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Abstract: In order to more effectively design the structure of vehicle ISD (Inerter Spring Damper)
suspension system using the inerter, this paper proposed a design method using a fractional-order
electrical network structure of a mechatronic inerter for fractional-order electrical network compo-
nents, according to the characteristics that the external electrical network of a mechatronic inerter can
simulate the corresponding mechanical network structure equivalently. First, the 1/4 dynamic model
of the suspension is constructed. The improved Oustaloup filtering algorithm is used to simulate
fractional calculus, and the fractional order components are simulated. Then, the simulation model
of the vehicle mechatronic ISD suspension is established. In order to simplify the electrical network,
one resistance, one fractional inductance and one fractional capacitance are limited in the design of
the fractional electrical network at the outer end of the mechatronic inerter. The structure-immittance
approach is used to obtain two general layouts of all possible structures of three elements. At the same
time, the optimal fractional electrical network structure and parameters are obtained by combining
the optimization algorithm. The simulation results verify the performance of the fractional ISD
suspension with the optimized structure, which can provide a new idea for the structural design of a
fractional-order electrical network applied in vehicle mechatronic ISD suspension.

Keywords: vehicle; suspension; mechatronic inerter; fractional-order electrical network;
structure-immittance approach; optimal design

1. Introduction

The proposition of the inerter [1] breaks through the inherent structure of the existing
suspension system “spring damper” parallel connection, and forms a new suspension
structure system. This suspension, consisting of spring, damper and inerter elements,
is called ISD suspension. Scholars all over the world have adopted many methods to
realize the inerter [2–9], and after the application of the inerter, the performance potential
of the vibration isolation system has also been expanded to include aircraft [10], trains [11],
buildings [12], bridges [13], etc. The structural design of ISD suspension plays an important
role in meeting various performance indicators of vehicles. The question of how to design
the structure of ISD suspension has attracted the attention of scholars at home and abroad.

Common ISD suspension structure design methods include the structure approach, the
immitance approach and the structure-immitance approach. The structure approach [14]
limits the number of components in the suspension, and integrates them into parameter
optimization according to the feasible range of component parameters. The disadvantage
is that the arrangement and combination method has a huge workload, which makes it
difficult to cover a wide range of mechanical networks, and it is easy to omit structures
with excellent performance. The immitance approach [15] replaces the suspension structure
with a fixed form of impedance or admittance expression, uses the parameter optimization
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method to optimize the solution and finally realizes it passively through network synthesis.
The suspension component parameters obtained by the immitance approach often do not
conform to the routine, which is not conducive to engineering realization. The structure-
immitance approach [16] can be used to express the structure with a predetermined number
of elements with a general impedance expression. However, the structural complexity
of a pure mechanical network is high, which has affected the engineering design of ISD
suspension. The mechatronic inerter [17] is a device coupled by a mechanical inerter and
a rotating motor. The external circuit impedance of the mechatronic inerter can be used
to simulate the target mechanical impedance to achieve the passive structure design of
complex mechanical network, overcome the space limitation of pure mechanical network
suspension structure and expand the design idea of suspension system structure. However,
for the electrical network at the outer end of the mechatronic inerter, the increase of the
order of its impedance transfer function will bring higher performance improvement [18],
and at the same time, the difficulty of network integration will also increase greatly. For
example, the bicubic impedance transfer function requires no more than 13 elements to
realize passively [19], and its structure is complex.

In the structural design of the suspension system, fractional calculus theory has also
been commonly used [20–23], and its feasibility has also been verified [24,25], indicating that
the fractional-order function can more accurately describe the dynamic characteristics of
complex systems than the integral-order function. Using fractional-order electrical network
elements to replace the original integer-order electrical network at the outer end of the
mechatronic inerter can effectively avoid the high complexity of pure integer order network
structures. However, the structural design of fractional-order electrical networks in vehicle
mechatronic ISD suspension has not been reported yet, and in the design of a fractional-
order vehicle mechatronic ISD suspension, a simple and clear fractional-order electrical
network structure is essential. Therefore, this paper will use the structure-immitance
approach to study the optimal design of the fractional-order electrical network structure
for a vehicle mechatronic ISD suspension. The content layout of the rest of this paper is
as follows.

