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Abstract: The state of health (SOH) of a lithium ion battery is critical to the safe operation of such
batteries in electric vehicles (EVs). However, the regeneration phenomenon of battery capacity has
a significant impact on the accuracy of SOH estimation. To overcome this difficulty, in this paper
we propose a method for estimating battery SOH based on incremental energy analysis (IEA) and
bidirectional long short-term memory (BiLSTM). First, the IE curve that effectively describes the
complex chemical characteristics of the battery is obtained according to the energy data calculated
from the constant current (CC) charging phase. Then, the relationship between the IE curve and
battery SOH degradation characteristics is analyzed and the peak height of the IE curve is extracted as
the aging characteristic of the battery. Further, Pearson correlation analysis is utilized to determine the
linear correlation between the proposed aging characteristics and the battery SOH. Finally, BiLSTM is
employed to capture the underlying mapping relationship between peak characteristics and SOH,
and a battery SOH estimation model is developed. The results demonstrate that the proposed method
is able to estimate battery SOH under two different charging conditions with a root mean square error
less than 0.5% and coefficient of determination above 98%. Additionally, the method is combined
with Pearson correlation analysis to select an aging characteristic with high correlation, reducing the
required data input and computational burden.

Keywords: lithium ion battery; electric vehicle; state of health; incremental energy analysis;
bidirectional long short-term memory

1. Introduction

Under the pressure of increasing serious energy crisis and environmental damage,
the world is rapidly moving towards the development of new energy technologies [1–3].
Lithium ion batteries, as one of the mainstream energy storage technologies, are serve
widely in personal electronic products, large-scale power grids, and electric vehicles (EVs)
due to their outstanding advantages of long cycle life, high power density, and low cost.
However, the continuous working of lithium-ion batteries in complex and changeable
environments causes a variety of performance degradations, such as capacity loss, reduced
endurance mileage, and power fade [4–7]. In general, battery SOH is a critical indicator
for evaluating the degree of aging that can be defined as the ratio of the current available
capacity to the initial capacity; as a battery’s capacity degrades over time to 70–80% of the
rated capacity, it will eventually need to be retired, as its performance will no longer satisfy
energy and power requirements [8–11]. Therefore, it is vital to develop a method that can
accurately estimate battery SOH in order to guarantee safe and efficient battery operation.

A number of studies have been devoted to researching and improving battery SOH
estimation approaches. Generally, SOH estimation methodologies can be broadly divided
into three categories: direct measurement [12], model-based methods [13], and data-driven
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methods [14]. The former mainly consists of Coulomb counting, open circuit voltage (OCV),
and electrochemical impedance spectroscopy (EIS) measurements [15–17]. Coulomb count-
ing obtains the battery’s static SOH after a complete charging and discharging cycle. The
OCV requires massive experimental effort to establish the connection between voltage
and SOH [18]. EIS requires a broad frequency spectrum to measure battery SOH; while
simple, this is time-consuming, and is only suitable for testing in a laboratory environ-
ment [19]. Therefore, the propagation and applications of direct measurement methods are
greatly limited.

The model-based methods mainly consist of the electrochemical model (EM) [20],
equivalent circuit model (ECM) [21], and empirical model [22]. The EM is usually based
on a series of complex partial differential equations for battery degradation analysis and
SOH estimation, the ECM is generally composed of one or more RC circuits in parallel for
estimating the battery’s state of charge (SOC), and the empirical model is usually expressed
with many mathematical forms to characterize the relationship between health features
and SOH, including polynomial, exponential, logarithm, and power function variants.
Li et al. [23] developed several reduced-order electrochemical models, with which they effi-
ciently and accurately estimated the battery’s SOC, electrolyte concentration, side reaction
overpotential, and solid-phase surface concentration of two electrodes by monitoring the
internal battery state information of the electrochemical reaction. An adaptive unscented
Kalman filter was proposed based on above models; its estimation results indicate that
this algorithm has strong robustness in both measurable and immeasurable conditions.
Zheng et al. [24] proposed a battery capacity prediction approach based on the integration
of a feedforward empirical model and feedback neural network. The parameters of the
feedforward empirical model were optimized to improve the precision of capacity predic-
tion according to the difference in estimation between the feedforward empirical model
and the feedback neural network. However, the principle and calculation process of this
degradation model are complicated, which is not conducive to real-time monitoring in
a battery management system. Meng et al. [25] proposed a hybrid methodology which
combined the empirical modal decomposition (EMD) and particle filtering (PF) approaches
for forecasting early battery end-of-life (EOL) and evaluating its uncertainty.

