimization algorithm based on the
ML of trip information and energy management is an appropriate way to solve the online energy
management problem of the concrete truck mixer equipped with the proposed novel powertrain.

Keywords: concrete truck mixer; hybrid powertrain; multi-source; energy optimization; machine
learning

1. Introduction

Currently, the drive for hybridization is still an effective solution to improve fuel econ-
omy [1,2], especially for medium or heavy commercial vehicles. Powertrain configuration,
system modeling, and energy management strategies are the key factors for hybridiza-
tion [3]. This research is committed to solving the problem of improving the fuel economy
of concrete truck mixers (CTMs). At present, most of the CTMs on the road are traditional
vehicles. There are a few hybrid or pure electric structures [4,5] which only aim at the upper
mixing system or CTMs with small agitation capacity, respectively. Different from the
general-purpose vehicles, the concrete truck mixer has the characteristics of significantly
variable vehicle mass during a trip, multi-operation scenarios, a dual energy source and
dual energy consumption source, and time-varying double driving conditions including
a vehicle driving system and an upper mixing system, which means existing technology
cannot be directly used for CTMs. Thus, it is necessary to explore the methods to improve
fuel economy for such a multi-source high coupling system.

The performance of CTMs is inseparable from its energy management strategy that
distributes the power demand of energy sources between the dual energy consumption
source, vehicle driving system, and upper mixing system. To achieve better vehicle con-
trol, the development of a real-time energy management strategy has been a matter of
great interest. The main real-time energy management strategies are comprised of a rule-
based strategy [6,7], Pontryagin’s minimum principle (PMP) [8], model predictive control
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(MPC) [9], offline-algorithm derived strategies [10,11], and a neural network (NN) [12,13].
The ultimate goal of real-time energy management strategy design is to obtain the optimal
control solution close to the global optimization method. Generally, this can be achieved by
using two methods: a near-optimal rule-based control strategy based on dynamic program-
ming (DP) [11,14], and a real-time control strategy that applies the NN to learn the results
of DP [15,16]. Due to the characteristics of independence of the model, high efficiency, and
strong self-learning ability, optimal results learning by the NN is more precise and accurate
than artificial induction. The key to constructing a NN is to determine its structure [17],
that is, input and output parameters, the number of hidden layers, and nodes. For the
plug-in hybrid electric vehicle (PHEV), the three basic input parameters— power demand,
energy of energy storage system, and vehicle speed—cannot fully learn the decision rules
contained in an optimal engine output power sequence [15], and thus it is necessary to
design new NN input variables according to the specific situation. Chen proposed a NN
with 11 input parameters for the PHEV [16]. This paper emphasized the importance of trip
information in learning the optimal engine output power sequence. Inspired by [16], Tian
proposed a length ratio based neural network energy management strategy with five input
parameters, which is suitable for limited micro-controller resource usage [18]. However,
due to the characteristics of the CTM equipped with the proposed powertrain, the input
and output parameters used in the above research are not completely suitable, so it is
necessary to design a novel NN structure to improve the learning performance for the
CTM.

The complexity and variability of real-world driving conditions will cause the es-
tablished control strategy to fail to achieve optimal performance [19,20]. To realize the
real-time application based on global optimization, it is a feasible solution to switch the cor-
responding offline model or calculation results through the driving condition identification
methods based on machine learning (ML) [21,22]. Comparing the performance of different
methods to choose the better identification algorithm has a great impact on improving the
performance of an energy management strategy.

Based on the above research, the main purpose of this study is to explore the ML-
based approximate optimal energy management for CTMs equipped with a novel hybrid
powertrain from the two aspects, trip information, and energy management strategy. Firstly,
a global optimization algorithm is proposed to solve the constrained time-varying two-
point boundary value problems with two control variables for CTMs, which consist of two
steps, dimensionality reduction of control variables and dynamic programming efficient
application. Then, on that basis, an optimal control database of different driving condition
types is constructed by using machine learning and a data-driven method. Different ML-
based driving condition identifiers are constructed and compared. Finally, a novel neural
network module based on the vehicle mass and power demand of the upper-part system is
designed for predicting engine output power under different typical composite driving
conditions.

This paper is organized as follows: Section 2 describes the proposed powertrain
configuration and model. In Section 3, the global optimization method for the system
is presented. Section 4 introduces the ML technologies in trip information and energy
management strategy. Conclusions are presented in Section 5.

2. Powertrain Configuration and Model

In this work, a novel hybrid powertrain structure is proposed for the concrete truck
mixers, and the characteristics of the structure and system models are presented in the
following.

2.1. Powertrain Specification and System Modeling

As can be found in Figure 1, the novel hybrid powertrain consists of a dual energy
source and dual energy consumption source, including engine and battery, an upper
mixing system, and a vehicle driving system, respectively. The clutch between the engine
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and generator makes the powertrain mode diversified and reliability improved, which
makes the powertrain an extended-range configuration for the vehicle driving system and
a single-axle parallel configuration for the upper mixing system. The driving system can
be propelled by one or both of the batteries and the auxiliary power unit (APU) composed
of engine, clutch, and generator, and the power demand of the upper mixing system is
provided by the engine or generator individually or jointly. Therefore, the CTM studied in
the research is regarded as an extended-range electric concrete truck mixer (E-RE-CTM).
Actually, the proposed powertrain configuration is also applicable to other vehicles with
similar characteristics.
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Figure 1. Powertrain configuration of a CTM.