First, in Section 2, the definition and algorithm realization of fractional calculus
are introduced, and the equivalent realization relationship between fractional electrical
components and fractional mechanical components are analyzed. In Section 3, a quar-
ter suspension dynamic simulation model is established, and fractional-order electrical
components are used in the design of the electrical network, and the structure-immitance
approach is used to design the electrical network structure. Then, in Section 4, the electrical
network structure and parameters of the suspension system are obtained through optimiza-
tion. Finally, in Section 5, the dynamic performance of the optimized fractional-order ISD
suspension is evaluated by comparison, and some conclusions are made in Section 6.

2. Equivalent Realization of Fractional Passive Network Elements

Fractional calculus has the basic operator t0 Dα
t , among which, α is limited to real

numbers, t and t0 are the upper and lower bounds of the operator. The unified definition of
fractional calculus operator [26] is:

t0 Dα
t f (t) =


dα

dtα f (t), α > 0
f (t), α = 0∫ t

t0
f (τ)dτ−α, α < 0

(1)

There are many definitions of fractional calculus. This paper adopts the Grünwald–
Letnikow [26] fractional calculus definition. The Grünwald–Letnikow of the α derivative
of a given function f (t) is defined as:

GL
t0

Dα
t f (t) = lim

h→0

1
hα

[(t−t0)/h]

∑
j=0

(−1)j
(

α
j

)
f (t− jh) (2)
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where [·] means taking the nearest integer. At the same time, in order to ensure the
approximation effect at the frequency band boundary and ensure that the transfer function
is regular, the improved Oustaloup filtering algorithm [27] is considered to approximate
fractional calculus. The mathematical model of the improved Oustaloup filter is:

sγ ≈
(

dωh
b

)γ( ds2 + bωhs
d(1− γ)s2 + bωhs + dγ

) N

∏
k=1

s + ω′k
s + ωk

(3)

ω′k = ωbωu
(2k−1−γ)/N , ωk = ωbωu

(2k−1+γ)/N , ωu =
√

ωh/ωb (4)

where N is the filter order, γ is the fractional order, ω’k and ωk are zero point and the pole,
respectively. ωh and ωb are the upper and lower limits of frequency bands, respectively. In
general, the weighting parameters b = 10, d = 9. In this paper, the filter frequency band is
(10−3, 103) rad/s. The larger the filter order, the higher the approximation accuracy. In this
frequency band, the fifth order Oustaloup filtering effect has met the accuracy requirements,
so the selection order is five.

In the new mechanical and electrical analogy, the spring and the inductance, the
damper and the resistance, and the inerter and capacitance are similar, respectively [28].
According to the above fractional definition and approximation method, the impedance
expression of fractional network elements (including mechanical network and electrical
network) is obtained by using the form of pull transform, with excitation force as the input
and corresponding speed as the output, as shown in Table 1, where s is the Laplace variable,
α and β are fractional orders.

Table 1. Impedance expression of fractional network elements.

Mechanical Network Elements Impedance Electrical Network Elements Impedance

Spring k/sα Inductor 1/Lsα

Damper c Resistor 1/R
Inerter bsβ Capacitor Csβ

3. Model Construction of Vehicle Mechatronic ISD Suspension System
3.1. The Ball-Screw Mechatronic Inerter

A mechatronic inerter is considered in this paper, which is formed by coupling a
ball-screw inerter with a rotary motor. Its structural diagram is shown in Figure 1. The
relative linear motion of the two ends of the mechanical inerter can be converted into the
rotary motion of the motor. The inductor, resistor and capacitor in the electrical network at
the outer end of the rotary motor can equivalently simulate the spring, damper, and inerter
in the mechanical network structure.
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3.2. Mechatronic ISD Suspension Structure Layout

The quarter suspension model is a typical vibration model of vehicle suspension
system, which is a basic dynamic model for studying its vertical performance. In this paper,
a quarter vehicle mechatronic ISD suspension dynamics model is established, as shown in
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Figure 2. Based on a mature vehicle model, Table 2 illustrates the parameters for the model.
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Figure 2. A quarter vehicle suspension model.

Table 2. Parameters of quarter vehicle suspension model.

