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Abstract: To satisfy the high-rate power demand fluctuations in the complicated driving cycle,
electric vehicle (EV) energy storage systems should have both high power density and high energy
density. In order to obtain better energy and power performances, a combination of battery and
supercapacitor are utilized in this work to form a semi-active hybrid energy storage system (HESS).
A parameter matching method of battery-supercapacitor HESS for electric vehicles (EVs) is proposed.
This method can meet the performance indicators of EVs in terms of power and energy for parameter
matching. The result shows that optimized parameter matching is obtained by reducing the weight
and cost.

Keywords: parameter matching method; battery-supercapacitor; electric vehicles; hybrid energy
storage system

1. Introduction

Nowadays, the rapid growth of vehicles has led to energy shortages and environmen-
tal degradation [1]. Due to the advantages of low emissions and environmental friendliness,
electric vehicles (EVs) have attracted extensive attention around the world [2]. As the main
power sources, lithium-ion batteries are employed in EVs because of their merits of high
energy density, low self-discharge rate, quick charging rate, and high nominal voltage.
To efficiently achieve the operation requirements of EVs, a large number of individual
lithium-ion battery cells are assembled in parallel series to form battery packs [3]. The
high-rate charge and discharge of currents during driving dramatically reduce lithium-ion
batteries’ lifespan [4]. Lithium-ion batteries as the sole power source in vehicle power
systems are well regarded as having apparent limitations. For example, the EVs cannot
efficiently meet the needs of high-rate discharge currents in the circumstances of starting,
acceleration, and hill climbing [5]. Moreover, the batteries suffer severe challenges in
braking conditions. The surge current input reduces the vehicle power system’s life and
increases the battery’s replacement cost [6].

In their present technological condition, the single power source of lithium-ion batter-
ies has difficulties in meeting the requirements of both energy and power in EVs applica-
tions. Meanwhile, as power-based energy storage components, supercapacitors have the
merits of high power density, broad working temperature, extended cycle life, and deep
discharge ability [7–9]. Hybrid energy storage systems (HESS) in engineering applications
consist of batteries and supercapacitors, which benefit from their respective advantages in
terms of high energy density and high power density. The battery is the primary energy
source that determines the driving ranges of EVs and supercapacitors are employed as an
auxiliary power source to regulate peak power during starting, braking, accelerating, and
hill climbing [10]. Supercapacitors can smooth the power of the battery and increase the
flexibility of the HESS.

It is well known that the optimization of parameter matching between the battery
pack and the supercapacitor pack can observably improve the efficiency of an HESS. In
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the past decades, many different parameter matching methods have been presented in
the literature. Grün T, et al. [11] discussed the performances of a pure lithium-ion battery
energy storage system and an HESS in the same volume and weight, and concluded
that the HESS had a 22% increase in power density and a 15–30% reduction in load. In
reference [12], the required power was split and the power at each moment was weighted
to obtain the boundary conditions of parameter matching optimization. After optimizing,
the weight of the battery pack was reduced by nearly 50%. The approach disregards
adaptation to various driving cycles, and the results vary depending on the driving cycle.
As a result, it is challenging to apply the strategy to EVs and obtain the desired outcomes.
An equivalency factor of work condition prediction was introduced to the approach for
the optimization of parameter matching in reference [13]; however, the accuracy of the
prediction is not discussed, and the matching results are dynamically varied and slightly
below the real demand. Yang et al. [14] used an NSGA-II-type genetic algorithm for
parameter optimization and achieved some results. In particular, a cumulative penalty
factor was added, considering the important indicator of capacity decay in service life.
However, the adopted method was not selective in the type of supercapacitor monomer
and battery monomer, meaning that the combined consideration of cost, lifetime, and price
was highly constrained.

A novel battery-supercapacitor HESS parameter matching method for EVs is proposed
in this paper, which combines the advantages of high energy density and high power
density. This method is independent of the energy management strategy and has strong
adaptability to the driving cycle. This method can meet the performance indicators of
EVs in terms of power and energy for parameter matching. The optimized parameter
matching results are obtained by reducing the weight and cost. The paper is organized
as follows: Section 2 introduces the HESS topology categorization and the benefits of the
chosen topology. Section 3 establishes a kinetic model, based on six typical operating
conditions, and systematically analyzes its characteristic indexes. Section 4 analyzes the
parameter matching methods and optimization results in detail. Finally, conclusions are
given in Section 5.