Unlike model-based methods, data-driven approaches have been greatly developed
with the promotion of new artificial intelligence and communication technologies. Gener-
ally, these methods have the advantage of realizing SOH estimation based on historical ex-
perimental data without requiring very much prior knowledge about battery aging [26,27].
In recent years, deep learning technologies, particularly deep neural networks, have be-
come efficient battery state estimation methods. As typical networks, extreme learning
machine (ELM) [28], support vector machine (SVM) [29], and long short-term memory
(LSTM) [30] all have certain defects. For instance, the weights in the ELM algorithm are
randomly generated, and the least squares solution can be directly solved by setting the
number of neurons in the hidden layer without any feedback to update the weight of the
hidden layer. Therefore, the ELM algorithm is unable to make even slight adjustments
according to changes in the input data and has poor controllability, which leads to un-
stable output by the estimation model. In the SVM algorithm, nonlinear and indivisible
lower-dimensional data are mapped to linear and divisible higher-dimensional data us-
ing a kernel function, then the data are partitioned through the hyperplane; in essence,
this is a quadratic programming solution, which can effectively handle regression issues
with small samples. However, this makes it difficult to divide large-scale data samples,
and the computational burden can be seriously increased. In addition, the selecting the
parameters used for regularization and the kernel function can represent an enormous
challenge. In LSTM, three different logic gates are utilized to determine whether data
should be retained or discarded, and then the hidden information of the input data is
remembered and updated; therefore, LSTM has excellent performance in capturing the
dependence between observation variables when processing various time series issues. If
the time series data are too long, LSTM models may have a slow convergence rate and
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high computational complexity, reducing their ability to precisely estimate battery SOH.
The capacity regeneration phenomenon associated with the process of battery cycle aging
greatly hinders the accurate estimation of battery SOH [31,32].

In order to overcome the above problems, a method for estimating battery SOH
is proposed in this paper based on bidirectional long short-term memory (BiLSTM) and
incremental energy analysis. Additionally, feature selection and analysis are vital for model-
based battery SOH estimation methods [33]. Common features acquired from charging
and discharging cycles include, but are not limited to, voltage, current, capacity, internal
resistance, etc., which need to be further explored to effectively characterize the battery
aging mechanism. In general, these features are widely used in the SOH assessment of
lithium ion batteries and have been used to excellent effectiveness in many studies. Among
them, the voltage characteristic is one of the most widely used characteristics, as it can
reveal the voltage variation of the battery directly and is closely related to the SOH. With
regard to the current features, they are utilized to determine the current variation during
charging and discharging of the battery, which is significant for detecting degradation in
battery performance. On the other hand, the capacity characteristic is employed to evaluate
the battery available capacity, and is one of the most vital indicators of battery SOH. Lastly,
internal resistance features are applied to characterize the internal resistance of the battery,
and are related to the battery’s internal losses and performance degradation.

After calculating the energy value of the equal voltage difference during CC discharge,
the IE curve can be plotted; this can clearly identify the energy peak of the IE curve,
which can be used extract the battery’s aging characteristics [34]. Cai et al. [35] utilized
Gaussian process regression (GPR) to predict the SOH by incorporating the energy of
the CV charging phase and the energy of the voltage difference during the CC discharge
mode. Liu et al. [36] combined the energy value of the voltage difference extracted from CC
discharge curves with an extreme learning machine model to forecast battery SOH. Chen
et al. [37] forecasted the entire temperature variation of the CC charging process based on
random short-term charging data, hen calculated the differential change of the predicted
temperature curve, and finally extracted the aging characteristics for estimating battery
SOH from the temperature difference curve smoothed by Kalman filtering. In recent years,
the incremental analysis method has been widely employed in the analysis and extraction
of battery aging characteristics such as incremental capacity analysis (ICA) and differential
voltage analysis (DVA) of batteries [38,39]. The incremental capacity (IC) and differential
voltage (DV) curves obtained from constant current charging and discharging data contain
abundant characteristic variables that effectively reflect the battery degeneration process
and describe the reaction mechanism of internal battery aging, which along with the peaks
and locations of the curves can be used for SOH estimation [40]. Li et al. [41] extracted
features from the difference curve of battery capacity after smoothing the static charging
curve with Gaussian filtering, then obtained the mapping relationship between the features
and SOH, which can efficiently cut down the computational burden and accomplish rapid
SOH estimation. However, the charging curve of different charging and discharging rates
was not considered and discussed, meaning that this research lacks certain applicability.