Parameters Values

Sprung Mass ms/kg 320
Unsprung Mass mu/kg 45

Spring Stiffness k/N m−1 22,000
Tire Stiffness kt/N m−1 190,000

The dynamic Laplace equation of the suspension model is shown in Equation (5):{
mss2Zs + [k + cs + sB(s)](Zs − Zu) = 0

mus2Zu − [k + cs + sB(s)](Zs − Zu) + kt(Zu − Zr) = 0
(5)

where k, kt, and c are spring stiffness, tire stiffness, and the damping coefficient, respectively,
ms and mu are the sprung mass and the unsprung mass, respectively. zs, zu and zr are
the vertical displacements of the sprung mass, the unsprung mass, and road roughness,
respectively, and Zs, Zu and Zr are their Laplace transforms, respectively. B(s) is the
impedance expression of the mechatronic inerter, which is shown as follows [17]:{

B(s) = bs + Km
Ze(s)

Km =
( 2π

P
)2ktke

(6)

where b is the inertance of the ball-screw mechatronic inerter, P is the pitch of the ball-screw
mechanism, ke is the induced electromotive force coefficient of the rotary motor, kt is the
thrust coefficient of the rotary motor. Km is the electromechanical parameter conversion
coefficient of the ball-screw mechatronic inerter, which is taken as 7056 HN/m in this paper.
Ze(s) is the impedance expression of the external electrical network of the rotary motor. The
fractional-order external electrical network of the mechatronic inerter includes resistor(s),
fractional-order capacitor(s) and fractional-order inductor(s). In order to simplify the
electrical network, the number of resistors, fractional capacitors and fractional inductors is
limited to one in the optimal design. Eight structures of the three element arrangement are
summarized using the structure-immittance approach, and two general structures are used
for general expression, as shown in Figures 3 and 4.
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The impedance transfer function expressions of the two general structures in Figures 3 and 4
are, respectively, as follows:

Y1(s) =
C 1

R sα+β + C( 1
L4

+ 1
L6
)sβ + 1

R (
1
L2

+ 1
L6
)

C 1
R L3s2α+β + Csα+β + 1

R sα + 1
L2

+ 1
L4

(7)

Y2(s) =
C 1

R (L1 + L2)s2α+β + Csα+β + 1
R sα + 1

L3

C(L1 + L5)s2α+β + 1
R (L2 + L5)sα+β + sα

(8)

where L1, L2, L3, L4, L5, and L6 are fractional-order inductors, R and C are the resistor and
the fractional-order capacitor, respectively. α and β are the fractional-order inductance order
and the fractional-order capacitance order, respectively. In the Y1 (s) structure, at least three
of L2, 1/L3, L4 and L6 are zero, and in the Y2 (s) structure, at least three of 1/L1, 1/L2, L3
and 1/L5 are zero. For example, in Figure 3, when L3, L4 and L6 are zero, it is a structure in
which a fractional-order inductor is connected in parallel with a fractional-order capacitor,
and then connected in series with a resistor. In Figure 4, when 1/L2, 1/L3 and 1/L5 are
zero, it is a fractional-order capacitor in series with a fractional-order inductor, and then in
parallel with a resistor.

4. Parameter Optimization Design
4.1. Pattern Search Optimization Algorithm

In this paper, the pattern search method [29] is used for the optimization design of the
suspension system. As a general algorithm for solving the optimal value of a function, the
greatest advantage of pattern search method is that it does not need to use the derivative
of the objective optimization function in the algorithm program of pattern search method.
Therefore, pattern search method can effectively solve the optimization problems of non-
derivative functions and complex derivative functions. The specific steps of pattern search
method are shown in Figure 5.



World Electr. Veh. J. 2023, 14, 12 6 of 12

World Electr. Veh. J. 2023, 13, x FOR PEER REVIEW 6 of 12 
 

order and the fractional-order capacitance order, respectively. In the Y1 (s) structure, at 
least three of L2, 1/L3, L4 and L6 are zero, and in the Y2 (s) structure, at least three of 1/L1, 
1/L2, L3 and 1/L5 are zero. For example, in Figure 3, when L3, L4 and L6 are zero, it is a 
structure in which a fractional-order inductor is connected in parallel with a fractional-
order capacitor, and then connected in series with a resistor. In Figure 4, when 1/L2, 1/L3 
and 1/L5 are zero, it is a fractional-order capacitor in series with a fractional-order induc-
tor, and then in parallel with a resistor. 