2. HESS Topology

The battery-supercapacitor HESS mainly consists of a battery pack and a superca-
pacitor pack, a bidirectional DC/DC converter and a DC/AC inverter. In addition, it is
divided into three topologies: semi-active, fully active, and passive parallel [15]. The three
topologies are shown in Figure 1. In the semi-active topology, a bidirectional DC/DC con-
verter is connected in series to the battery pack, and they connect with the supercapacitor
pack in parallel [16]. In the fully active topology, the battery pack and the supercapacitor
pack are connected in series with a bidirectional DC/DC converter, respectively. Then they
are connected in parallel. Although the power can be accurately distributed, the energy
of the supercapacitor pack is less, and the wide operating voltage will raise the energy
loss. In the passive parallel topology, just the battery pack and supercapacitor pack are
connected in parallel. Although this topology is simple, the power cannot be distributed,
and the supercapacitor pack cannot fully demonstrate the advantages in power density [17].
Whether the supercapacitor pack is charged or discharged depends on the terminal voltage
of the battery pack connected with the supercapacitor pack in parallel.

In this paper, the weight and cost are taken as the optimization objectives in the
condition of reducing energy loss of the HESS, so the semi-active topology has been
chosen. The supercapacitor pack is not affected by the battery pack voltage in this topology.
Therefore, the role of supercapacitor pack can be fully utilized in this topology. The battery
pack and the supercapacitor pack assume low and high power, respectively [18]. The
supercapacitor pack undertakes transient high-power operation, and the battery pack
avoids the effects of high-rate charging and discharging currents, to extend the HESS life
of EVs [19]. Reference [20] discussed several complex topologies and their characteristics.
The DC/DC converter that stabilizes the DC bus voltage function is impressive [21,22]. In
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the semi-active topology HESS, the DC/DC converter actively controls the rapid regulation
of the battery pack voltage for precise power output [23]. In addition, it can stabilize the
current and reduce the number of charges and discharges currents [20,24]. Where the
supercapacitor pack absorbs, and its output power is passive, its rapid response depends
on the fluctuation of the DC bus voltage [25]. In addition, the semi-active topology is easier
to implement than the fully active topology control strategy [15,26].
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Figure 1. HESS topologies. (a) Semi-active; (b) fully active; (c) passive parallel. 
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Figure 1. HESS topologies. (a) Semi-active; (b) fully active; (c) passive parallel.

3. Analysis of Six Typical Driving Cycles

The driving force and power requirement of the EVs are calculated as follows:

Ft = Ff + Fw + Fi + Fj = Mg f cos α +
CD Ava

2

21.15
+ Mg sin α + δM

dva

dt
(1)

Preq =
1
η

va

[
Mg f cos α

3600
+

CD Ava
2

76140
+

Mg sin α

3600
+

δM
3600

dva

dt

]
(2)

Formula (1) is the driving equation of the EVs. The driving force, the rolling resistance,
air resistance, ramp resistance, and acceleration resistance are represented by Ft, Ff , Fw, Fi
and Fj, respectively. Moreover, these resistances must be overcome to ensure the operation
of EVs.

The driving power requirement is represented as Formula (2). Where Preq denotes
the power demand, and the vehicle constant speed is set to va = 60 km/h. In addition, a
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vehicle model is selected in this paper, and the parameters and performance indicators are
shown in Table 1.

Table 1. Parameters and performance indicators of the EV.

Parameter Values

Curb weight M 1845 kg
Coefficient of air resistance CD 0.36

Frontal area A 2.53 m2

Rotating mass conversion factor δ 1.03
Acceleration of gravity g 9.8 m/s2

Rolling resistance coefficient f 0.025
Transmission efficiency η 0.9

Driving ranges S 300 km
Maximum speed 130 km/h

Maximum grade α 25%
Rated busbar voltage Um 360 V
Assisted acceleration time 15 s

0~50 km/h Acceleration time ≤10 s

Different driving cycles have their own specific characteristics of energy and power
requirements. The characteristic parameters are mileage, driving time, average speed,
maximum speed, and maximum acceleration, etc. The driving cycle can be divided into
many cycle blocks, and the characteristic parameters of each block are correspondingly
extracted. The energy demand and the maximum power demand are used to define the
intensity factor of the cycle block [27]. In order to improve the fitness of the parameter
matching method, six typical driving cycles, such as the highway road (HL07 and HWFET),
urban road (UKBUS6 and NYCC), suburb road (INDIA_HWY_SAMPLE and WVUSUB),
were selected in the system. The velocity–power curves of the six typical driving cycles are
shown in Figure 2.