A CTM with 12 m3 agitator capacity carrying the proposed novel hybrid powertrain
is taken as the research object, and the major parameters of the E-RE-CTM are listed in
Table 1. To realize the E-RE-CTM control, the powertrain models, mainly including the
engine, motor, generator, battery pack, and upper mixing system, are established, and
previous studies are available for details [23].

Table 1. The parameters of the main components for the powertrain [23].

Item Value

E-RE-CTM non-load mass (kg) 15,000
E-RE-CTM full-load mass (kg) 40,500

Li-ion battery pack capacity (Ah) 300
Driving motor maximum power (kW) 350

Hydraulic pump maximum displacement (cm3/r) 90
Hydraulic pump/motor maximum pressure (bar) 420

Generator maximum power (kW) 130
Engine maximum power (kW) 125
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2.2. Energy Optimal Problem Formulation

As for the E-RE-CTM, the core task of energy management control is to realize the
dynamic distribution of dual energy source between dual energy consumption source
within each trip. The energy management control enables the vehicle fuel economy to
improve under the normal operations of the energy consumption sources. According to the
powertrain analysis described in Section 2.1, the system needs to set two control variables.
The output power of the engine and battery, which are given by Pice and Pbatt, respectively,
are selected as control variables. The battery SOC is chosen as a state variable. Aiming
at enhancing the battery recharging ability and improving the vehicle fuel economy, the
energy optimization problem of the E-RE-CTM is formulated as Equations (1)–(3):

J = min

(
N

∑
k=1

L
(

Pice(k), Pe
gen(k), Pe

mot(k), Pup(k), SOC∗
(

k f

)))
(1)

where L(·) can be expressed as:

L
(

Pice(k), Pe
gen(k), Pe

mot(k), Pup(k), SOC(ktar)
)

=
.

m f

(
Pice(k), Pe

gen(k), Pe
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)
+ γ

(
SOC

(
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)
− SOC∗

(
k f

))2 (2)

Combined with the description of Section 2.1, the objective function can be further
formulated as:

J = min

(
N

∑
k=1

.
m f
(

Pice(k), (Pe
mot(k)− Pbatt(k)), Pup(k)

)
+ γ

(
SOC

(
k f

)
− SOC∗

(
k f

))2
)

(3)

where γ is a positive weighting factor, Pe
gen(k) is the electric power of the generator at

time k, Pe
mot(k) means the known disturbance of the vehicle driving system at time k,

Pup(k) is the power demand of the upper mixing system, Pe
mot(k), Pup(k) are system inputs,

and SOC
(

k f

)
, SOC∗

(
k f

)
are the target battery SOC and actual battery SOC in the end,

respectively. N denotes the length of a trip.
N can be calculated by,

N =
T
∆t

(4)

where ∆t is the time step, T means the driving cycle duration. Some other equality or
inequality constraints should be satisfied during the process of calculation, as:

SOC
(

k f

)
≤ SOC(k) ≤ SOC(k0)

PMIN
batt (k) ≤ Pbatt(k) ≤ PMAX

batt (k)

PMIN
ice (k) ≤ Pice(k) ≤ PMAX

ice (k)
Pice(k)− Pup(k)− (Pe

mot(k)− Pbatt(k))·ηgen(k)
−sign(Pm

gen(k)) = 0

(5)

where SOC(k0) is the allowable upper limit of battery SOC, Pm
gen(k) is the mechanical power

of generator at time k, respectively, PMIN
batt (k), PMIN

ice (k), PMAX
batt , and PMAX

ice (k) denote the
upper and lower limits of battery and engine output power at time k, respectively, which
can be calculated by:

PMIN
batt (k) = max

(
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where Pmin
batt , Pmin

ice , Pmax
batt and Pmax

ice mean the allowable power range of corresponding com-
ponents, Cch and Cdis mean the maximum charge and discharge rate of the battery, and
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∆Pice represents the maximum variable rate of the diesel engine out power in unit time and
the value of it is chosen as 15 kW/s. Thus, the change rate of APU generating power is less
than 15 kW/s.

By synthesizing Equations (1)–(6), it can be concluded that the energy optimization
problem of E-RE-CTM belongs to the two-point boundary value problem in the finite time
domain, which has the characteristics of constrained time-varying and double control
variables.

3. Global Optimal Energy Management Strategy

In this section, DP is applied to solve the energy optimization problem of E-RE-CTM.
The total driving cycle known in advance is the premise of using DP [24]. Meanwhile,
due to the iterative calculation of DP, the more complex the problem is, the greater the
computational burden and the more memory utilization as the time increases [25,26]. For
these reasons, as shown in Figure 2, the CTM real-world driving cycle data were collected,
and the DP method with dimensionality reduction is presented, which is divided into two
steps described as follows.
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3.1. Driving Data Obtain

As shown in Figure 2a, a driving cycle of a CTM can be divided into five route
segments, which are charging, transporting, waiting, discharging, and returning. Although
the route segments of the CTM are the same each time daily, each driving cycle datum is
different. The total driving mileage of the CTM is about 120 km per day according to the
survey and real-world driving cycle data. Figure 2b shows the CTM real-world driving
cycle data collected in eight days in Beijing by using a vehicle data recorder. The data of
the first seven days are utilized as sample library construction and that of the last day is
used for testing [27].