In order to bridge the shortcomings of the above-mentioned studies, a simple and
practical approach based on incremental energy analysis (IEA) and bidirectional long short-
term memory (BiLSTM) is developed in the paper to enhance the precision of battery SOH
estimation. To evaluate the effectiveness of the SOH estimation model and the applicability
of the SOH estimation method, we compared our proposed approach with three estimation
models established using different algorithms and carried out two kinds of cyclic aging
experiments with different charging rates.

The structure of this paper is organized as follows. In Section 2, the definition of
battery SOH is introduced. In Section 3, the proposed incremental energy analysis method
is illustrated and four clear peaks are extracted, then the Pearson correlation coefficients
of the four peaks and the SOH are calculated. In Section 4, the LSTM algorithm and the
composition of BiLSTM are described in detail. In Section 5, the feasibility and validity
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of the proposed SOH estimation method are proven and evaluated. Finally, the pivotal
conclusions are summarized in Section 6.

2. Battery Health Status Definition

With repeated charge–discharge cycles, battery capacity continues to decline and
internal resistance continues to increase. When the SOH value is less than 80%, the battery
cannot operate normally. Therefore, the SOH of battery is a key indicator that describes its
current performance and degradation degree. Generally speaking, there are two commonly
used perspectives for defining battery SOH, namely, based on battery capacity and based
on battery internal resistance, which can be expressed as shown below [42,43]:

SOH =
Qcurrent

Qnew
× 100% (1)

SOH =
Rterminated − Rcurrent

Rterminated − Rnew
× 100% (2)

where Qcurrent and Qnew represent the currently available capacity and the initial capacity
specified by the factory, respectively, while Rterminated, Rcurrent, and Rnew represent the
ohmic internal resistance at the end of battery life, the current state, and the initial state,
respectively. Because the capacity definition method is more accurate, the parameter is easy
to obtain, and there is more literature on the definition of SOH using battery capacity, in
this paper we use Equation (1) to define SOH.

3. Incremental Energy Analysis

In order to achieve a clear IC curve, the preferred incremental capacity analysis
approach commonly requires a smoothing function to fit the capacity and voltage data
collected during constant current charging and discharging, establishing a hidden relation-
ship between capacity and terminal voltage (Q-V) curves; further, the first derivative of
the curve is converted into the capacity increment and terminal voltage (dQ/dV-V) curve,
while a Kalman filter can be used to smooth the curve [44]. The shifted curve contains more
abundant and sensitive characteristics, which is beneficial for analyzing and extracting
more effective features to describe the battery aging process. Therefore, the proposed IEA
in this work uses a simpler procedure to characterize the degeneration mechanism under
the CC-CV charging mode with different charging rates. In analogy with the traditional
incremental capacity method, we adopt the ratio of the energy change value ∆E to the fixed
voltage difference value ∆V, which can decrease the fitting error to a certain extent; the
substitution process can be expressed as follows:

E = f (V) =

t1∫
t0

V(t)·Idt (3)

dE
dV
≈ ∆E

∆V
(4)

where E is the energy in the CC charging phase, t0 and t1 represent the start and end times
of CC charging phase, respectively, V denotes the voltage of the CC charging phase, and f
indicates the functional relation of E and V.

The experimental data of 0.1C and 0.2C charging at different rates are compared and
analyzed in this paper. Moreover, from an electrochemical perspective, the incremental
energy (IE) method clearly indicates the phase equilibrium position trend, where the
voltage exhibits a slow increase while complex and vigorous electrochemical reactions
occur within the battery. This phenomenon occurs due to the rapid change in the battery’s
available energy with respect to voltage.
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The IE curves of two different charging rates are shown in Figure 1; there are four
obvious peaks in the IE curve. It can be seen from Figure 1 that the energy charging curve
at 0.1C is at the upper left of the energy charging curve at 0.2C, which indicates that under
the condition of lower current, more energy can be charged and the total charging time
increases significantly. In addition, the IE curve has the same trend of shifting, the values
of the four peaks of the IE curve increase with the lower charging rate, and the voltage
positions corresponding to the peak values decrease.
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Figure 1. IE curves under two different charging rates.