From Figure 2, it is obvious that the highway road, urban road, and suburb road have
different performances. The highway road outputted successive medium–high power; the
battery pack and the supercapacitor pack suffered from a severe challenge in optimizing the
power distribution and maintaining stable output. The urban road had frequent processes
of starting, accelerating, and braking, which require a more abundant supercapacitor
pack. The speed of the suburban road changed more slowly than that of the urban road,
and the overall energy and power requirements were between the urban road and the
highway road.
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Figure 2. Velocity and power curves for six standard driving cycles. (a) HL07. (b) HWFET. (c) UKBUS6. (d) NYCC.
(e) INDIA-HWY-SAMPLE. (f) WVUSUB.

However, different driving cycles have individual characteristics of maximum acceler-
ation, positive peak power, positive average power, and negative peak power [28]. The
power requirement characteristics for six typical driving cycles are shown in Table 2.

Table 2. Different driving cycles’ power demand characteristics.

Driving Cycles/
Parameters

Maximum
Acceleration (m/s2)

Positive Peak Power
(kW)

Positive Average
Power (kW)

Negative Peak Power
(kW)

HL07 3.576 135.822 45.816 −38.403
HWFET 1.431 53.606 24.790 −52.259
UKBUS6 1.313 27.093 4.871 −16.221

NYCC 2.682 56.956 9.564 −31.743
INDIA_HWY_SAMPLE 2.121 55.345 16.845 −33.525

WVUSUB 1.295 41.270 11.179 −48.049

From Table 2, it can be seen that highway roads, urban roads, and suburban roads
chose long-duration and short-duration driving cycles, respectively. The maximum acceler-
ation had no significant effect on different driving cycles. There was not much difference
in maximum acceleration among HWFET in the highway driving cycle, UKBUS6 in the
urban driving cycle, and WVUSUB in the suburban driving cycle. Moreover, the maximum
acceleration (amax) of HL07 can be as high as 3.576 m/s2. There is a strong relationship
between positive peak power and maximum acceleration. However, different road cycles
reflected their unique characteristics. Compared with other driving cycles, the HL07 driv-
ing cycle had the largest positive peak power (Pmax) of 135.822 kW and the largest positive
average power

(
Pavg

)
of 45.816 kWh. The driving cycles of NYCC and UKBUS6 had the

lowest positive average power. Because of the frequent acceleration followed by frequent
braking in urban roads, the positive average power is always lower than that of other types
of roads. The most widespread application of urban roads is necessary. The negative peak
power appeared on highways and suburban roads before the end of the cycle, while urban
roads performed with no discernible characteristics. The HWFET driving cycle had the
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largest negative peak power
(

Preg
)

of −52.259 kWh. In summary, the six driving cycles are
very rich and ensure the integrity of the HESS parameter matching.

4. HESS Parameter Matching Method and Optimization

The parameter matching method is very important in HESS application, and com-
prehensive analysis of battery and supercapacitor for EVs performance is necessary. In
reality, the battery-supercapacitor HESS satisfies the requirements of capacity, power, out-
put voltage, and other indicators to provide stable energy supply for EVs. In this paper, a
power–energy-based parameter matching method is proposed to reasonably structure a
HESS. The six typical driving cycles have specific power and energy requirements for the
HEES, which can be described by the four constraint equations. The optimized designing
scheme of HESS can achieve the power and energy requirements of EVs.

4.1. Energy Matching of Batteries

The energy match of the battery pack is mainly determined by the EV’s driving ranges,
which are set to 300 km in this paper.

S =
Ereqva

Preq
(3)

Ereq = EBat × nDOD (4)

1000EBat = CBat−cellUBat−cellNBat−sNBat−p (5)

NBat−s =
Um

UBat−cell
(6)

In Formula (3), S is the driving range [29]. Ereq and Preq, respectively, denote energy
demand and power demand. va is the given ideal speed. The depth of discharge is
nDOD =0.8, and the battery energy demand EBat is 86.5017 kWh. NBat−p is the number
of batteries in parallel, CBat−cell is the battery cell capacity, and Formula (5) is the first
constraint. In Formula (6), Um is the bus rated voltage, UBat−cell is the battery cell voltage,
NBat−s is the number of batteries in series [6,29].