4. Parameter Optimization Design 
4.1. Pattern Search Optimization Algorithm 

In this paper, the pattern search method [29] is used for the optimization design of 
the suspension system. As a general algorithm for solving the optimal value of a function, 
the greatest advantage of pattern search method is that it does not need to use the deriv-
ative of the objective optimization function in the algorithm program of pattern search 
method. Therefore, pattern search method can effectively solve the optimization problems 
of non-derivative functions and complex derivative functions. The specific steps of pattern 
search method are shown in Figure 5. 

f(yj+δej)<f(yj)

Start

Axial search

yj+1=yj+δej

f(yj-δejj)<f(yj)

yj+1=yj

Set initial point x1∈Rn, initial step size δ, error ε>0, 
acceleration factor α≥1, reduction factor β∈(0,1).

set y1=x1, k=1, j=1.

yj+1=yj-δej

j<n j=j+1

f(yn+1)<f(xk)

Pattern Search

Y

Y

N
Y

xk+1=yn+1,
y1=xk+1+α(xk+1-xk)

k=k+1, j=1

N

δ≤ε

Y

gain x(k)

N
δ=βδ,
y1=xk,
xk+1=xk

N
Y

N

over
 

Figure 5. Pattern search optimization algorithm. 

4.2. Optimization Results 
To ensure vehicle ride comfort, the RMS (root-mean-square) values of the vehicle 

body acceleration, the suspension working space and the dynamic tire load are selected 
as evaluation indicators, and the traditional passive suspension is chosen as evaluation 
benchmark to establish the optimization objective function, as shown below: 

Figure 5. Pattern search optimization algorithm.

4.2. Optimization Results

To ensure vehicle ride comfort, the RMS (root-mean-square) values of the vehicle
body acceleration, the suspension working space and the dynamic tire load are selected
as evaluation indicators, and the traditional passive suspension is chosen as evaluation
benchmark to establish the optimization objective function, as shown below:

f =
BA(P)
BApas

+
SWS(P)
SWSpas

+
DTL(P)
DTLpas

(9)

P = [b c Le Ce Re α β] (10)

where BA and BApas are the RMS values of the vehicle body acceleration of the suspension
to be optimized and the traditional passive suspension, respectively, SWS and SWSpas are
the RMS values of the suspension working space of the suspension to be optimized and the
traditional passive suspension, respectively, and DTL and DTLpas are the RMS values of the
dynamic tire load of the suspension to be optimized and the traditional passive suspension,
respectively. BApas, SWSpas and DTLpas are calculated by a mature traditional passive
suspension [30], and their performances have reached a high level, which are 1.3096 m·s−2,
0.0130 m and 900.4704 N, respectively. P represents the set of parameters to be optimized
for the suspension system, including inertance b, damping coefficient c, fractional-order
inductance coefficient Le, fractional-order capacitance coefficient Ce, resistance coefficient
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Re, fractional-order inductance order α, and fractional-order capacitance order β. Their
constraints are as follows: 

b, c ≥ 0
Le, Re, Ce ≥ 0
1 ≥ α, β ≥ 0

(11)

The optimized fractional-order electrical network structure is shown in Figure 6. This
structure is the case when L2, 1/L3 and L6 are zero in Y1 (s) structure. Set the fractional-
order inductance order α and the fractional-order capacitance order β to 1 for optimization,
and get the integer-order ISD suspension system parameters. The optimization parameters
of fractional-order ISD suspension and integral-order ISD suspension are shown in Table 3.
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passive suspension [30], and their performances have reached a high level, which are 
1.3096 m·s−2, 0.0130 m and 900.4704 N, respectively. P represents the set of parameters to 
be optimized for the suspension system, including inertance b, damping coefficient c, frac-
tional-order inductance coefficient Le, fractional-order capacitance coefficient Ce, re-
sistance coefficient Re, fractional-order inductance order α, and fractional-order capaci-
tance order β. Their constraints are as follows: 
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Table 3. Optimization parameters.