Throughout the degradation of battery performance, the IE curve contains health
characteristic information that can be used to characterize battery aging, as shown in
Figure 2. It can be seen that there are four clear peaks in the IE aging curve under different
numbers of cycles and that the four peaks gradually decrease as the number of charging–
discharging cycles increases; furthermore, the voltage values corresponding to the four
peaks remain basically unchanged. In general, the internal degradation pattern of the
battery here depends on chemical analysis. Different battery types have different chemical
properties at different charging/discharging rates, temperatures, and charging modes (e.g.,
constant current, constant voltage). During the loss of lithium ions, lithium is oxidized
and lithium ions are released from the graphite at the negative (anode); the lithium ions
undergo a reduction reaction at the positive (cathode). Because the side reactions are
irreversible, when the equilibrium state changes this leads to deterioration of battery
performance, which in the process of use further forms a vicious cycle to accelerate battery
aging [45]. Therefore, the four peaks are used as a class of essential aging characteristics
to evaluate battery SOH in this paper. Additionally, in order to achieve a more rapid and
efficient estimate of battery SOH, Pearson correlation analysis is used to further excavate
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the underlying mapping relationship between the four aging peaks and battery SOH,
denoted as follows:

P =

n
∑

i=1

(
Xi − X

)(
Yi −Y

)
√

n
∑

i=1

(
Xi − X

)2
√

n
∑

i=1

(
Yi −Y

)2
(5)

where Xi and Yi denote the aging peak value and health status value, respectively, of the
ith cycle, while X and Y respectively indicate the average values of the aging peak and
health status.
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The correlation coefficient between the aging peak and SOH with two different charg-
ing rates are listed in Table 1. It is worth noting that the correlation coefficients between
the four peak characteristics and SOH are greater than 0.91, among which the correlation
coefficients of peak II and peak IV are very close, and the largest, the dE/dV (the ratio of
the energy change value ∆E to the fixed voltage difference value ∆V), is highly correlated
with capacity. The larger the correlation coefficient, the greater the correlation between
peak characteristics and capacity; while the correlation of peak Ш is the smallest, the
correlation coefficient of peak I remains effectively unchanged in the IE aging curves for
the two different charging rates. Therefore, the two aging peaks with the maximum corre-
lation coefficient, that is, the peaks II and IV, are employed for estimating battery SOH in
this paper.

Table 1. Results for the correlation coefficient between all aging peaks and SOH.

Charging Rate I Peak II Peak III Peak IV Peak

0.2C 0.9723 0.9895 0.9115 0.9873
0.1C 0.9715 0.9872 0.9566 0.9896

4. BiLSTM

In conventional recurrent neural networks (RNNs), parameter updating takes place
via back-propagation algorithms and error propagation is transmitted forward step by
step based on the reverse order of time. However, because the ability of RNNs to process
relatively long sequences is limited, the gradient disappearance or explosion phenomenon
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appears, which can influence the estimation accuracy of long-sequence data. In order to
solve this issue, the best approach at present is to introduce a gating mechanism to overcome
the problem of long-term dependency, as in an LSTM network. The basic structure of LSTM
is shown in Figure 3; the LSTM contains three specific gate structures, called the forget gate,
input gate, and output gate, which control information transfer in the LSTM cell and decide
the input, reservation, and output of the information, respectively. Taking into account
that the energy data of the charging process is a time series, the battery SOH degrades
as the number of cycles increases; LSTM networks are widely employed in many fields
as an excellent solution for dealing with such time series problems. Consequently, in this
paper the historical energy data of charging and discharging cycles are adopted for SOH
estimation by implementing an LSTM network.
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The procedure of using the LSTM to process input data can be described by the
following computational formulas:

ft = σ(w f ∗ [ht−1, xt] + b f ) (6)

it = σ(wi[ht−1, xt] + bi) (7)

c̃t = tanh(wc[ht−1, xt] + bc) (8)

ot = σ(wo[ht−1, xt] + bo) (9)

Ct = ft · Ct−1 + it · c̃t (10)

ht = ottanh(St) (11)

σ(x) =
1

1 + exp(−x)
(12)

tanh(x) =
exp(x)− exp(−x)
exp(x) + exp(−x)

(13)
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where it and c̃t are the respective outputs of the input gate and input node at time t, f t, ot,
and ht denote the output of forget gate, output gate, and hidden layer at time t, respectively,
Ct is an intermediate storage variable that multiplies the state information of the input gate
into the state space, wi, wf, wc, and wo represent the weight parameters of the input gate,
forget gate, input state, and output gate, respectively, bi, bf, bc, and bo indicate the bias term
of the input gate, forget gate, input state, and output gate, respectively, and tanh represents
the sigmoid and hyperbolic tangent activation function.