4.2. Energy Matching of Supercapacitors

The highest energy requirements often occur in the conditions of starting, acceleration
and braking. Therefore, the supercapacitors are assistantly employed to satisfy the energy
demand. The starting energy, acceleration energy, and braking energy are caculated
as follows:

Estar =
∫ t

0
Fv(t)dt (7)

Eass =
1

3600

∫ t

0

(
Pass(t)− Pavg(t)

)
dt (8)

Ereg =
1

3600

(∫ t

0
Preg(t)dt

)
(9)

Esc ≥ max
(
Estar, Eass, Ereg

)
(10)

The supercapacitor is used to absorb and output transient high-rate current due
to its excellent properties of rapid charge and discharge. From Table 2, the maximum
acceleration (amax) is 3.576 m/s2, out of all driving cycles. In Formula (7), Estar= 0.0494 kWh
represents the starting energy of the EV when accelerating to 50 km/h at maximum
acceleration. In Formula (8), Eass denotes the acceleration energy of 0.3750 kWh. Pavg is
the maximum positive average power of 45.816 kW, Pass is the maximum positive peak
power of 135.822 kW, and the assisted acceleration time t is 15 s [30]. In Formula (9),
Ereg represents energy recovered from braking. Preg denotes the maximum negative peak
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power of −52.259 kW. The braking time is set as 2 s in this paper, and the braking energy is
0.0290 kWh.

Esc =
1

3600
1
2

Nsc−sNsc−sCsc

(
U2

sc max − U2
sc min

)
(11)

The capacity of the supercapacitor conforms to Ohm’s law between the pack and the
cell [31]. In Formula (11), Nsc−s is the number of supercapacitors in series, Nsc−p is the
number of supercapacitors in parallel, Csc is the supercapacitor cell capacity, Usc max is
the upper cut-off voltage of supercapacitors equal to 2.7 V, and Usc min is the lower cut-off
voltage of supercapacitors equal to 1.35 V.

Csc ≥
3600 × 2 × 1000 × max

(
Estar, Eass, Ereg

)
Nsc−sNsc−p

(
U2

sc max − U2
sc min

) (12)

Substitute Formulas (7)–(10) into Formula (11) to obtain Formula (12), which is the
second constraint.

4.3. Power Matching Method

The battery and supercapacitor satisfied the maximum power requirements in the
HESS. Where the battery pack supports the maximum average power, the supercapacitor
pack supports the residual power.

Pbat + Psc ≥ Pmax (13)

Pbat = Pavg−max (14)

Psc = Nsc−sNsc−pmρsc (15)

Nsc−sNsc−pmρsc ≥ Pmax − Pavg−max (16)

kCbatUbat ≥ Pavg−max (17)

where m represents the weight of the supercapacitor cell. The parameters of the battery and
the supercapacitor are summarized in Section 4.4. ρsc is power density of the supercapacitor,
k is the current rate, and Pavg−max is the maximum value of the average power in the six
typical driving cycles. This can effectively avoid the high charge and discharge rate of the
battery. Formulas (16) and (17) are the third and fourth constraints, respectively. Here,
kCbat = 2Cbat—the unit is ampere. It is generally believed that the working current
exceeding 2C will reduce the cycle life of the battery [10].

4.4. Optimization Results

The purpose of HESS parameter matching is to optimize the combination of battery
and supercapacitor to ensure the power performance of EVs. The HESS parameter matching
method consists of the following three steps: First, a kinetic equation is developed based
on the identified vehicle model and six typical driving cycles are analyzed in detail for
power demand and criticality. Second, the energy and power requirements of the battery
and supercapacitor are systematically calculated under the relevant constraints. Third,
the parameters of the composite power supply are optimally matched, based on the
consideration of performance parameters, cost, and weight. The following is the optimized
selection, based on the four constraints mentioned above.

Table 3 shows the cell capacity selection range of batteries and supercapacitors under
different parallel scales, which are obtained by Formulas (5) and (12).

Formula (5) can be used to obtain the requirements of the number of parallel connec-
tions for batteries of different capacities in Table 4, where ρbat represents the battery unit
energy density and Wbat denotes battery unit energy price.
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Table 3. The capacity ranges of cell under different parallels.

NBat−p CBat−cell (Ah) Nsc−p Csc (F)

1 ≥233.790 1 ≥3658.198
2 ≥116.900 2 ≥1829.099
3 ≥77.930 3 ≥1219.399
4 ≥58.450 4 ≥914.549
5 ≥46.760 5 ≥731.639
6 ≥38.965 6 ≥609.699
7 ≥33.400 7 ≥522.599
8 ≥29.220 8 ≥457.275
9 ≥25.970 9 ≥406.466
10 ≥23.380 10 ≥365.820

Table 4. The parallel range under different batteries’ capacities.

CBat−cell (Ah) NBat−p m (kg) ρbat (Wh/kg) Wbat ($/Wh)

25 ≥9.352 0.585 170 0.430
35 ≥6.680 1.080 135 0.430
60 ≥3.900 1.850 130 0.430
100 ≥2.338 3.050 115 0.430

Formulas (12) and (16) can be used to obtain the requirements for the number of
parallel connections of supercapacitors of different capacities in Table 5, where ρsc is the
supercapacitor power density, and Wsc is the energy price of the supercapacitor.