3.2. Dynamic Programming to Solve the Optimization Problem

Step 1: To achieve lower complexity and memory utilization in the solution process, it
is necessary to reduce the dimension of control variables. In this work, by designing an
optimal efficiency curve of the generator in driving mode, the two-point boundary value
problem in the finite time domain with two control variables described in Section 2.2 is
transformed into the single control variable problem. The optimal efficiency curve of the
generator in driving mode is shown in Figure 2c, and the generator efficiency model of the
powertrain is described as:

ηgen(k) =


η1

gen

(
Pm

gen(k)
)

, Pe
gen(k) ≥ 0

η2
gen

(
Pm

gen(k)
)

, Pe
gen(k) < 0, Pice(k) = 0

η3
gen

(
Pm

gen(k), nice(k)
)

Pe
gen(k) < 0, Pice(k) 6= 0

(7)

According to the equality constraint in Equation (5), once the generator efficiency
ηgen is determined, the engine output power Pice or the battery output power Pbatt can
be selected as a single control variable to solve the problem. Since the engine and the
generator are coaxially connected, the speed is the same. Therefore, the objective function
can be formulated with the selected only control variable Pice in this work, as:

J = min

(
N

∑
k=1

.
m f (Pice, nice) + γ

(
SOC

(
k f

)
− SOC∗

(
k f

))2
)

(8)

Step 2: It is realized for the DP method to minimize the total fuel consumption of
the E-RE-CTM and enhance the recharging ability of the battery over the given driving
conditions in MATLAB. The schematic diagram of the DP process is shown in Figure 2d.
Driving cycle time is divided into N stages. The control variable and state variable are
Pice and battery SOC, respectively. si

k means the i th state at stage k. The cost-to-go is the
objective function J in Equation (8). For the detailed implementation of DP, refer to [24].
Significantly, to further improve the calculation efficiency, feasible control domain of stage
k and feasible state domain of stage k + 1, given by Ui

k and Si
k+1, respectively have been

determined before the backward solution in this work.
As a global optimization algorithm, DP is quite difficult to implement online due

to the limitations of the known global information and high computational burden and
memory utilization [25]. It can be the basis of designing other strategies according to the
theoretically optimal control database.

4. Approximate Optimal Energy Management Design Based on Machine Learning

To make the developed energy management strategy closer to the performance of
DP, it is an effective solution to use a ML algorithm to learn the optimal decisions of DP.
Meanwhile, it is necessary to combine with a ML algorithm to obtain driving condition
information to further improve the performance of energy management strategy. The
structure of ML-based optimal power control for the E-RE-CTM is described in Figure 3.
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4.1. Machine Learning of the Trip Information

In this section, typical driving conditions construction based on unsupervised learning
and driving condition identifier development based on supervised learning are introduced
as follows.

4.1.1. Typical Driving Conditions Construction Based on Unsupervised Learning

To realize the driving condition construction, the following four steps are required.
Step 1: Features vector selection and dimension reduction.
To build the driving data sample library, the sample division method based on micro-

trips is adopted, and the collected real-world driving data are subdivided into n (n = 1788)
micro-trips (Figure 3a) after data supplement and elimination. The main method of data
supplement is interpolation, and the limits of driving motor power and acceleration are
mainly considered to eliminate the samples where the wrong data are located.

To describe the characteristics of obtained micro-trips, the remaining six characteristic
parameters listed in Table 2 are selected through correlation analysis. The features matrix
VF of the micro-trips can be expressed as:

VF =


u1

1 u2
1 · · · um

1
u1

2 u2
2 · · · um

2
...

...
. . .

...
u1

n u2
n · · · um

n

 = [v1, v2, · · · , vn]
T (9)

where v =
[
vmax, an

max, σ(ap·v), (an·v), r0,15
v , r30,50

v

]
means the feature vector of a sample,

and m and n denote the number of features and samples, respectively.

Table 2. The feature parameters for driving condition recognition.

Symbol Description Unit

vmax Maximum vehicle speed km/h
an

max Maximum negative acceleration m/s2

σ(ap·v) The standard deviation of the product of positive
acceleration and speed m2/s3

(an·v) Mean value of the product of negative
acceleration and speed m2/s3

r0,15
v The ratio between 0 and 15 of vehicle speed -

r30,50
v The ratio between 30 and 50 of vehicle speed -

The above six features still have different degrees of correlation, and the more fea-
tures, the higher the computational complexity. Principal component analysis (PCA) is
a dimension reduction method that projects high-dimensional interrelated variables into
low-dimensional orthogonal principal component space. The first several principal compo-
nents with a large variance contribution rate are selected to describe the original variables.
The principal components matrix Mp can be expressed as:

Mp = Ar
p × vT (10)

where Ar
p means the load coefficient matrix of principal component, p (1 ≤ p ≤ 3) and

r (1 ≤ r ≤ m) represent the reference of principal components and features, respectively.
Figure 4a shows the variance contribution rate of each principal component. We

can clearly see that the cumulative variance contribution rate of the first three principal
components is 86.4305%, greater than 85%. Therefore, the number of principal components
is three, which denotes that the six features of the micro-trips can be characterized by the
three features.
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The absolute value of the features load coefficient is related to the characteristic
difference of the characteristic sample. Figure 4b describes the load coefficients of six
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features in the three principal components, respectively. The larger the absolute value of
the load coefficient of the feature, the greater the influence of the feature on the sample
difference. As we can see, the contribution level of the six features for the first principal
component is the same, and the sixth and fifth features, the ratio between 0 and 15 and
the ratio between 30 and 50 of vehicle speed, have the highest contribution to the second
principal component.