Additionally, due to the regeneration phenomenon of battery capacity, the LSTM can
only extract the capacity sequence information of the battery in the forward direction,
and cannot obtain the reverse capacity sequence information. In consideration of this, the
BiLSTM algorithm is proposed to overcome SOH estimation inaccuracy due to the battery
capacity regeneration phenomenon. As shown in Figure 4, the BiLSTM network layer is
composed of forward and backward propagation LSTM layers, which can better establish
the dependency between past capacity data and future capacity data.
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After calculating the current time value of the forward LSTM layer and the current
time value of the backward LSTM layer, the two are used to jointly determine the final
output value, which can effectively improve the robustness and generalization of the
network and is very suitable for processing large-scale data and unstable data. The network
output process is as follows:

→
h t = f (xt,

→
h t−1) (14)

←
h t = f (xt,

←
h t−1) (15)

ht =
→
wt
→
h t +

←
wt
←
h t + bt (16)

where
→
wt and

←
wt represent the weights of the forward LSTM hidden layer output and

reverse LSTM hidden layer output, respectively, while ht is the linear superposition of the
forward hidden layer state and reverse hidden layer state.

5. Experimental Results and Analysis
5.1. Battery Dataset

Two cylindrical lithium ion batteries with the same specifications were implemented
with 0.48 A (0.2C) and 0.24 A (0.1C) constant current charging until the battery voltage
achieved the upper cut-off voltage 4.2 V, then the 4.2 V voltage of battery was maintained
until the charging current reduced to the lower cut-off current of 48 mA; the battery
specifications are shown in Table 2. The two batteries were subjected to repeated charging–
discharging testing at room temperature (25 ◦C); with respect to the batteries charged at
0.2C and 0.1C constant current, they conducted 750 and 600 charging–discharging cycles,
the energy of the 0.2C constant current charging battery was decreased from 8.4813 W·h to
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7.2401 W·h, and the energy of the 0.1C constant current charging battery was reduced from
8.3982 W·h to 7.2392 W·h. Next, the aging data of the batteries were measured based on
the efficient battery test system, as shown in Figure 5, in which the upper computer in the
testing system was employed to record the data in the experiment and the two batteries
were tested using an Neware BTS 4000. Eventually, the incubator was used to control the
temperature of the single battery. The SOH measurements of the two lithium ion batteries
are shown in Figure 6. It can be seen that the SOH of the battery is continuously degraded
with the increasing number of charging–discharging cycles, and both are accompanied by
the SOH regeneration phenomenon. As there is a resting state in the battery during the
charging–discharging cycle, the internal side reaction products dissolve and the voltage
gradually increases. As a result, the available capacity of the battery briefly recovers or
even increases compared to the previous cycle, then the battery capacity decays faster; this
demonstrates that overcoming the battery capacity regeneration phenomenon is essential
for accurate monitoring of battery SOH.

Table 2. Battery specifications.

Specification Value

Rated capacity 2.4 Ah
Normal voltage 3.6 V

Allowed voltage range 3 V~4.2 V
End-of-charge current 48 mA

Max charging/discharging current 2400 mA/1200 mA
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5.2. The SOH Estimation Process

Considering the feature extraction, model calculation cost, and SOH estimation ac-
curacy, the overall framework of the proposed SOH estimation methodology is shown in
Figure 7. It can be divided into three parts: data preprocessing, SOH estimation model
training, and SOH estimation. Specifically, the IE curve is drawn based on the charging
energy data of the battery to extract the peak characteristics and the normalized feature
data is used as the network input; then, the input data are divided into two parts, a training
set and a testing set, according to a ratio of 1:1, and the battery SOH estimation model of
BiLSTM is constructed based on the training set. Finally, the performance of the proposed
battery SOH estimation method is validated by the testing data.
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5.3. Evaluation Metrics

To evaluate the performance of SOH estimation, the mean absolute error (MAE), root
mean square error (RMSE), and determination coefficient R2 are used to measure estimation
performance in this work; they are respectively defined as follows:

MAE =
1
n

n

∑
i=1
|ŷi − yi| (17)

RMSE =

√
1
n

n

∑
i=1
|yi − ŷi|2 (18)

R2 = 1− ∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − yi)

2 (19)

where ŷi and yi are the estimated SOH and actual SOH, respectively, and n refers to the
number of testing cycle.