Table 5. The parallel range under different supercapacitors’ capacities.

Csc (F) ρEsc (Wh/kg) m (kg) ρsc (W/kg) Wsc ($/Wh) Nsc−p

650 3.29 0.20 5400 11.55 ≥6.173
1200 4.05 0.30 5000 11.55 ≥4.444
1500 4.75 0.32 5800 11.55 ≥3.592
2000 5.06 0.40 6200 11.55 ≥2.688
3000 5.52 0.55 5400 11.55 ≥2.245

In summary, the above four Formulas—(5), (12), (16) and (17)—are the constraints
of the parameter matching method. In view of these four constraints, it is possible to
achieve two-way optimal selection, by selecting the serial–parallel scale of the known
single element specifications and the preset scale of selecting the specifications of the single
element. The method in this paper is more comprehensive in terms of weight and cost, as
well as more adaptable and practical in HESS. However, because each model has its own
price, capacity, and weight, the greatest impact for the specific optional battery model and
matching parameters must be determined first. In this paper, NMC lithium-ion batteries
with capacities of 25 Ah, 35 Ah, 60 Ah, and 100 Ah were selected. Simultaneously, the
chosen supercapacitors were made by Maxwell and had rated capacities of 650 F, 1500 F,
2000 F, and 3000 F, respectively. Tables 6 and 7 show the minimum weight and the lowest
cost after matching the parameters of different capacity batteries and different capacity
supercapacitors, respectively.

Table 6. Batteries of different capacities matching results.

CBat−cell (Ah) 25 35 60 100

minNBat−p 10 7 4 3
min weight (kg) 585 756 740 915

min cost (k$) 42.763 43.886 41.366 45.247
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Table 7. Supercapacitors of different capacities matching results.

Csc (F) 650 1200 1500 2000 3000

minNsc−p 7 5 4 3 3
min weight (kg) 189.0 202.5 172.8 162.0 222.8

min cost (k$) 7.181 9.472 9.480 9.468 14.201

Furthermore, the goal function is as follows.

J(x) = αM1 + βM2 + ηC1 + λC2 (18)

M1 = NBat−sNBat−pm (19)

M2 = Nsc−sNsc−pm (20)

C1 = NBat−sNBat−pmρbat (21)

C2 = Nsc−sNsc−pmρEsc (22)

where M1 and M2 represent the battery pack and the supercapacitor pack weight, respec-
tively. C1 and C2 represent battery and supercapacitor cost, respectively. α and β are the
weight coefficients for battery pack weight and supercapacitor pack weight, respectively.
η and λ represent the weight coefficients for battery pack cost and supercapacitor pack
cost, respectively. Its range is from 0 to 1. In addition, the weight coefficients must satisfy
α + β = 1 and η + λ = 1. If α = β = η = λ= 0.5, cost (C1,C2) and weight (M1,M2) are
optimization targets with equal weights. If the cost is the only optimization objective, point
A is the optimization result, with C1 + C2= 48.547 k$, M1 + M2 = 929.0 kg, NBat−p= 4, and
Nsc−p= 7. The selected battery and supercapacitor have capacities of 60 Ah and 650 F,
respectively. If M is the only optimization objective, then point C is the optimization result,
with C1 + C2 = 52.231 k$, M1 + M2 = 747.0 kg, NBat−p= 10, and Nsc−p= 3. The selected bat-
tery and supercapacitor have capacities of 25 Ah and 2000 F, respectively. Considering the
difference in weight and cost between the supercapacitor and the battery. Supercapacitors
have a longer lifespan, so β is greater than α and λ is greater than η.

In this paper, point B is the selected result, with C1 + C2 = 52.245 k$, M1 + M2 = 757.8 kg,
NBat−p = 10, Nsc−p = 4, battery capacity CBat−cell = 25 Ah, and supercapacitor capacity
Csc = 1500 F. Figure 3 shows the HESS parameter optimization results.
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5. Conclusions

A comprehensive analysis of the HESS parameter matching method for EV is pre-
sented in this work. Parameter matching is a step in the energy management system
(EMS) process, and accurate parameter matching offers EMS benefits and potential. First,
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a superior semi-active topology was selected to establish the HESS. Based on the major
characteristics and key indications of the EV, a detailed study of the steady-state energy and
transient power requirements of the normal driving cycle were addressed. The computa-
tion of the HESS threshold is investigated in order to optimize the HESS structure based on
a cost–weight balance. In addition, the effect of the series and parallel connections between
the battery and supercapacitor on energy and capacity is investigated. The parameter
matching method proposed in this paper can be further applied in the EV field.
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