Step 2: Samples clustering and performance verification.
K-means, a widely used unsupervised learning algorithm, needs to randomly select

the cluster center, which makes classification results greatly affected by the selection of
cluster center. Given this, k-means + +, proposed by Arthur and Vassilvitskii [28], is an
iterative clustering algorithm based on the probability method to select the initial centroids,
and it can generate better quality clusters [29]. K-means + + is utilized in this work. The
elbow rule is employed to determine the optimal cluster number, and three types of driving
conditions are obtained shown in Figure 3b.

Silhouette value, an evaluating indicator of clustering effect, is employed in this work,
and the Silhouette values based on the k-means + + algorithm are presented in Figure 4c.
The closer the value is to one, the better the clustering effect is. Except for a few samples
belonging to type 2 whose Silhouette values are less than zero, the Silhouette values of
others are relatively large, which denotes the k-means + + method is reasonable and feasible.
Choose the first 100 micro-trips closest to the center of each type, which is presented in
Figure 4d. It can be observed that the maximum speed of micro-trips under type 3 is
the lowest, and the time when the speed is greater than zero is short, which belongs to
congested urban driving conditions. The maximum speed of micro-trips under type 2
is greater than that under the others and the time when speed is greater than zero is the
longest, which shows smoother urban driving conditions. The micro-trips under type 1
represent the relatively smoother urban working conditions with medium speed and a
high idle ratio.

To test the sensitivity of the clustering method to the data sample library, a standard
driving cycle called China bus driving cycle divided into 14 micro-trips is used in the
section. The standard driving cycle and classification results are shown in Figure 4e. We
can conclude that the results obtained and the characteristics of corresponding micro-
trips are highly consistent with those described in Figure 4d, indicating that the method
mentioned above has low sensitivity to driving data sample library.

Step 3: Typical driving conditions construction based on random sampling.
The various typical driving conditions are the basis for designing the energy man-

agement strategy of E-RE-CTMs based on machine learning. Considering the dynamic
performance of the E-RE-CTM and the equal probability of each sample, a random sam-
pling method without return is performed to construct the typical driving conditions.
Significantly, once the target mileage of the typical driving condition is greater than the
total that of all samples of a type, repeat the random sampling process without return.
Figure 3c shows the obtained three typical driving conditions with 120 km mileage. The
average working time is taken for charging, waiting, and discharging under each driving
cycle, and the vehicle is from full load to no load.

Step 4: Results of optimal control.
The three types of driving conditions, including the power demand of the mixing

drum system, the known disturbance of the vehicle driving system, and the whole vehicle
mass in five route segments, are chosen as the simulation input. The power of dual energy-
source and dual energy consumption source and battery SOC under the constructed three
typical driving conditions are in Figure 5a–c, respectively, by using DP. As we can see,
under different driving condition types, the engine output power is always greater than a
fixed value, ranging from 21 to 23 kW when the engine is in a stable operation state, which
indicates that DP makes the engine work in the highly efficient area to the greatest extent.
The battery SOC can just reach the minimum allowable value at the end of the trip under
the different types, which improves vehicle fuel economy and recharging capacity.
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4.1.2. Development of Driving Condition Identifier Based on Supervised Learning

In this section, we establish three different identifiers and compare their performance.
Step 1: Based on the established sample library of the E-RE-CTM, three methods

based on ML, including LVQ, Random Forest (RF), and Extreme Learning Machine (ELM),
are designed to realize the online identification of driving condition types, which can be
described as follows.

Learning Vector Quantization: An LVQ neural network is a supervised forward
neural network, of which a global optimum can be obtained by directly calculating the
distance between the input vector and the competitive layer without preprocessing input
vectors [21,30]. As shown in Figure 3d, the LVQ neural network consists of three layers:
an input layer, a competition layer, and linear output layer, and the connection modes
between layers are full connection and partial connection, respectively. The input layer
contains six neurons corresponding to the six features mentioned in Table 2. The number
of competition layer neurons is set to be 30 by continuous experiments. Three neurons
related to the three types of driving conditions mentioned in Section 4.1.1 are included in



World Electr. Veh. J. 2021, 12, 175 12 of 18

the linear output layer. The LVQ neural network selects the winning neuron by calculating
the Euclidean distance of weights of the input vector and competitive neurons, as:

Di =

√√√√ I

∑
j=1

(
xi −ωij

)2, i = 1, 2, .., C (11)

where ωij means the connection weight of the i th competitive layer neurons and the j th
input layer neurons, I and C represent the dimension of the input vector and number of the
competitive neurons, respectively. Only the winning neuron and its corresponding output
neuron are set to one [31]. On that basis, the actual type is obtained. Then the weight of the
input vector and competitive neurons is updated by:

ωij(k + 1)

=

{
ωij(k) + η

(
xj −ωij(k)

)
, f or consistent identi f ication results

ωij(k)− η
(
xj −ωij(k)

)
, f or inconsistent identi f ication results

(12)

where k is the number of iterations, and η represents the learning efficiency.
Random Forest: RF is an ensemble learning method, a branch of ML, based on a

single decision tree [32]. The final decision results Cm(·) of RF are generated by equal
voting of all decision trees Cp. Currently, RF has attracted extensive attention due to its
excellent performance [33,34], however, there is still a lack of research on driving condition
identification. The calculation process of RF is described in Figure 3e. The size of decision
tree affects the performance of the random forest algorithm, and the value 450 with high
mean accuracy and moderate scale is selected by continuous experiments.

Extreme Learning Machine: An ELM neural network is a single hidden layer neural
network proposed by Huang [35], which is aimed at the shortcomings of a single hidden
layer feedforward neural network algorithm. It has the advantages of good generalization
performance, fast learning speed, and ease of use. We can obtain the unique optimal
solution by selecting the number of hidden layer neurons. Figure 3f shows the structure
of the ELM neural network. The threshold B of hidden neurons and the input weights
W are randomly generated and remain unchanged in the training process. By solving
Equation (13) can get corresponding output weights β without iteration [20], as:

min
β

Hβ− T⇒ β∗ = H+β (13)

where H means the hidden layer output matrix, T is the expected output, and H+ denotes
the Moore–Penrose of H. The input vectors are equal to that of LVQ. The experimental
method is still used to ensure the number of hidden layer neurons to realize the balance
between computational efficiency and recognition accuracy.

Step 2: Performance Comparison.
To verify and compare the performance of the above identification methods, Figure 6

shows a combined driving cycle constructed from the testing driving data by the random
sampling method and its real types.

As presented in Table 3, Kappa coefficient κ, total accuracy Am and identification
time ta are chosen as indexes to evaluate and compare the identifiers performance. The
total accuracy Am can directly reflect the correct proportion of classification or recognition;
however, if the samples are unbalanced, the accuracy will fail. Kappa coefficient κ, ranging
from −1 to 1, can penalize the bias of the model compared with total accuracy Am [36]. It
is more suitable for the performance evaluation of classification problems with unbalanced
category samples. Reference [37] proposed the model performance analysis criteria accord-
ing to the Kappa value. The higher the κ or Am, the better the performance; on the contrary,
a lower ta indicates better performance. The window size, Wt, and identification time,
It, intervals are vital to the accuracy of the identification and real-time implementation.
According to the identifiers performance comparison results under different combinations
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of the two key parameters, Wt = 120 s and It = 1 s are optimal for RF and ELM and
Wt = 80 s and It = 1 s are optimal for LVQ. The Kappa coefficients of the three methods
are all greater than 0.40, which means that the identification results have reached an ideal
consistency with the real results [37]. If κ is greater than 0.61, it indicates that the identifi-
cation is highly consistent with the real situation [37]. Thus, it can indicate the accuracy
and feasibility of the three methods. Meanwhile, we can clearly see that the ELM method
outperforms the others by comparing the three indexes under the parameter combination
[Wt, It] = [120, 1]. Although the kappa coefficient and total accuracy of LVQ is superior to
these of RF and ELM under the parameter combination [Wt, It] = [80, 1], the identification
time is the longest. Comparing the optimal results of ELM and LVQ mentioned above, it
can be concluded that ELM has better recognition performance in this work. Hence, the
driving condition identifier based on ELM would be chosen to be applied for the online
energy management strategy.
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Table 3. The performance comparison under different methods.

Evaluation Index
[Wt,It] = [120, 1] 1 [Wt,It] = [80, 1] 2

LVQ RF ELM Optimized ELM LVQ RF ELM

κ 0.52 0.59 0.63 0.65 0.61 0.53 0.56
Am 0.73 0.76 0.78 0.79 0.78 0.71 0.73
ta 15.30 11.94 0.52 0.45 17.91 12.32 0.47

1 The optimal window size and identification interval of RF and ELM; 2 the optimal window size and identification interval of LVQ.

Step 3: Optimization of identifier based on ELM.
The input weights and hidden layer thresholds of the basic ELM are generated ran-

domly, and still have the potential to further improve performance. In this section, an ELM
identifier based on genetic algorithm optimization is proposed. Meanwhile, to obtain better
performance, k-fold (k = 10) cross-validation method is used to determine the optimal
number of hidden layer nodes. Taking the recognition accuracy as the fitness value, the flow
chart of the optimized ELM method is presented in Figure 7. The identification results are
listed in Table 3 under the same driving cycle in Step 2. We can clearly see that the Kappa
coefficient κ of optimized ELM is 0.65, which is 0.02 higher than that of unoptimized ELM,
and the total accuracy Am of optimized ELM is increased by 0.01 than that of unoptimized
ELM. The identification time ta is also shortened to a certain extent.
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4.2. Machine Learning of the Optimal Energy Management
4.2.1. Neural Network Structure Determination

Based on the optimal control results of different driving conditions obtained in
Section 3.2, neural network models are designed to find the optimal power split asso-
ciated with driving condition types.