5.4. Experimental Results and Analysis

The battery’s energy and voltage data in the CC phase of the 0.1C and 0.2C charging–
discharging cycles were first measured. Afterwards, the IE aging curve was drawn ac-
cording to the ratio of the energy change value to the fixed voltage difference value, and
the four related energy peaks were extracted from the IE aging curve. Pearson correlation
analysis was used to calculate the correlation between each peak and the battery SOH to
determine the input data of the SOH estimation model. Based on the divided training
and testing set, the SOH estimation model was established and the model performance
index was evaluated. The battery SOH of the testing data was estimated according to
the trained estimation model, and is shown as the dark blue line in Figure 8. The SOH
estimation results shown in the figure clearly indicate that the proposed method based on
IEA and BiLSTM can accurately evaluate battery SOH under two different charging rates.
The performance indicators with respect to the battery SOH evaluation results of the two
different charging rates are recorded in Table 3. It can be seen from the table that the MAE
and RMSE values are both very low, which indicates that the estimated SOH trajectory is
consistent with the actual SOH degradation trend. In addition, the closer the coefficient of
determination R2 is to 1, the more accurately the model estimates the real SOH decline. In
summary, the proposed method can closely estimate the battery SOH deterioration trend.
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Table 3. SOH estimation performance for the two different charging rates.

Charging Rate MAE (%) RMSE (%) R2

0.2C 0.2437 0.2745 0.9872
0.1C 0.2585 0.3358 0.9831

In order to further prove the validity of the proposed SOH estimation method based
on incremental energy analysis and BiLSTM, a comparative experiment was carried out
including the LSTM, SVM, and ELM neural networks for the case of estimating battery
SOH with 0.1C and 0.2C constant current charging. The comparative experimental results
of the two cases are displayed in Figure 9. In order to more clearly represent the error in
the estimation results under the two cases, Table 4 shows the specific data of MAE, RMSE
and R2.

World Electr. Veh. J. 2023, 14, 188 12 of 15 
 

Table 3. SOH estimation performance for the two different charging rates. 

Charging Rate MAE (%) RMSE (%) R2 
0.2C 0.2437 0.2745 0.9872 
0.1C 0.2585 0.3358 0.9831 

In order to further prove the validity of the proposed SOH estimation method based 
on incremental energy analysis and BiLSTM, a comparative experiment was carried out 
including the LSTM, SVM, and ELM neural networks for the case of estimating battery 
SOH with 0.1C and 0.2C constant current charging. The comparative experimental results 
of the two cases are displayed in Figure 9. In order to more clearly represent the error in 
the estimation results under the two cases, Table 4 shows the specific data of MAE, RMSE 
and R2.  

Based on the evaluation results of the four algorithms for estimating battery SOH, it 
is evident that LSTM exhibits superior memory capabilities in capturing dependencies 
within time series data and can partially address the issue of gradient disappearance and 
explosion. However, LSTM falls short in accurately estimating long-term dependencies 
between sequences. Furthermore, during the training process the accumulation of error 
gradients leads to significant updates to the weights being required, resulting in decreased 
estimation accuracy. 

In the case of SVM, its utilization of a kernel function allows for the mapping of low-
dimensional and nonlinear data into a higher-dimensional space, transforming these data 
into linear data for solving. However, the constant adjustment of the penalty coefficient 
and width factor of the kernel function makes it difficult to precisely track the true decay 
law of the battery SOH; consequently, multiple jump points may appear in the estimated 
results. 

ELM, on the other hand, employs randomly initialized weights in the hidden layer, 
eliminating the need for manual assignment or iterative learning and updating. ELM lacks 
feedback capability, and relies on the gradient descent method for learning and updating 
weights. As a result, ELM demonstrates fast calculation output and strong generalization 
ability. However, the occurrence of local regeneration phenomena in battery SOH signifi-
cantly affects the estimation results, causing substantial fluctuations. 