Fractional-Order ISD Suspension Integer-Order ISD Suspension
Parameters Values Parameters Values

Inertance b/kg 5 Inertance b/kg 13
Damping coefficient c/N·s·m−1 1074 Damping coefficient c/N·s·m−1 232

Fractional-order inductance
coefficient Le/H 1.05 Inductance coefficient Le/H 1.34

Fractional-order capacitance
coefficient Ce/F 0.06 Capacitance coefficient Ce/F 0.03

Resistance coefficient Re/Ω 320.73 Resistance coefficient Re/Ω 5.56
Fractional-order inductance order α 0.28 - -
Fractional-order capacitance order β 0.81 - -

5. Simulation Analysis
5.1. The Characteristics of Bode Diagram

Compared with the Bode diagram of the traditional passive suspension, Figure 7
shows the Bode diagram of vehicle mechatronic ISD suspension applying the optimized
fractional-order electrical network structure.

It can be seen that for the fractional-order ISD suspension, in the low frequency range
[10−2, 2] Hz, the optimized structure shape is similar to the spring. In the range [2,4] Hz,
the structure shape is similar to the damper, and above 4 Hz, the optimized structure is
similar to the inerter, which is the difference between the traditional passive suspension
system and the optimized structure. The traditional suspension system composed of
“spring damper” mechanical components cannot show inertia characteristics, which is the
main factor limiting the performance improvement of the traditional suspension structure,
and also the reason why the ISD suspension of vehicles containing the inerter has better
vibration isolation performance.
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5.2. Random Road Input

The random road input is selected as the road input model to study the advantages
of the optimized fractional-order ISD suspension compared with the integral-order ISD
suspension and the traditional passive suspension. The random road input model is as
follows [31]:

.
zr(t) = −0.111[uzr(t) + 40

√
Gq(n0)uw(t)] (12)

where u, zr(t), w(t) and Gq(n0) are the vehicle speed, the vertical input displacement, the
white noise with the mean value of 0, and the road roughness coefficient, respectively.
Class C pavement is selected in this paper, and the pavement roughness coefficient is
2.56 × 10−4 m3. Figures 8–10 and Table 4 show the comparison of the RMS values of the
vehicle body acceleration, the suspension working space and the dynamic tire load of the
three suspension systems at a speed of 20 m/s.

The optimization adopts multi-objective optimization, and the final optimization
result is the best case of comprehensive improvement. From the data point of view, the
RMS value of suspension working space has the best effect, and the other two indexes have
also been improved. It can be seen that, compared with the traditional passive suspension,
the RMS values of the vehicle body acceleration of the integral-order ISD suspension and
the fractional-order ISD suspension are reduced by 3.44% and 4.12%, respectively. The
RMS values of the suspension working space of the two suspensions are reduced by 22.31%
and 23.08%, respectively. Furthermore, the RMS values of the dynamic tire load of the two
suspensions are reduced by 2.73% and 5.31%, respectively, showing the advantages of the
designed fractional-order electric network structure. It shows that the vehicle mechatronic
ISD suspension with optimized fractional-order electrical network structure can further
improve the vibration isolation performance of the suspension system.
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Table 4. Comparison of performance indexes of three suspensions.

Performance Index Traditional Passive
Suspension

Integer-Order
Isd Suspension Improvement Fractional-Order

Isd Suspension Improvement

RMS of vehicle body
acceleration/(m·s−2)

1.3096 1.3051 3.44% 1.3042 4.12%

RMS of suspension
working space/(m) 0.0130 0.0101 22.31% 0.0100 23.08%

RMS of dynamic tire
load/(N) 900.4704 875.8558 2.73% 852.6704 5.31%

6. Conclusions

In this paper, the optimal design of fractional-order electrical network for vehicle
mechatronic ISD suspension is studied. An optimization design method of fractional-
order electrical network for vehicle mechatronic ISD suspension is proposed by using the
structure-immittance approach. The structural parameters of the fractional-order vehicle
mechatronic ISD suspension are optimized by establishing a 1/4 dynamic model of the
suspension. Through simulation comparison, the results show that the performance of the
vehicle mechatronic ISD suspension system applying the fractional-order electrical network
structure obtained by optimization design is further improved, which provides a reference
for the structural design of fractional-order electrical network components based vehicle
mechatronic ISD suspension.
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