The input and output variables of the neural network need to be determined in
advance [15]. According to Equation (8), the control variable Pice is selected as the NN
module output variable. Considering the characteristics of the system, in addition to basic
input variables, such as the power demand of the vehicle driving system, battery SOC, and
the vehicle speed, the vehicle mass and power demand of the upper mixing system are
also significant for the NN module construction. The vehicle mass that affects the power
demand of the dual energy consumption source is chosen as the NN module input variable.
The power demand of the upper mixing system affects whether the dual energy source
will output power or how much power it will output. As an inertial system, the change
rate of the diesel engine is limited in unit time [8], so the last power output of the engine is
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also taken as an input variable of the NN module. Vehicle acceleration, total and current
mileage, and time are also treated as the input variable of the NN module. Therefore, the
novel efficient NN module structure is preliminarily constructed with 11 input variables.

To further reduce the calculation time and the memory usage of the control strategy,
the input variables are reduced to eight by calculating the Spearman correlation coefficient.
Figure 3g describes the final NN module structure with eight input variables, two hidden
layers, and one output variable. The number of NN module hidden layer nodes are
different under different types of driving conditions in this study.

4.2.2. Neural Network Training and Verification

The training data of NN modules under different types are generated by data prepro-
cessing. As the main evaluation index of the neural network training effect, the smaller the
mean square errors (MSEs), the better the learning effect [38]. It can be calculated as:

MSE =
1
N

N

∑
k=1

(
Pout

ice (k)− Ptar
ice (k)

)2 (14)

where Pout
ice is the NN module output, and Ptar

ice means the target output value. The MSE
is 0.00032, 0.0020 and 0.00021, respectively, as presented in Table 4. From Figure 8a–c,
the engine output power difference is concentrated within plus or minus 15 kW, which
indicates that the engine output power generated by the NN modules are very close to that
DP results under the three types and the neural network designed above is reasonable and
feasible.

Table 4. Description of MSEs under three types.

Type MSE

1 0.00032
2 0.0020
3 0.00021

Therefore, the intelligent optimization algorithm based on the ML of trip information
and energy management is an appropriate way to solve the online energy management
problem of E-RE-CTMs. In the online application, it can automatically switch to the optimal
NN modules under current micro-trips shown in Figure 3h according to recognition results.
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5. Conclusions

In this paper, an ML-based approximate optimal energy management strategy for
concrete truck mixers equipped with a novel hybrid powertrain was designed from two
aspects: trip information and energy management strategy, which mainly included the
following:

1. For the CTMs equipped with a proposed novel hybrid powertrain, a global opti-
mization algorithm based on DP was proposed to solve the two-point boundary
value problem in the finite time domain, which has the characteristics of constrained
time-varying and double control variables. By designing an optimal efficiency curve
of the generator in driving mode and establish the generator efficiency model, the
complexity of solving the energy optimization problem can be reduced;

2. An optimal control database can be obtained based on the ML and data-driven
method; different ML-based driving condition identifiers were constructed and com-
pared. Simulation results showed that the total performance of ELM is superior to
the RF and LVQ through the comparison of kappa coefficient, identification time, and
identification accuracy. An optimized ELM identifier based on genetic algorithm was
presented, which can further promote online identification performance;

3. For the E-RE-CTM, a vehicle mass and power demand of an upper-part system
based novel neural network energy management strategy was designed based on a
constructed optimal control database. Simulation results showed that the designed
neural network is reasonable and feasible.

Our future work could potentially focus on the neural network input variables recog-
nition or prediction based on the study of this study to developing an online energy
optimization algorithm with stronger adaptability to more driving information.

Author Contributions: Conceptualization, Y.H., F.J. and H.X.; data curation, Y.H. and H.X.; formal
analysis, Y.H.; investigation, H.X.; methodology, Y.H.; resources, Y.H.; software, Y.H. and H.X.;
validation, Y.H., F.J. and H.X.; writing—original draft, Y.H.; writing—review and editing, F.J. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Fengzhi Technology Co., Ltd. of Beijing, China.

Data Availability Statement: The datasets used and/or analyzed during the current study are
available from the corresponding author on reasonable request.



World Electr. Veh. J. 2021, 12, 175 17 of 18

Acknowledgments: The authors would like to thank the Fengzhi Technology Co., Ltd. of Beijing,
China for the support during the research process.

Conflicts of Interest: Haiming Xie is an employee of Fengzhi Technology Co., Ltd. The paper
reflects the views of the scientists, and not the company. This paper received support of the Fengzhi
Technology Co., Ltd.