In our proposed SOH estimation method, BiLSTM effectively learns historical and 
future SOH values, thereby overcoming the challenges posed by the regeneration phe-
nomenon in battery SOH. Additionally, the extraction of multiple peak features from the 
IE aging curve profoundly captures the underlying aging law of battery SOH. 

  

(a) (b) 

Figure 9. Comparative results of SOH estimation under two different charging rates: (a) 0.2C and 
(b) 0.1C. 

100 200 300 400 500 600 700
Cycles

86

88

90

92

94

96

98
BiLSTM
LSTM
SVM
ELM
Actual SOH

480 500 520 540
88

89

90

91

0 100 200 300 400 500 600
Cycles

84

86

88

90

92

94

96

98

100

BiLSTM
LSTM
SVM
ELM
Actual SOH

520 540 560

85.5

86

86.5

87
BiLSTM
LSTM
SVM
ELM
Actual SOH

Figure 9. Comparative results of SOH estimation under two different charging rates: (a) 0.2C and
(b) 0.1C.

Table 4. Performance index of the comparative experiment.

Charging Rate Estimation
Method MAE (%) RMSE (%) R2

0.2C

BiLSTM 0.2437 0.2745 0.9872
LSTM 0.3341 0.4096 0.9764
SVM 0.3604 0.4724 0.9406
ELM 0.4183 0.5267 0.9379

0.1C

BiLSTM 0.2585 0.3358 0.9831
LSTM 0.3014 0.3499 0.9421
SVM 0.2688 0.3348 0.9471
ELM 0.4415 0.5277 0.9435

Based on the evaluation results of the four algorithms for estimating battery SOH,
it is evident that LSTM exhibits superior memory capabilities in capturing dependencies
within time series data and can partially address the issue of gradient disappearance and
explosion. However, LSTM falls short in accurately estimating long-term dependencies
between sequences. Furthermore, during the training process the accumulation of error
gradients leads to significant updates to the weights being required, resulting in decreased
estimation accuracy.

In the case of SVM, its utilization of a kernel function allows for the mapping of low-
dimensional and nonlinear data into a higher-dimensional space, transforming these data
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into linear data for solving. However, the constant adjustment of the penalty coefficient and
width factor of the kernel function makes it difficult to precisely track the true decay law of
the battery SOH; consequently, multiple jump points may appear in the estimated results.

ELM, on the other hand, employs randomly initialized weights in the hidden layer,
eliminating the need for manual assignment or iterative learning and updating. ELM
lacks feedback capability, and relies on the gradient descent method for learning and
updating weights. As a result, ELM demonstrates fast calculation output and strong
generalization ability. However, the occurrence of local regeneration phenomena in battery
SOH significantly affects the estimation results, causing substantial fluctuations.

In our proposed SOH estimation method, BiLSTM effectively learns historical and
future SOH values, thereby overcoming the challenges posed by the regeneration phe-
nomenon in battery SOH. Additionally, the extraction of multiple peak features from the IE
aging curve profoundly captures the underlying aging law of battery SOH.

6. Conclusions

In future intelligent lithium ion battery management technologies, the battery’s state
of health is a vital evaluation index of aging, and the use of machine learning methods to
estimate battery SOH has attracted increasing focus in recent years. Therefore, an SOH
estimation method based on bidirectional long short-term memory neural network and
incremental energy analysis is proposed in this paper. The proposed SOH estimation
method was compared with LSTM, SVM, and ELM models. Notably, that the performance
of the proposed method was superior to the other estimation techniques, with significantly
smaller RMSE and R2 values. The RMSE of the proposed method for charging rates of 0.2C
and 0.1C were 0.2745% and 0.3358%, respectively; the BiLSTM model reduced the RMSE
by 9.31–47.88% at 0.2C and by 14.74–36.41% at 0.1C, and the determination coefficients at
0.2C and 0.1C were 98.72% and 98.31%, respectively. In addition, the proposed BiLSTM
model increased the R2 value by 0.29–5.26% at 0.2C and by 0.16–4.21% at 0.1C.

In the future, we intend to investigate the effects of different temperature conditions,
charging and discharging modes, and types of batteries on SOH estimation.
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