References
1. Feng, Y.; Dong, Z. Optimal energy management with balanced fuel economy and battery life for large hybrid electric mining

truck. J. Power Sources 2020, 454, 227948. [CrossRef]
2. Kosowski, M.; Dunckley, J.; Bowermaster, D. Results of plug-in hybrid medium-duty truck demonstration and evaluation

program. World Electr. Veh. J. 2016, 8, 57–68. [CrossRef]
3. Zhuang, W.; Eben, S.L.; Zhang, X.; Kum, D.; Song, Z.; Yin, G.; Ju, F. A survey of powertrain configuration studies on hybrid

electric vehicles. Appl. Energy 2020, 262, 114553. [CrossRef]
4. Zhao, J.; Liu, X.; Xin, Z.; Han, Y. Research on the energy-saving technology of concrete mixer truck. In Proceedings of the 2009 4th

IEEE Conference on Industrial Electronics and Applications, Xi’an, China, 25–27 May 2009.
5. Gadner, S.; Pifko, A.; Brehmer, U.; Stockbauer-Muhr, D. Electric Truck Mixer for the Future Urban Construction Site. ATZheavy

Duty Worldw. 2019, 12, 14–21. [CrossRef]
6. Peng, J.; He, H.; Xiong, R. Rule based energy management strategy for a series–Parallel plug-in hybrid electric bus optimized by

dynamic programming. Appl. Energy 2017, 185, 1633–1643. [CrossRef]
7. Yu, Y.; Jiang, J.; Min, Z.; Wang, P.; Shen, W. Research on energy management strategies of extended-range electric vehicles based

on driving characteristics. World Electr. Veh. J. 2020, 11, 54. [CrossRef]
8. Xie, H. Energy Management Strategy for Extended-Range Electric City Buses Based on Driving Condition Adaptation. Ph.D.

Thesis, Tsinghua University, Beijing, China, 2017.
9. Zhang, F.; Hu, X.; Xu, K.; Tang, X.; Cui, Y. Current Status and Prospects for Model Predictive Energy Management in Hybrid

Electric Vehicles. J. Mech. Eng. 2019, 55, 86–108. [CrossRef]
10. Liu, T.; Tang, X.; Wang, H.; Yu, H.; Hu, X. Adaptive Hierarchical energy management design for a plug-in hybrid electric vehicle.

IEEE Trans. Veh. Technol. 2019, 68, 11513–11522. [CrossRef]
11. Tian, Y.; Liu, J.; Yao, Q.; Liu, K. Optimal control strategy for parallel plug-in hybrid electric vehicles based on dynamic pro-

gramming. World Electr. Veh. J. 2021, 12, 85. [CrossRef]
12. Murphey, Y.L.; Park, J.; Kiliaris, L.; Kuang, M.L.; Masrur, M.A.; Phillips, A.M.; Wang, Q. Intelligent hybrid vehicle power

con-trol—Part II: Online intelligent energy management. IEEE Trans. Veh. Technol. 2013, 62, 69–79. [CrossRef]
13. Tian, H.; Li, S.E.; Wang, X.; Huang, Y.; Tian, G. Data-driven hierarchical control for online energy management of plug-in hybrid

electric city bus. Energy 2018, 142, 55–67. [CrossRef]
14. Zhang, J.; Chu, L.; Wang, X.; Guo, C.; Fu, Z.; Zhao, D. Optimal energy management strategy for plug-in hybrid electric vehicles

based on a combined clustering analysis. Appl. Math. Model. 2021, 94, 49–67. [CrossRef]
15. Tsinghua, H.S. Self-Learning Online Energy Management Strategy for Plug-in Hybrid Electric Bus. Ph.D. Thesis, Tsinghua

University, Beijing, China, 2018.
16. Chen, Z.; Mi, C.; Xu, J.; Gong, X.; You, C. Energy Management for a Power-Split Plug-in Hybrid Electric Vehicle Based on

Dynamic Programming and Neural Networks. IEEE Trans. Veh. Technol. 2014, 63, 1567–1580. [CrossRef]
17. Xie, S.; Hu, X.; Qi, S.; Lang, K.; Tian, G. An artificial neural network-enhanced energy management strategy for plug-in hybrid

electric vehicles. Energy 2018, 163, 837–848. [CrossRef]
18. Tian, H.; Lu, Z.; Wang, X.; Zhang, X.; Huang, Y.; Tian, G. A length ratio based neural network energy management strategy for

online control of plug-in hybrid electric city bus. Appl. Energy 2016, 177, 71–80. [CrossRef]
19. Hu, J.; Liu, D.; Du, C.; Yan, F.; Lv, C. Intelligent energy management strategy of hybrid energy storage system for electric vehicle

based on driving pattern recognition. Energy 2020, 198, 117298. [CrossRef]
20. Zhang, J.; Xu, F.; Zhang, Y.; Shen, T. ELM-based driver torque demand prediction and real-time optimal energy management

strategy for HEVs. Neural Comput. Appl. 2020, 32, 14411–14429. [CrossRef]
21. Song, K.; Li, F.; Hu, X.; He, L.; Niu, W.; Lu, S.; Zhang, T. Multi-mode energy management strategy for fuel cell electric vehicles

based on driving pattern identification using learning vector quantization neural network algorithm. J. Power Sources 2018, 389,
230–239. [CrossRef]

22. Liu, T.; Tan, W.; Tang, X.; Zhang, J.; Xing, Y.; Cao, D. Driving conditions-driven energy management strategies for hybrid electric
vehicles: A review. Renew. Sustain. Energy Rev. 2021, 151, 111521. [CrossRef]

23. Huang, Y.; Jiang, F.; Xie, H. Adaptive hierarchical energy management design for a novel hybrid powertrain of concrete truck
mixers. J. Power Sources 2021, 509, 230325. [CrossRef]

24. Simona, O. Hybrid Electric Vehicles Energy Management Strategies; Springer: Berlin/Heidelberg, Germany, 2015.
25. Liu, J.; Chen, Y.; Zhan, J.; Shang, F. Heuristic dynamic programming based online energy management strategy for plug-in hybrid

electric vehicles. IEEE Trans. Veh. Technol. 2019, 68, 4479–4493. [CrossRef]
26. Wang, X.; He, H.; Sun, F.; Zhang, J. Application study on the dynamic programming algorithm for energy management of plug-in

hybrid electric vehicles. Energies 2015, 8, 3225–3244. [CrossRef]

http://doi.org/10.1016/j.jpowsour.2020.227948
http://doi.org/10.3390/wevj8010057
http://doi.org/10.1016/j.apenergy.2020.114553
http://doi.org/10.1007/s41321-019-0011-0
http://doi.org/10.1016/j.apenergy.2015.12.031
http://doi.org/10.3390/wevj11030054
http://doi.org/10.3901/JME.2019.10.086
http://doi.org/10.1109/TVT.2019.2926733
http://doi.org/10.3390/wevj12020085
http://doi.org/10.1109/TVT.2012.2217362
http://doi.org/10.1016/j.energy.2017.09.061
http://doi.org/10.1016/j.apm.2020.12.023
http://doi.org/10.1109/TVT.2013.2287102
http://doi.org/10.1016/j.energy.2018.08.139
http://doi.org/10.1016/j.apenergy.2016.05.086
http://doi.org/10.1016/j.energy.2020.117298
http://doi.org/10.1007/s00521-019-04240-7
http://doi.org/10.1016/j.jpowsour.2018.04.024
http://doi.org/10.1016/j.rser.2021.111521
http://doi.org/10.1016/j.jpowsour.2021.230325
http://doi.org/10.1109/TVT.2019.2903119
http://doi.org/10.3390/en8043225


World Electr. Veh. J. 2021, 12, 175 18 of 18

27. Xie, H.; Tian, G.; Chen, H.; Wang, J.; Huang, Y. A distribution density-based methodology for driving data cluster analysis: A case
study for an extended-range electric city bus. Pattern Recognit. 2018, 73, 131–143. [CrossRef]

28. Arthur, D.; Vassilvitskii, S. k-means++: The advantages of careful seeding. In Proceedings of the Eighteenth Annual ACM-SIAM
Symposium on Discrete Algorithms SODA ’07, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 7–9
January 2007; pp. 1027–1035.

29. Zahra, S.; Ghazanfar, M.A.; Khalid, A.; Azam, M.A.; Naeem, U.; Prugel-Bennett, A. Novel centroid selection approaches for
KMeans-clustering based recommender systems. Inf. Sci. 2015, 320, 156–189. [CrossRef]

30. Pham, D.T.; Otri, S.; Ghanbarzadeh, A.; Koc, E. Application of the Bees Algorithm to the training of learning vector quanti-sation
networks for control chart pattern recognition. In Proceedings of the International Conference on Information & Communication
Technologies, Damascus, Syria, 24–28 April 2006.

31. He, H.; Sun, C.; Zhang, X. A Method for Identification of Driving Patterns in Hybrid Electric Vehicles Based on a LVQ Neural
Network. Energies 2012, 5, 3363–3380. [CrossRef]

32. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
33. Lahouar, A.; Ben Hadj Slama, J. Hour-ahead wind power forecast based on random forests. Renew. Energy 2017, 109, 529–541.

[CrossRef]
34. Pritiesh, M.; Neagu, D.; Paul, R.T.; Jonathan, D.V. Using random forest and decision tree models for a new vehicle prediction

approach in computational toxicology. Soft Comput. 2016, 20, 2967–2979.
35. Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501.

[CrossRef]
36. Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [CrossRef]
37. Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159–174. [CrossRef]
38. Murphey, Y.L.; Park, J.; Chen, Z.; Kuang, M.L.; Masrur, M.A.; Phillips, A.M. Intelligent Hybrid Vehicle Power Control—Part I:

Machine Learning of Optimal Vehicle Power. IEEE Trans. Veh. Technol. 2012, 61, 3519–3530. [CrossRef]

http://doi.org/10.1016/j.patcog.2017.08.006
http://doi.org/10.1016/j.ins.2015.03.062
http://doi.org/10.3390/en5093363
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1016/j.renene.2017.03.064
http://doi.org/10.1016/j.neucom.2005.12.126
http://doi.org/10.1177/001316446002000104
http://doi.org/10.2307/2529310
http://doi.org/10.1109/TVT.2012.2206064

	Introduction 
	Powertrain Configuration and Model 
	Powertrain Specification and System Modeling 
	Energy Optimal Problem Formulation 

	Global Optimal Energy Management Strategy 
	Driving Data Obtain 
	Dynamic Programming to Solve the Optimization Problem 

	Approximate Optimal Energy Management Design Based on Machine Learning 
	Machine Learning of the Trip Information 
	Typical Driving Conditions Construction Based on Unsupervised Learning 
	Development of Driving Condition Identifier Based on Supervised Learning 

	Machine Learning of the Optimal Energy Management 
	Neural Network Structure Determination 
	Neural Network Training and Verification 


	Conclusions 
	References

